請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/97985完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 陳丕燊 | zh_TW |
| dc.contributor.advisor | Pisin Chen | en |
| dc.contributor.author | 劉詠鯤 | zh_TW |
| dc.contributor.author | Yung-Kun Liu | en |
| dc.date.accessioned | 2025-07-23T16:21:07Z | - |
| dc.date.available | 2025-07-24 | - |
| dc.date.copyright | 2025-07-23 | - |
| dc.date.issued | 2025 | - |
| dc.date.submitted | 2025-06-27 | - |
| dc.identifier.citation | [1] Remo Ruffini and John A. Wheeler. Introducing the black hole. Physics Today, 24(1):30–41, 1971.
[2] Stephen W. Hawking. Black holes in general relativity. Communications in Mathematical Physics, 25:152–166, 1972. [3] Jacob D. Bekenstein. Black holes and entropy. Physical Review D, 7(8):2333, 1973. [4] Robert M. Wald. The thermodynamics of black holes. Living Reviews in Relativity, 4:1–44, 2001. [5] Stephen W. Hawking. Black hole explosions? Nature, 248(5443):30–31, 1974. [6] Stephen W. Hawking. Breakdown of predictability in gravitational collapse. Physical Review D, 14(10):2460, 1976. [7] Daniel Harlow. Jerusalem lectures on black holes and quantum information. Reviews of Modern Physics, 88(1):015002, 2016. [8] Joseph Polchinski. The black hole information problem. In New Frontiers in Fields and Strings: TASI 2015 Proceedings of the 2015 Theoretical Advanced Study Institute in Elementary Particle Physics, pages 353–397. World Scientific, 2017. [9] Juan Maldacena and Leonard Susskind. Cool horizons for entangled black holes. Fortschritte der Physik, 61(9):781–811, 2013. [10] Geoffrey Penington. Entanglement wedge reconstruction and the information paradox. Journal of High Energy Physics, 2020(9):1–84, 2020. [11] Ahmed Almheiri, Netta Engelhardt, Donald Marolf, and Henry Maxfield. The entropy of bulk quantum fields and the entanglement wedge of an evaporating black hole. Journal of High Energy Physics, 2019(12):1–47, 2019. [12] Pisin Chen, Yen Chin Ong, Don N. Page, Misao Sasaki, and Dong-han Yeom. Naked black hole firewalls. Physical Review Letters, 116(16):161304, 2016. [13] David A. Lowe, Joseph Polchinski, Leonard Susskind, Larus Thorlacius, and John Uglum. Black hole complementarity versus locality. Physical Review D, 52(12):6997, 1995. [14] Ahmed Almheiri, Donald Marolf, Joseph Polchinski, and James Sully. Black holes: complementarity or firewalls? Journal of High Energy Physics, 2013(2):1–20, 2013. [15] Ahmed Almheiri, Donald Marolf, Joseph Polchinski, Douglas Stanford, and James Sully. An apologia for firewalls. Journal of High Energy Physics, 2013(9):1–32, 2013. [16] William G. Unruh. Experimental black-hole evaporation? Physical Review Letters, 46(21):1351, 1981. [17] Oren Lahav, Amir Itah, Alex Blumkin, Carmit Gordon, Shahar Rinott, Alona Zayats, and Jeff Steinhauer. Realization of a sonic black hole analog in a Bose-Einstein condensate. Physical Review Letters, 105(24):240401, 2010. [18] Jeff Steinhauer. Observation of self-amplifying Hawking radiation in an analogue black-hole laser. Nature Physics, 10(11):864, 2014. [19] Juan Ramón Muñoz de Nova, Katrine Golubkov, Victor I. Kolobov, and Jeff Steinhauer. Observation of thermal Hawking radiation and its temperature in an analogue black hole. Nature, 569(7758):688–691, 2019. [20] Silke Weinfurtner, Edmund W. Tedford, Matthew C. J. Penrice, William G. Unruh, and Gregory A. Lawrence. Measurement of stimulated Hawking emission in an analogue system. Physical Review Letters, 106(2):021302, 2011. [21] Thomas G. Philbin, Chris Kuklewicz, Scott Robertson, Stephen Hill, Friedrich Konig, and Ulf Leonhardt. Fiber-optical analog of the event horizon. Science, 319(5868):1367–1370, 2008. [22] P. D. Nation, M. P. Blencowe, A. J. Rimberg, and E. Buks. Analogue Hawking radiation in a dc-SQUID array transmission line. Physical Review Letters, 103(8):087004, 2009. [23] Bryce S. DeWitt. Quantum field theory in curved spacetime. Physics Reports, 19(6):295–357, 1975. [24] P. C. W. Davies and S. A. Fulling. Radiation from a moving mirror in two-dimensional space-time conformal anomaly. Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences, 348:393–414, 1976. [25] Stephen A. Fulling and Paul C. W. Davies. Radiation from a moving mirror in two dimensional space-time: conformal anomaly. Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences, 348(1654):393–414, 1976. [26] N. D. Birrell and P. C. W. Davies. Quantum Fields in Curved Space. Cambridge Monographs on Mathematical Physics. Cambridge University Press, Cambridge, UK, 1984. [27] Frank Wilczek. Quantum purity at a small price: Easing a black hole paradox, 1993. [28] Robert D. Carlitz and Raymond S. Willey. Reflections on moving mirrors. Physical Review D, 36(8):2327, 1987. [29] Michael R. R. Good, Alessio Lapponi, Orlando Luongo, and Stefano Mancini. Modeling black hole evaporative mass evolution via radiation from moving mirrors. Physical Review D, 107(10):104004, 2023. [30] William G. Unruh. Notes on black-hole evaporation. Physical Review D, 14(4):870, 1976. [31] Pisin Chen and Gerard Mourou. Accelerating plasma mirrors to investigate the black hole information loss paradox (AnaBHEL). Physical Review Letters, 118(4):045001, 2017. [32] Pisin Chen and Gerard Mourou. Trajectory of a flying plasma mirror traversing a target with density gradient. Physics of Plasmas, 27(12), 2020. [33] Alexander Pukhov and Jürgen Meyer-ter Vehn. Laser wake field acceleration: the highly non-linear broken-wave regime. Applied Physics B, 74:355–361, 2002. [34] Sergei V. Bulanov, Timur Esirkepov, and Toshiki Tajima. Light intensification towards the Schwinger limit. Physical Review Letters, 91(8):085001, 2003. [35] M. Kando, Y. Fukuda, A. S. Pirozhkov, J. Ma, I. Daito, L-M. Chen, T. Zh. Esirkepov, K. Ogura, T. Homma, Y. Hayashi, et al. Demonstration of Laser-Frequency upshift by electron-density modulations in a plasma wakefield. Physical Review Letters, 99(13):135001, 2007. [36] Masaki Kando, A. S. Pirozhkov, Keigo Kawase, T. Zh. Esirkepov, Yuji Fukuda, Hiromitsu Kiriyama, Hidechika Okada, I. Daito, T. Kameshima, Yoshiki Hayashi, et al. Enhancement of photon number reflected by the relativistic flying mirror. Physical Review Letters, 103(23):235003, 2009. [37] M. Hotta, R. Schutzhold, and W. G. Unruh. Partner particles for moving mirror radiation and black hole evaporation. Physical Review D, 91(12):124060, 2015. [38] Pisin Chen, Gerard Mourou, Marc Besancon, Yuji Fukuda, Jean-Francois Glicenstein, Jiwoo Nam, Ching-En Lin, Kuan-Nan Lin, Shu-Xiao Liu, Yung-Kun Liu, et al. AnaBHEL (Analog Black Hole Evaporation via Lasers) experiment: Concept, design, and status. In Photonics, volume 9, page 1003. MDPI, 2022. [39] Irving Langmuir. Oscillations in ionized gases. Proceedings of the National Academy of Sciences of the United States of America, 14(8):627, 1928. [40] Francis F. Chen et al. Introduction to plasma physics and controlled fusion, volume 1. Springer, 1984. [41] Theodore H. Maiman. Stimulated optical radiation in ruby. Nature, 187(4736):493–494, 1960. [42] Donna Strickland and Gerard Mourou. Compression of amplified chirped optical pulses. Optics Communications, 56(3):219–221, 1985. [43] Paul Gibbon. Short pulse laser interactions with matter. World Scientific, 2004. [44] Gerard A. Mourou, Toshiki Tajima, and Sergei V. Bulanov. Optics in the relativistic regime. Reviews of Modern Physics, 78(2):309, 2006. [45] Gerard Mourou and Toshiki Tajima. More intense, shorter pulses. Science, 331(6013):41–42, 2011. [46] Toshiki Tajima and John M. Dawson. Laser electron accelerator. Physical Review Letters, 43(4):267, 1979. [47] Victor Malka, S. Fritzler, E. Lefebvre, M-M. Aleonard, F. Burgy, J-P. Chambaret, J-F. Chemin, K. Krushelnick, G. Malka, S. P. D. Mangles, et al. Electron acceleration by a wake field forced by an intense ultrashort laser pulse. Science, 298(5598):1596–1600, 2002. [48] Pisin Chen, J. M. Dawson, Robert W. Huff, and T. Katsouleas. Acceleration of electrons by the interaction of a bunched electron beam with a plasma. Physical Review Letters, 54(7):693–696, 1985. [49] C. Joshi. The development of laser-and beam-driven plasma accelerators as an experimental field. Physics of Plasmas, 14(5), 2007. [50] T. Esirkepov, Marco Borghesi, S. V. Bulanov, G. Mourou, and T. Tajima. Highly efficient relativistic-ion generation in the laser-piston regime. Physical Review Letters, 92(17):175003, 2004. [51] Yung-Kun Liu. 