請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/98043完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 蔡曜陽 | zh_TW |
| dc.contributor.advisor | Yao-Yang Tsai | en |
| dc.contributor.author | 覃楷文 | zh_TW |
| dc.contributor.author | KAI-WEN CHIN | en |
| dc.date.accessioned | 2025-07-23T16:34:18Z | - |
| dc.date.available | 2025-07-24 | - |
| dc.date.copyright | 2025-07-23 | - |
| dc.date.issued | 2024 | - |
| dc.date.submitted | 2025-07-18 | - |
| dc.identifier.citation | [1] J. Kozak, K. P. Rajurkar, and S. Z. Wang, "MATERIAL REMOVAL IN WEDM OF PCD BLANKS," (in English), J. Eng. Ind.-Trans. ASME, Article vol. 116, no. 3, pp. 363-369, Aug 1994, doi: 10.1115/1.2901953.
[2] 陳姿伶, "多晶鑽石之線切割放電加工特性研究," 碩士, 機械工程學研究所, 國立臺灣大學, 台北市, 2008. [Online]. Available: https://hdl.handle.net/11296/e95yj3 [3] M. T. Yan, G. R. Fang, and Y. T. Liu, "An experimental study on micro wire-EDM of polycrystalline diamond using a novel pulse generator," (in English), Int. J. Adv. Manuf. Technol., Article vol. 66, no. 9-12, pp. 1633-1640, Jun 2013, doi: 10.1007/s00170-012-4446-z. [4] 蘇祐樑, "微線切割放電加工細修電源研發與多晶鑽石加工特性研究," 碩士, 機電工程學系, 華梵大學, 新北市, 2014. [Online]. Available: https://hdl.handle.net/11296/27px35 [5] J. L. Liu, F. M. Deng, X. J. Lu, P. Zhang, and L. L. Zhou, "A study on structural evolution of metamorphic layer on the surface of PCD in electrical discharge machining," (in English), Diam. Relat. Mat., Article vol. 91, pp. 46-53, Jan 2019, doi: 10.1016/j.diamond.2018.11.006. [6] F. Hsu, T. Tai, V. Vo, S. Chen, and Y. Chen, "The machining characteristics of polycrystalline diamond (PCD) by micro-WEDM," Procedia CirP, vol. 6, pp. 261-266, 2013. [7] M. Galindo-Fernandez, C. Diver, and W. Leahy, "The Prediction of Surface Finish and Cutting Speed for Wire Electro-discharge Machining of Polycrystalline Diamond," Procedia CIRP, vol. 42, pp. 297-304, 2016, doi: 10.1016/j.procir.2016.02.289. [8] P. Ong, C. H. Chong, M. Z. bin Rahim, W. K. Lee, C. K. Sia, and M. A. H. bin Ahmad, "Intelligent approach for process modelling and optimization on electrical discharge machining of polycrystalline diamond," (in English), J. Intell. Manuf., Article vol. 31, no. 1, pp. 227-247, Jan 2020, doi: 10.1007/s10845-018-1443-6. [9] C. Kuo, T. Yeh, Y. Nien, and Y. R. Chen, "Multi-objective optimization of edge quality and surface integrity when wire electrical discharge machining of polycrystalline diamonds in cutting tool manufacture," (in English), J. Manuf. Process., Article vol. 74, pp. 520-534, Feb 2022, doi: 10.1016/j.jmapro.2021.12.038. [10] 曾彥菱, "不同電極形狀對加工特性之影響與放電加工參數之決策," 碩士, 機械工程學系, 國立臺灣大學, 台北市, 2023. [Online]. Available: https://hdl.handle.net/11296/3d386r [11] X. Z. Wang, C. J. Li, H. Guo, and S. L. Ding, "Electrical discharge machining of polycrystalline diamond: A review," (in English), Proc. Inst. Mech. Eng. Part B-J. Eng. Manuf., Review; Early Access p. 17, 2022 Nov 2022, doi: 10.1177/09544054221136511. [12] A. Descoeudres, "Characterization