基於相對論性雷射電漿飛鏡之模擬黑洞研究. Master’s thesis, National Taiwan University, Taipei, 2020. [52] Sergei V. Bulanov, T. Zh. Esirkepov, Masaki Kando, Aleksandr Sergeevich Pirozhkov, and Nikolai N. Rosanov. Relativistic mirrors in plasmas. Novel results and perspectives. Physics-Uspekhi, 56(5):429, 2013. [53] Yung-Kun Liu, Pisin Chen, and Yuan Fang. Reflectivity and spectrum of relativistic flying plasma mirrors. Physics of Plasmas, 28(10), 2021. [54] Kuan-Nan Lin and Pisin Chen. Particle production by a relativistic semitransparent mirror of finite size and thickness. The European Physical Journal C, 84(1):53, 2024. [55] John M. Dawson. Particle simulation of plasmas. Reviews of Modern Physics, 55(2):403, 1983. [56] Charles K. Birdsall and A. Bruce Langdon. Plasma physics via computer simulation. CRC Press, 2004. [57] Roger W. Hockney and James W. Eastwood. Computer simulation using particles. CRC Press, 2021. [58] Kane Yee. Numerical solution of initial boundary value problems involving Maxwell’s equations in isotropic media. IEEE Transactions on Antennas and Propagation, 14(3):302–307, 1966. [59] Allen Taflove, Ardavan Oskooi, and Steven G. Johnson. Advances in FDTD computational electrodynamics: photonics and nanotechnology. Artech House, 2013. [60] T. Zh. Esirkepov. Exact charge conservation scheme for particle-in-cell simulation with an arbitrary form-factor. Computer Physics Communications, 135(2):144–153, 2001. [61] William H. Press, Brian P. Flannery, Saul A. Teukolsky, William T. Vetterling, et al. Numerical recipes, volume 3. Cambridge University Press, 1989. [62] J. P. Boris. Cylrad particle pusher. In Proceedings of the Fourth Conference on Numerical Simulation of Plasmas, page 3, 1970. [63] T. D. Arber, K. Bennett, C. S. Brady, A. Lawrence-Douglas, M. G. Ramsay, N. J. Sircombe, P. Gillies, R. G. Evans, H. Schmitz, A. R. Bell, and C. P. Ridgers. Contemporary particle-in-cell approach to laser-plasma modelling. Plasma Physics and Controlled Fusion, 57(11):1–26, nov 2015. [64] S. V. Bulanov, V. I. Kirsanov, and A. S. Sakharov. Excitation of ultrarelativistic plasma waves by pulse of electromagnetic radiation. JETP Letters, 50(4):176–178, 1989. [65] Eric Esarey, Carl B. Schroeder, and Wim P. Leemans. Physics of laser-driven plasma-based electron accelerators. Reviews of Modern Physics, 81(3):1229–1285, 2009. [66] John David Anderson. Modern compressible flow: with historical perspective. McGraw-Hill, 1990. [67] Morris Morduchow and Paul A. Libby. On a complete solution of the one-dimensional flow equations of a viscous, heat-conducting, compressible gas. Journal of the Aeronautical Sciences, 16(11):674–684, 1949. [68] Ya. B. Zel’Dovich and Yu. P. Raizer. Physics of shock waves and high-temperature hydrodynamic phenomena. Courier Corporation, 2002. [69] Florian R. Menter. Two-equation eddy-viscosity turbulence models for engineering applications. AIAA Journal, 32(8):1598–1605, 1994. [70] ESI Group. OpenFOAM v2106. CFD Software and Documentation, Jun 2021. OpenFOAM is a registered trademark of OpenCFD Ltd, a wholly owned subsidiary of ESI Group. [71] ANSYS, Inc. ANSYS Fluent. Commercial CFD Software, 2024. Simulations performed using version 2024 R1. [72] Wolfgang Merzkirch. Flow visualization. Academic Press, 1987. [73] G. S. Settles. Schlieren and Shadowgraph techniques. Springer, 2001. [74] P. Kreisler, W. Tietsch, and K. Bethge. Measurement of the density of a gas jet by light scattering. Nuclear Instruments and Methods, 177(2):521–527, 1980. [75] H-S. Mao, K. K. Swanson, H-E. Tsai, S. K. Barber, S. Steinke, J. Van Tilborg, C. G. R. Geddes, and W. P. Leemans. Gas density structure of supersonic flows impinged on by thin blades for laser-plasma accelerators. In AIP Conference Proceedings, volume 1812, 2017. [76] R. K. Hanson and J. M. Seitzman. Handbook of Flow Visualization, 2018. [77] A. M. Hansen, D. Haberberger, J. Katz, D. Mastrosimone, R. K. Follett, and D. H. Froula. Supersonic gas-jet characterization with interferometry and thomson scattering on the omega laser system. Review of Scientific Instruments, 89(10), 2018. [78] G. Golovin, S. Banerjee, S. Chen, N. Powers, C. Liu, W. Yan, J. Zhang, P. Zhang, B. Zhao, and D. Umstadter. Control and optimization of a staged laser-wakefield accelerator. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 830:375–380, 2016. [79] Kyung Nam Kim, Yonghun Hwangbo, Seok-gy Jeon, and Jaehoon Kim. Characteristics of the shock structure for transition injection in laser wakefield acceleration. Journal of the Korean Physical Society, 73:561–566, 2018. [80] Gary S. Settles and Michael J. Hargather. A review of recent developments in schlieren and shadowgraph techniques. Measurement Science and Technology, 28(4):042001, 2017. [81] R. Mariani, B. Zang, H. D. Lim, U. S. Vevek, T. H. New, and Y. D. Cui. A comparative study on the use of calibrated and rainbow schlieren techniques in axisymmetric supersonic jets. Flow Measurement and Instrumentation, 66:218–228, 2019. [82] R. Mariani, H. D. Lim, B. Zang, U. S. Vevek, T. H. New, and Y. D. Cui. On the application of non-standard rainbow schlieren technique upon supersonic jets. Journal of Visualization, 23(3):383–393, 2020. [83] Michael J. Hargather and Gary S. Settles. A comparison of three quantitative schlieren techniques. Optics and Lasers in Engineering, 50(1):8–17, 2012. Advances in Flow Visualization. [84] Avinash C. Kak and Malcolm Slaney. Principles of computerized tomographic imaging. SIAM, 2001. [85] Cameron J. Dasch. One-dimensional tomography: a comparison of abel, onion peeling, and filtered backprojection methods. Applied Optics, 31(8):1146–1152, 1992. [86] Vladimir Dribinski, Alexei Ossadtchi, Vladimir A. Mandelshtam, and Hanna Reisler. Reconstruction of Abel-transformable images: The Gaussian basis-set expansion Abel transform method. Review of Scientific Instruments, 73(7):2634–2642, Jul 2002. [87] Stephen Gibson, Daniel D. Hickstein, Roman Yurchak, Mikhail Ryazanov, Dhrubajyoti Das, and Gilbert Shih. PyAbel/PyAbel: v0.9.0, dec 2022. [88] Daniel D. Hickstein, Stephen T. Gibson, Roman Yurchak, Dhrubajyoti D. Das, and Mikhail Ryazanov. A direct comparison of high-speed methods for the numerical Abel transform. Review of Scientific Instruments, 90(6), 2019. [89] Yung-Kun Liu, Ching-En Lin, Jiwoo Nam, and Pisin Chen. Characterization of supersonic jet and shock wave with high-resolution quantitative schlieren imaging. arXiv preprint arXiv:2411.14069, 2024. [90] Valeriy Zapryagaev, Ivan Kavun, and Nikolay Kiselev. Flow feature in supersonic non-isobaric jet near the nozzle edge. Aerospace, 9(7):379, 2022. [91] Sergei Bulanov, Nataria Naumova, Francesco Pegoraro, and Junichi Sakai. Particle injection into the wave acceleration phase due to nonlinear wake wave breaking. Physical Review E, 58(5):R5257, 1998. [92] Karl Schmid, Alexander Buck, Christopher M. S. Sears, Julia M. Mikhailova, Raphael Tautz, Daniel Herrmann, Michael Geissler, F. Krausz, and Laszlo Veisz. Density-transition based electron injector for laser driven wakefield accelerators. Physical Review Special Topics - Accelerators and Beams, 13(9):091301, 2010. [93] Matthias Burza, Arkady Gonoskov, Kristoffer Svensson, Franck Wojda, Anders Persson, Martin Hansson, Guillaume Genoud, Mattias Marklund, C-G. Wahlström, and Olle Lundh. Laser wakefield acceleration using wire produced double density ramps. Physical Review Special Topics - Accelerators and Beams, 16(1):011301, 2013. [94] D. Kaganovich, D. F. Gordon, M. H. Helle, and A. Ting. Shaping gas jet plasma density profile by laser generated shock waves. Journal of Applied Physics, 116(1), 2014. [95] M. H. Helle, D. F. Gordon, D. Kaganovich, Y. Chen, J. P. Palastro, and A. Ting. Laser-accelerated ions from a shock-compressed gas foil. Physical Review Letters, 117(16):165001, 2016. [96] L. Fan-Chiang, H-S. Mao, H-E. Tsai, T. Ostermayr, K. K. Swanson, S. K. Barber, S. Steinke, J. Van Tilborg, C. G. R. Geddes, and W. P. Leemans. Gas density structure of supersonic flows impinged on by thin blades for laser-plasma accelerator targets. Physics of Fluids, 32(6), 2020. [97] K. K. Swanson, H-E. Tsai, S. K. Barber, Remi Lehe, H-S. Mao, Sven Steinke, Jeroen van Tilborg, Kei Nakamura, C. G. R. Geddes, C. B. Schroeder, et al. Optimization of the electron beam properties from intense laser pulses interacting with structured gas jets. In Laser Acceleration of Electrons, Protons, and Ions IV, volume 10240, pages 47–53. SPIE, 2017. [98] L. Rovige, J. Huijts, A. Vernier, I. Andriyash, F. Sylla, V. Tomkus, V. Girdauskas, G. Raciukaitis, J. Dudutis, V. Stankevic, P. Gecys, and J. Faure. Symmetric and asymmetric shocked gas jets for laser-plasma experiments. Review of Scientific Instruments, 92(8):083302, Aug 2021. [99] A. S. Pirozhkov, M. Kando, T. Zh. Esirkepov, P. Gallegos, H. Ahmed, E. N. Ragozin, A. Ya. Faenov, T. A. Pikuz, T. Kawachi, A. Sagisaka, J. K. Koga, M. Coury, J. Green, P. Foster, C. Brenner, B. Dromey, D. R. Symes, M. Mori, K. Kawase, T. Kameshima, Y. Fukuda, L. Chen, I. Daito, K. Ogura, Y. Hayashi, H. Kotaki, H. Kiriyama, H. Okada, N. Nishimori, T. Imazono, K. Kondo, T. Kimura, T. Tajima, H. Daido, P. Rajeev, P. McKenna, M. Borghesi, D. Neely, Y. Kato, and S. V. Bulanov. Soft-x-ray harmonic comb from relativistic electron spikes. Physical Review Letters, 108:135004, 2012. [100] A. S. Pirozhkov, T. Zh. Esirkepov, T. A. Pikuz, A. Ya. Faenov, K. Ogura, Y. Hayashi, H. Kotaki, E. N. Ragozin, D. Neely, H. Kiriyama, J. K. Koga, Y. Fukuda, A. Sagisaka, M. Nishikino, T. Imazono, N. Hasegawa, T. Kawachi, P. R. Bolton, H. Daido, Y. Kato, K. Kondo, S. V. Bulanov, and M. Kando. Burst intensification by singularity emitting radiation in multi-stream flows. Scientific Reports, 7(1):17968, 2017. [101] Timur Zh. Esirkepov, Jie Mu, Yanjun Gu, Tae Moon Jeong, Petr Valenta, Ondrej Klimo, James K. Koga, Masaki Kando, David Neely, Georg Korn, Sergei V. Bulanov, and Alexander S. Pirozhkov. Optical probing of relativistic plasma singularities. Physics of Plasmas, 27(5):052103, 2020. [102] Alexander S. Pirozhkov, Yuji Fukuda, Mamiko Nishiuchi, Hiromitsu Kiriyama, Akito Sagisaka, Koichi Ogura, Michiaki Mori, Maki Kishimoto, Hironao Sakaki, Nicholas P. Dover, et al. Approaching the diffraction-limited, bandwidth-limited petawatt. Optics Express, 25(17):20486–20501, 2017. [103] Hiromitsu Kiriyama, Yasuhiro Miyasaka, Akira Kon, Mamiko Nishiuchi, Akito Sagisaka, Hajime Sasao, Alexander S. Pirozhkov, Yuji Fukuda, Koichi Ogura, Kotaro Kondo, et al. Enhancement of pre-pulse and picosecond pedestal contrast of the petawatt J-KAREN-P laser. High Power Laser Science and Engineering, 9:e62, 2021. [104] S. Lorenz, G. M. Grittani, K. Kondo, A. Kon, Y.-K. Liu, A. Sagisaka, K. Ogura, N. Nakanii, K. Huang, A. Bierwage, et al. In-vacuum post-compression of optical probe pulses for relativistic plasma diagnostics. High Power Laser Science and Engineering, 12:e53, 2024. [105] R. Penrose. The apparent shape of a relativistically moving sphere. Mathematical Proceedings of the Cambridge Philosophical Society, 55(1):137–139, 1959. [106] James Terrell. Invisibility of the Lorentz contraction. Physical Review, 116:1041–1045, 1959. [107] A. S. Pirozhkov, J. Ma, M. Kando, T. Zh. Esirkepov, Y. Fukuda, L.-M. Chen, I. Daito, K. Ogura, T. Homma, Y. Hayashi, H. Kotaki, A. Sagisaka, M. Mori, J. K. Koga, T. Kawachi, H. Daido, S. V. Bulanov, T. Kimura, Y. Kato, and T. Tajima. Frequency multiplication of light back-reflected from a relativistic wake wave. Physics of Plasmas, 14(12):123106, 2007. [108] Robert W. Boyd, Alexander L. Gaeta, and Enno Giese. Nonlinear optics. In Springer Handbook of Atomic, Molecular, and Optical Physics, pages 1097–1110. Springer, 2008. [109] Efim Arkad’evich Khazanov, S. Yu. Mironov, and Gérard Mourou. Nonlinear compression of high-power laser pulses: compression after compressor approach. Physics-Uspekhi, 62(11):1096, 2019. [110] Tamas Nagy, Peter Simon, and Laszlo Veisz. High-energy few-cycle pulses: post-compression techniques. Advances in Physics: X, 6(1):1845795, 2021. [111] Marcus Seidel. Few-cycle pulse generation by multi-pass multi-plate nonlinear pulse compression. In EPJ Web of Conferences, volume 307, page 04062. EDP Sciences, 2024. [112] Jan Schulte, Thomas Sartorius, Johannes Weitenberg, Andreas Vernaleken, and Peter Russbueldt. Nonlinear pulse compression in a multi-pass cell. Optics Letters, 41(19):4511–4514, 2016. | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/97985 | - |