of electrical discharge machining plasmas," EPFL, 2006. [13] 蘇柏全, "線切式放電加工機之錐度加工研究," 碩士, 機械工程學研究所, 國立臺灣大學, 台北市, 2002. [Online]. Available: https://hdl.handle.net/11296/tn5k8s [14] 李彥緯, "應用機器學習於線切割表面輪廓點之預測," 碩士, 機械工程學研究所, 國立臺灣大學, 台北市, 2019. [Online]. Available: https://hdl.handle.net/11296/r3q7p7 [15] S. Kumar and A. Verma, "Surface modification during electrical discharge machining process – A review," Materials Today: Proceedings, vol. 46, pp. 5228-5232, 2021, doi: 10.1016/j.matpr.2020.08.596. [16] 李輝煌, 田口方法: 品質設計的原理與實務 (第4版/附光碟片). 高立圖書有限公司, 2011. [17] E. Gadelmawla, M. M. Koura, T. M. Maksoud, I. M. Elewa, and H. Soliman, "Roughness parameters," Journal of materials processing Technology, vol. 123, no. 1, pp. 133-145, 2002. [18] D. C. Montgomery, E. A. Peck, and G. G. Vining, Introduction to Linear Regression Analysis, 5th ed. Hoboken, NJ: Wiley, 2012. [19] 彭為駿, "線放電成形與同步銳利化多晶鑽石刀具之最佳化研究," 碩士, 機械工程系, 國立臺灣科技大學, 台北市, 2018. [Online]. Available: https://hdl.handle.net/11296/9aq2u7 | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/98043 | - |
| dc.description.abstract | 線切割放電加工聚晶鑽石(Polycrystalline Diamond,PCD)時,加工過程循環的熱效應會造成聚晶鑽石表面的熱損傷,在製作 PCD 刀具時會影響其切削刃的品質,進而影響刀具壽命。業界往往會預留加工裕量,在線放電粗割加工後對其進行研磨。若能在線切割機台上通過精修減少熱損傷層的深度,即能減小更換機台的定位誤差,降低研磨製程的時間並減少砂輪損耗所帶來的成本。故本研究關注 PCD 經過線放電加工後的熱損傷大小,以及通過多道次精修,能將熱損傷層減小至最少,並通過分析各項精修加工參數對 PCD 加工特性的影響提出一供加工者參考使用的決策方法。
研究運用田口直交表進行兩組實驗,分別是 L18 直交表的線放電粗割加工實驗和 L27 直交表的線放電精修加工實驗,探討了加工模式、伺服參考電壓等 8 個加工參數和Offset深度對於線放電加工 PCD 的熱損傷層和其它加工特性的影響。線放電粗割加工 PCD 的加工速度範圍落在 0.56 – 2.65 mm/ min ,平均熱損傷層深度大小範圍落在 20 - 60 µm 。精修加工實驗結果顯示,影響加工速度的主要因子為Offset深度、加工模式與開路電壓,三者貢獻度合計逾 83%;影響表面粗糙度的因子為Offset深度 、加工模式、開路電壓、放電時間,貢獻度達 75%;影響熱損傷層移除深度者,以Offset深度最顯著,其貢獻度達 90.97%。 基於上述分析,本研究建構一套自動化精修加工參數決策系統,使用者僅需輸入粗加工的參數設定與目標表面粗糙度,系統即能回傳最適道次組合與參數設定。系統內建三種策略模組(預設參數法、加工速度優先法與表面粗糙度優先法),支援單道至三道次的彈性組合,具備依目標導向調整的能力。在相同熱損傷層深度下,不同策略模組展現出明顯的加工結果差異與代價取捨:預設參數法運算快速、適用範圍廣,但缺乏針對性調整,常難以兼顧品質與效率;加工速度優先法可有效縮短總加工時間,惟表面粗糙度略為犧牲;表面粗糙度優先法則能顯著提升最終 Ra 表現,代價為加工時間略增。本系統可依使用者目標,於加工品質與效率之間提供清晰的策略選擇依據。 | zh_TW |
| dc.description.abstract | During the process of Wire Electrical Discharge Machining (WEDM) of Polycrystalline Diamond (PCD), the cyclical thermal effects can cause thermal damage to the surface of the PCD, which impacts the quality of the cutting edge when making PCD tools and consequently affects the tool life. The industry often leaves a machining allowance and performs grinding after rough cutting by WEDM. If the thickness of the thermally damaged layer can be reduced through fine-tuning on the wire cutting machine, the positioning error from changing machines can be minimized, grinding process time reduced, and the cost from wheel wear decreased. Therefore, this study focuses on the extent of thermal damage to PCD after WEDM and how multi-pass fine-tuning can minimize the thermally damaged layer. It also proposes a decision-making method for operators by analyzing the effects of various fine-tuning parameters on the characteristics of PCD machining.