| dc.description.abstract | 自1974年,史蒂芬·霍京結合廣義相對論與量子場論發現「黑洞輻射」,指出黑洞會釋放熱輻射、緩慢帶走黑洞的質量。理論上,將不可避免地導致黑洞蒸發。若細究黑洞蒸發的過程,黑洞形成之初源於純態(pure state)物質的塌縮,而其釋放的霍京輻射本質上是一種熱輻射,屬於混合態(mixed state)。因此,黑洞經由霍京輻射而蒸發,意味著一個封閉系統從純態到混合態的演化過程,違背了量子力學的基本原則——么正性(unitarity)。此過程彷彿初始形成黑洞的資訊遺失了,故被稱為「黑洞資訊遺失問題」。因同時觸及廣義相對論下的極端天體以及對量子力學基本原則的挑戰,此問題被公認為檢驗和發展量子重力理論提供了獨特的理論試驗場。然而,宇宙中天文尺度黑洞蒸發速率極慢,以太陽質量的黑洞為例,其霍京輻射溫度較宇宙微波背景輻射低了九個數量級,遠非當前探測技術所能及。鑒於此,類比重力的概念應運而生。自1980年代,多種類比黑洞的方案被提出。本論文聚焦於P. Chen與G. Mourou於2017年提出的AnaBHEL(Analog Black Hole Evaporation via Lasers)實驗構想,旨在利用相對論性飛翔鏡類比黑洞蒸發。為實現對黑洞的有效類比,關鍵因素之一在於確保電漿飛翔鏡的運動軌跡滿足特定數學形式。Chen與Mourou於2020年指出,通過將背景電漿密度設計成特殊的「one-plus-exponential」型式,可使電漿飛翔鏡產生類黑洞的熱輻射。此外,由於類比霍京輻射的溫度反比於此密度分布的特徵尺度D(T_H ∝ 1/D),AnaBHEL計畫的成功實施,要求產生一個在次微米尺度上具有極其陡峭梯度的密度分佈。因此,本論文的核心工作便是從理論分析、電腦數值模擬以及光學診斷三個層面,深入探討如何產生滿足AnaBHEL實驗需求的精密氣體靶材。
本論文首先回顧了超音速氣流的理論基礎,包括可壓縮流體力學及震波(shock wave)的基本原理。藉由震波的理論解進行數值計算,我們發現氣體密度在穿越震波時與目標的「one-plus-exponential」型式相符,這使得利用震波來製備氣體靶材成為一項極具潛力的技術途徑。隨後,論文介紹了計算流體力學(CFD)的應用,以 精確預測包含湍流、邊界層等實際效應的氣體密度分佈。為驗證模擬設計的超音速噴嘴及震波結構,本論文詳細闡述了我們自主開發並優化的紋影法(Schlieren imaging)成像系統。為達到足以匹配震波特徵尺度的光學解析度,我們比較了不同類型及不同截止濾波器的系統,最終選定單次通過透射式紋影法,並搭配刀口作為截止濾波器,同時採用了與傳統紋影法有所區別的解耦光路設計,從而實現了約4.6微米的光學解析度,足以對震波周圍的密度分佈進行清晰的定量解析。 此外,我們結合數值模擬與紋影法實驗量測結果,系統性地探討了多種控制氣體密度分布的方法。首先,藉由觀測超音速氣流噴入大氣中所形成的馬赫環結構,結果表明我們的紋影法系統具備足夠高的空間解析度,能夠清晰捕捉馬赫環中的微細結構;此外,通過數值模擬與實驗結果的定量比對,進一步驗證了此紋影法裝置的定量量測能力。接著,我們討論了不同類型噴嘴在真空環境下所能產生的密度分佈特性及其各自的優缺點。論文進而呈現了利用刀口在超音速氣流中產生震波的密度量測結果,發現其密度分佈確實能滿足理論所需的函數形式,然其實驗測得的特徵尺度約為55微米,與AnaBHEL計畫期望的0.5微米目標仍有顯著差距。令人鼓舞的是,通過高解析度電腦模擬,我們發現利用細線(wire)在氣流中引發的震波,其特徵尺度可達到約0.8微米,已非常接近實驗需求。然而,當前的紋影法成像系統受限於其光學解析度以及光路徑積分所造成的模糊效應,尚無法精確量測如此細微的密度結構。因此,進一步提升成像系統的性能,例如引入三維電腦斷層掃描技術,或採用如PLIF、瑞立散射等高解析度診斷方法,將是本研究後續重要的延伸方向。 本論文也記錄了本人在博士研究生階段參與的三項重要國際合作實驗。其中包括兩次赴日本關西光科學研究所(KPSI)參與之BISER實驗,以及一次於2024年底在捷克ELI-Beamlines進行的電漿飛翔鏡動力學研究。在第一次BISER實驗中,主要貢獻在於側向診斷光路的設計與架設,此為強場雷射實驗中探測雷射與電漿交互作用的關鍵技術;第二次實驗中,參與了探測光脈衝的後壓縮(post-compression)工作,旨在將探測光長度進一步壓縮,以大幅降低觀測超快電漿動態時所引入的運動模糊效應;ELI的實驗則利用一道正向入射的探測光與電漿飛翔鏡進行交互作用,以研究其速度、反射率等關鍵性質,並嘗試引入背景密度梯度,觀測電漿飛翔鏡是否會如理論預期般發生速度變化。初步數據分析顯示了電漿飛翔鏡呈現加速運動的跡象。未來對這些數據的完整分析,將為AnaBHEL計畫的推進奠定重要的實驗基礎。 總結而言,本論文為實現AnaBHEL實驗所需的精密氣體靶材奠定了堅實的理論與實驗基礎。通過整合流體力學理論、計算流體動力學模擬以及高解析度紋影法診斷技術,我們成功展示了產生符合AnaBHEL計畫所需的特定氣體密度方法。儘管實現最終的次微米級特徵尺度目標尚需進一步的實驗優化與更先進的診斷技術,本研究已清晰建立了可控密度與在實驗室環境中探測類比霍金輻射及相關量子現象可行性之間的關鍵橋樑,為未來AnaBHEL實驗的具體實施以及相關物理問題的深入探索推進了一步。 | zh_TW |
| dc.description.abstract | Black hole evaporation and the ensuing information loss paradox represent a critical juncture between general relativity and quantum mechanics. Given the infeasibility of astrophysical observations of Hawking radiation, analog gravity experiments offer a vital avenue for investigation. This thesis focuses on the Analog Black Hole Evaporation via Lasers (AnaBHEL) project proposed by P.Chen and G. Mourou (2017), which aims to simulate black hole evaporation using a relativistic "flying plasma mirror" (FPM) generated by ultra-intense laser-plasma interactions. The project seeks to detect analog Hawking radiation and explore potential quantum correlations, offering experimental insights into the information loss problem. The core of AnaBHEL lies in precisely controlling the FPM's trajectory, which dictates the analog Hawking radiation's characteristics. Theoretical work, notably by Chen and Mourou (2020), established that engineering the plasma electron density into a specific "one-plus-exponential" form enables the FPM to mimic an accelerating mirror producing thermal radiation. Achieving a detectable analog Hawking temperature(T_H ∝ 1/D) necessitates density profiles with extremely sharp gradients, characterized by a scale length D ~ 0.5 μm. This thesis is dedicated to developing the required precision gaseous targets, integrating theoretical analysis, Computational Fluid Dynamics (CFD) simulations, and optical diagnostics.
We first review compressible fluid and shock wave theory, noting that shock waves inherently produce sharp density transitions similar to the target profile. CFD simulations are used for predictive design of nozzles and shock-inducing structures. For experimental validation, a high-resolution (~ 4.6 μm) quantitative Schlieren imaging system, featuring a novel decoupled single-pass transmissive configuration with a knife-edge cut-off, was developed. Experimentally, various density control mechanisms were investigated. Blade-induced shocks in conical and slit nozzles produced profiles matching the desired form, but with measured scale lengths D ~ 55μm, limited by diagnostic resolution. A custom "trumpet" nozzle with asymmetric expansion mitigated diagnostic blurring and improved profile stability. Promisingly, high-resolution CFD simulations of wire-induced shocks predict that D ~ μm is achievable, very close to the AnaBHEL requirement, though experimental verification needs advanced diagnostics like 3D tomography or light-sheet-based methods (PLIF, Rayleigh scattering). Complementary expertise was gained through international collaborations (BISER I & II at KPSI, Japan; FPM dynamics at ELI Beamlines, Czech Republic). These facilitated development of advanced optical diagnostics, such as probe pulse post-compression, and provided preliminary evidence for dynamic FPM velocity evolution, reinforcing the importance of the density control efforts herein. In conclusion, this thesis establishes a robust theoretical and experimental foundation for the AnaBHEL gaseous target system. By integrating fluid dynamics, CFD simulations, and high-resolution Schlieren diagnostics, we have demonstrated methods for generating and characterizing tailored supersonic gas density profiles with the desired density profile. While achieving the ultimate sub-micrometer scale length requires further advancements, this work critically links controllable density profiles to the feasibility of probing analog Hawking radiation and related quantum phenomena in the laboratory, guiding future AnaBHEL endeavors. | en |
| dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2025-07-23T16:21:07Z No. of bitstreams: 0 | en |
| dc.description.provenance | Made available in DSpace on 2025-07-23T16:21:07Z (GMT). No. of bitstreams: 0 | en |
| dc.description.tableofcontents | Verification Letter from the Oral Examination Committee i
Acknowledgements iii 摘要 v Abstract ix Contents xiii List of Figures xix List of Tables xxv Chapter 1 Foundations: Black Hole Thermodynamics, Information Loss,and Analog Gravity Models . . . 1 1.1 Black Hole Thermodynamics: Bridging Gravity and Quantum Mechanics . . . . . . . . . . . . . . . . 2 1.2 Hawking Radiation and the Information Loss Paradox . . . . . . . . 3 1.3 Analog Gravity: Simulating Spacetime Dynamics in the Lab . . . . . 7 1.3.1 The 1+1D Moving Mirror Model . . . . . . . . . . . . . . . . . . . 9 1.4 Laser-Plasma Systems: A Promising Platform for Relativistic Analog Gravity .. . . . . . . . . . . . . . 15 Chapter 2 AnaBHEL: A Laser-Plasma Approach to Analog Gravity and the importance of Density Profile 17 2.1 The AnaBHEL Project: Concept and Goals . . . . . . . . . . . . . . 18 2.2 Physics of High-Intensity Laser-Plasma Interaction . . . . . . . . . . 20 2.2.1 Fundamentals of Plasma . . . . . . . . . . . . . . . . . . . . . . . 20 2.2.2 High-Intensity Laser Interaction with Plasma . . . . . . . . . . . . 21 2.3 The Flying Plasma Mirror Model for Analog Hawking Radiation . . . 24 2.4 Numerical Tool: Particle-in-Cell Simulation . . . . . . . . . . . . . . 30 2.4.1 Macroparticles and Shape Factors . . . . . . . . . . . . . . . . . . 34 2.4.2 Field Solver: FDTD on a Yee Lattice . . . . . . . . . . . . . . . . . 35 2.4.3 Particle Pusher: Leapfrog Integration . . . . . . . . . . . . . . . . . 36 2.5 PIC Simulation Insights into AnaBHEL Dynamics and the Importance of the Density Profile . . . . . . . . . . . . . . . . . . . . . . . 38 Chapter 3 Gaseous Target R&D - Theoretical Framework, Computational Fluid Dynamics Simulations, and Experimental Characterization 47 3.1 Theoretical Foundations of Compressible Flow . . . . . . . . . . . . 49 3.1.1 Physical Principles of Compressible Flow Behavior . . . . . . . . . 49 3.1.2 Isentropic Flow . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52 3.1.3 Nozzle Flow and the Area-Mach Relation . . . . . . . . . . . . . . 54 3.1.4 Shock Waves . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58 3.1.4.1 Normal Shock Waves . . . . . . . . . . . . . . . . . . 59 3.1.4.2 Oblique Shock Waves . . . . . . . . . . . . . . . . . . 61 3.1.4.3 Shock Wave Thickness . . . . . . . . . . . . . . . . . 63 3.2 Computational Investigation of Gaseous Target Configurations . . . . 67 3.2.1 Fundamentals of CFD Simulation . . . . . . . . . . . . . . . . . . 67 3.2.2 CFD Workflow and Numerical Setup . . . . . . . . . . . . . . . . . 