Two sets of Taguchi orthogonal experiments were conducted using L18 and L27 designs for roughing and finishing stages, respectively, to investigate the effects of eight machining parameters—such as machining mode, servo reference voltage, and finishing depth—on heat-affected depth and cutting speed. The observed roughing speeds ranged from 0.56 to 2.65 mm/min, with heat-affected layer thickness ranging from 20 to 60 µm. Experimental results for finishing revealed that the most influential factors on cutting speed were depth of cut (X), machining mode (IP), and open voltage (OV), collectively contributing over 83%. For surface roughness (Ra), X, IP, OV, and discharge time (ON) were dominant, with a combined contribution of 75%. As for the removal depth of the heat-affected layer (Re), depth of cut (X) had the most significant effect, with a contribution of 90.97%. Based on the above analysis, this study developed an automated decision-making system for fine machining parameters. By simply inputting the rough machining parameters and the target surface roughness, the system returns the optimal combination of passes and parameter settings. It incorporates three strategic modules—default parameter strategy, cutting speed–prioritized strategy, and surface roughness–prioritized strategy—with flexible support for one to three passes, and can be adjusted according to different optimization goals. Under the same HAZ depth, the three strategies exhibit clear differences in machining outcomes and trade-offs. The default strategy offers fast computation and wide applicability, but lacks parameter fine-tuning and often fails to balance quality and efficiency. The speed-prioritized strategy effectively shortens total machining time, at the cost of slightly poorer surface quality. In contrast, the surface roughness–prioritized strategy significantly improves the final Ra, though with a slight increase in machining time. The system provides users with a clear basis for selecting strategies according to their priorities between machining quality and efficiency. | en |
| dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2025-07-23T16:34:18Z No. of bitstreams: 0 | en |
| dc.description.provenance | Made available in DSpace on 2025-07-23T16:34:18Z (GMT). No. of bitstreams: 0 | en |
| dc.description.tableofcontents | 口試審定書 I
致 謝 II 摘 要 III ABSTRACT V 目 次 VII 圖 次 XI 表 次 XIV 第一章 緒論 1 1.1前言 1 1.2文獻回顧 2 1.2.1 線切割放電加工PCD的加工特性 2 1.2.2 放電加工的參數決策方法 4 1.3 研究動機與目的 6 1.4論文架構 8 第二章 相關理論介紹 9 2.1 放電加工 9 2.1.1 放電加工原理介紹 9 2.1.2 放電現象轉換過程 10 2.1.3 放電迴路種類 11 2.1.4 放電加工機種類 13 2.1.5 線放電加工參數 15 2.1.6 放電加工特性 16 2.2 田口方法 19 2.2.1品質損失函數 19 2.2.2 影響因子 20 2.2.3 S/N比 21 2.2.4田口直交表 22 2.2.5 執行步驟 23 2.3 表面粗糙度 24 2.3.1 量測基本術語 24 2.3.2 表面粗糙度參數種類與定義 25 2.4 回歸分析 27 2.4.1 回歸分析基本概念 27 2.4.2 模型評估指標 28 2.4.3 回歸模型應用 29 第三章 實驗設備與流程規劃 31 3.1 實驗設備與儀器 31 3.1.1 線切割放電加工機 31 3.1.2 電極材料 32 3.1.3 工件材料 32 3.1.4 絕緣加工液 33 3.1.5 桌上型超音波清洗機 34 3.1.6 數位顯微鏡 34 3.1.7 雷射共軛焦顯微鏡 35 3.2實驗系統架構 37 3.2.1實驗機台設置 37 3.2.2實驗參數設定 37 3.3 實驗流程規劃 41 3.3.1實驗規劃 41 3.3.2實驗流程圖 45 第四章 實驗結果與討論 46 4.1 線放電粗割加工參數對加工特性之影響 46 4.1.1 粗割後熱損傷層之觀察與量測 46 4.1.2 粗割加工參數對加工速度之影響 47 4.1.3 粗割加工參數對熱損傷層深度之影響 50 4.1.4 粗割加工參數對熱損傷層變異度之影響 52 4.1.5 粗割加工熱損傷層預測模型建立 55 4.1.6 粗割加工參數小結 56 4.2 線放電精修加工參數對加工特性之影響 58 4.2.1 精修後熱損傷層之觀察與量測 58 4.2.2 精修加工參數對加工速度之影響 59 4.2.3 精修加工參數對表面粗糙度之影響 62 4.2.4 精修加工參數對熱損傷層移除深度的影響 65 4.3 線放電加工 PCD 精修參數的決策 69 4.3.1 關鍵參數識別與回歸模型建構 69 4.3.2 決策邏輯設計與多策略模組 71 4.3.3 決策演算法實作細節 72 4.3.4 使用者介面設計與操作流程 74 4.3.5 加工結果驗證 75 第五章 結論及未來發展 89 5.1 結論 89 5.2 未來展望 91 參考文獻 92 附錄一 線放電粗割加工 PCD 加工時間 95 附錄二 粗割加工 PCD 熱損傷層變異度計算程式碼 96 附錄三 線放電精修加工 PCD 加工時間 98 附錄四 精修加工 PCD 決策演算法程式碼 99 | - |
| dc.language.iso | zh_TW | - |
| dc.subject | 回歸分析 | zh_TW |
| dc.subject | 多道次加工 | zh_TW |
| dc.subject | 田口方法 | zh_TW |
| dc.subject | 熱損傷層 | zh_TW |
| dc.subject | 線放電加工參數 | zh_TW |
| dc.subject | Multi-Pass Machining | en |
| dc.subject | Wire Electrical Discharge Machining Parameters | en |
| dc.subject | Heat Affected Zone | en |
| dc.subject | Taguchi Method | en |
| dc.subject | Regression Analysis | en |
| dc.title | 線切割放電加工聚晶鑽石之精修加工參數決策 | zh_TW |
| dc.title | Decision-Making on Fine Machining Strategies and Parameters for Wire Electrical Discharge Machining of Polycrystalline Diamond | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 113-2 | - |
| dc.description.degree | 碩士 | - |
| dc.contributor.oralexamcommittee | 許富銓;陳偉恩;王世明 | zh_TW |
| dc.contributor.oralexamcommittee | Fu-Chuan Hsu;Wei-En Chen;Shih-Ming Wang | en |
| dc.subject.keyword | 線放電加工參數,熱損傷層,田口方法,回歸分析,多道次加工, | zh_TW |
| dc.subject.keyword | Wire Electrical Discharge Machining Parameters,Heat Affected Zone,Taguchi Method,Regression Analysis,Multi-Pass Machining, | en |
| dc.relation.page | 119 | - |
| dc.identifier.doi | 10.6342/NTU202502015 | - |
| dc.rights.note | 未授權 | - |
| dc.date.accepted | 2025-07-21 | - |
| dc.contributor.author-college | 工學院 | - |
| dc.contributor.author-dept | 機械工程學系 | - |
| dc.date.embargo-lift | N/A | - |
| 顯示於系所單位: | 機械工程學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-113-2.pdf 未授權公開取用 | 6.82 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