68 3.2.3 Turbulence Modeling Strategy . . . . . . . . . . . . . . . . . . . . 70 3.2.4 Simulation Dimensionality . . . . . . . . . . . . . . . . . . . . . . 72 3.2.5 Software Implementation: Ansys Fluent . . . . . . . . . . . . . . . 73 3.3 Experimental Characterization Technique: Schlieren Imaging . . . . 74 3.3.1 Principles of Schlieren Imaging . . . . . . . . . . . . . . . . . . . . 76 3.3.2 Essential Schlieren System Components . . . . . . . . . . . . . . . 78 3.3.2.1 Light Source . . . . . . . . . . . . . . . . . . . . . . . 78 3.3.2.2 Target . . . . . . . . . . . . . . . . . . . . . . . . . . 80 3.3.2.3 Cut-offs (Schlieren Stops) . . . . . . . . . . . . . . . . 80 3.3.2.4 Detector . . . . . . . . . . . . . . . . . . . . . . . . . 81 3.3.3 Comparative Analysis of Different Schlieren Configurations . . . . 84 3.3.3.1 Double-Pass Reflective Schlieren . . . . . . . . . . . . 84 3.3.3.2 Single-Pass Transmissive Schlieren . . . . . . . . . . . 88 3.3.3.3 Reflective Single-Pass Schlieren (Z-type) . . . . . . . . 90 3.3.3.4 Decoupled Transmissive Single-Pass Schlieren . . . . . 93 3.3.3.5 Comparative Analysis of Cut-offs: Rainbow Filter vs.Knife-Edge . . . . . . . . . . . . . . . . . . . . . . . 97 3.3.4 Optimized Experimental System Design . . . . . . . . . . . . . . . 104 3.3.5 Quantitative Analysis Methods and Calibration Procedures . . . . . 109 3.3.5.1 Calibration: Relating Image Signal to Deflection Angle 109 3.3.5.2 Spatial Referencing and Scaling . . . . . . . . . . . . . 118 3.3.5.3 Density Profile Reconstruction using Abel Inversion . . 121 Chapter 4 Gaseous Target R&D - Density Profile Control and Characterization 125 4.1 Baseline Characterization: Standard Supersonic Nozzles . . . . . . . 127 4.1.1 The de Laval Nozzle . . . . . . . . . . . . . . . . . . . . . . . . . 127 4.2 Environmental Interaction Effects on Jet Structure . . . . . . . . . . 130 4.2.1 Atmospheric Expansion and Shock Diamond Formation . . . . . . . 130 4.2.2 Vacuum Expansion Characteristics . . . . . . . . . . . . . . . . . . 139 4.3 Density Profile Control Mechanisms . . . . . . . . . . . . . . . . . . 143 4.3.1 Shock wave induced by a knife blade obstacle . . . . . . . . . . . . 143 4.3.2 Trumpet Nozzle . . . . . . . . . . . . . . . . . . . . . . . . . . . . 159 4.3.3 Nozzle with a Duct . . . . . . . . . . . . . . . . . . . . . . . . . . 164 4.3.4 Wire-induced shock wave . . . . . . . . . . . . . . . . . . . . . . . 166 4.4 Chapter Summary and Conclusions . . . . . . . . . . . . . . . . . . 170 Chapter 5 Experimental Collaborations toward AnaBHEL 175 5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 175 5.2 Transverse Probe Diagnostics in the BISER Experiment I: Schlieren Imaging and Ionization Front Dynamics . . . . . . . . . . . . . . . . 177 5.2.1 Analysis of Small-Scale Fringes . . . . . . . . . . . . . . . . . . . 182 5.2.2 Analysis of Large-Scale Fringes . . . . . . . . . . . . . . . . . . . 185 5.3 BISER Experiment II –Towards Few-Cycle Probe Pulses via PostCompression . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 197 5.4 Experimental Investigation of Flying Mirror Dynamics at ELI Beamlines . . . . . . . . . . . 203 5.5 Summary and Synthesis . . . . . . . . . . . . . . . . . . . . . . . . 209 References 213 | - |
| dc.language.iso | en | - |
| dc.subject | 超音速噴嘴 | zh_TW |
| dc.subject | 電漿飛鏡 | zh_TW |
| dc.subject | 氣體密度控制 | zh_TW |
| dc.subject | 雷射電漿交互作用 | zh_TW |
| dc.subject | 紋影法 | zh_TW |
| dc.subject | 類比黑洞 | zh_TW |
| dc.subject | 震波 | zh_TW |
| dc.subject | Schlieren imaging | en |
| dc.subject | Shock wave | en |
| dc.subject | Gas density control | en |
| dc.subject | Supersonic nozzle | en |
| dc.subject | Flying plasma mirror | en |
| dc.subject | Laser-plasma interaction | en |
| dc.subject | Analog black hole | en |
| dc.title | 從氣體靶研發到雷射電漿飛翔鏡探測:推進 AnaBHEL 類比黑洞實驗之路 | zh_TW |
| dc.title | Enabling AnaBHEL via Gas Jet Development and High-Intensity Laser Experiments | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 113-2 | - |
| dc.description.degree | 博士 | - |
| dc.contributor.oralexamcommittee | 裴思達;南智佑;劉耀澧;近藤康太郎 | zh_TW |
| dc.contributor.oralexamcommittee | Stathes Paganis;Jiwoo Nam;Yao-Li Liu;Kotaro Kondo | en |
| dc.subject.keyword | 類比黑洞,紋影法,雷射電漿交互作用,電漿飛鏡,超音速噴嘴,氣體密度控制,震波, | zh_TW |
| dc.subject.keyword | Analog black hole,Schlieren imaging,Laser-plasma interaction,Flying plasma mirror,Supersonic nozzle,Gas density control,Shock wave, | en |
| dc.relation.page | 227 | - |
| dc.identifier.doi | 10.6342/NTU202501224 | - |
| dc.rights.note | 同意授權(全球公開) | - |
| dc.date.accepted | 2025-06-30 | - |
| dc.contributor.author-college | 理學院 | - |
| dc.contributor.author-dept | 物理學系 | - |
| dc.date.embargo-lift | 2027-01-01 | - |
| 顯示於系所單位: | 物理學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-113-2.pdf 此日期後於網路公開 2027-01-01 | 16.61 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
