Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 生物資源暨農學院
  3. 獸醫專業學院
  4. 臨床動物醫學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/97975
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor武敬和zh_TW
dc.contributor.advisorChing-Ho Wuen
dc.contributor.author王煜智zh_TW
dc.contributor.authorYu-Chih Wangen
dc.date.accessioned2025-07-23T16:18:48Z-
dc.date.available2025-07-24-
dc.date.copyright2025-07-23-
dc.date.issued2025-
dc.date.submitted2025-07-03-
dc.identifier.citation1. Kowaleski MP, Boudrieau RJ, Pozzi A, Tobias KM, Johnston SA. Stifle joint. 2017.
2. Lin YY, Lin CC, Wu CH. Estimation of footprints of the canine stifle ligaments using deformable shape templates of bones. Scientific Reports. 2024;14(1):4639.
3. Maken P, Gupta A. 2D-to-3D: a review for computational 3D image reconstruction from X-ray images. Archives of Computational Methods in Engineering. 2023;30(1):85-114.
4. De Rooster H, Comerford E. Morphology and function of the cruciate ligaments. Advances in the Canine Cranial Cruciate Ligament, 2nd ed; Muir, P, Ed. 2018:3-11.
5. Carpenter Jr D, Cooper R. Mini review of canine stifle joint anatomy. Anatomia, histologia, embryologia. 2000;29(6):321-9.
6. Kato Y, Ingham SJ, Maeyama A, Lertwanich P, Wang JH, Mifune Y, et al. Biomechanics of the human triple-bundle anterior cruciate ligament. Arthroscopy: The Journal of Arthroscopic & Related Surgery. 2012;28(2):247-54.
7. Vasseur PB, Arnoczky SP. Collateral ligaments of the canine stifle joint: anatomic and functional analysis. American journal of veterinary research. 1981;42(7):1133-7.
8. Palierne S, Blondel M, Vié K, Autefage A. Morphometric assessment of the medial collateral ligament of the canine stifle joint. Research in Veterinary Science. 2022;151:21-6.
9. Sullivan JP, Cook S, Gao Y, Wolf BR. Radiographic anatomy of the native anterior cruciate ligament: a systematic review. HSS Journal®. 2015;11(2):154-65.
10. Bernard M, Hertel P, Hornung H, Cierpinski T. Femoral insertion of the ACL. Radiographic quadrant method. The American journal of knee surgery. 1997;10(1):14-21; discussion
11. Musahl V, Burkart A, Debski RE, Van Scyoc A, Fu FH, Woo SL. Anterior cruciate ligament tunnel placement: comparison of insertion site anatomy with the guidelines of a computer-assisted surgical system. Arthroscopy: The Journal of Arthroscopic & Related Surgery. 2003;19(2):154-60.
12. Guo L, Yang L, Wang A-m, Wang X-y, Dai G. Roentgenographic measurement study for locating femoral insertion site of anterior cruciate ligament: a cadaveric study with X-Caliper. International orthopaedics. 2009;33:133-7.
13. Colombet P, Robinson J, Christel P, Franceschi J-P, Djian P, Bellier G, et al. Morphology of anterior cruciate ligament attachments for anatomic reconstruction: a cadaveric dissection and radiographic study. Arthroscopy: The Journal of Arthroscopic & Related Surgery. 2006;22(9):984-92.
14. Takahashi M, Doi M, Abe M, Suzuki D, Nagano A. Anatomical study of the femoral and tibial insertions of the anteromedial and posterolateral bundles of human anterior cruciate ligament. The American journal of sports medicine. 2006;34(5):787-92.
15. Zantop T, Wellmann M, Fu FH, Petersen W. Tunnel positioning of anteromedial and posterolateral bundles in anatomic anterior cruciate ligament reconstruction: anatomic and radiographic findings. The American journal of sports medicine. 2008;36(1):65-72.
16. Iriuchishima T, Ingham SJ, Tajima G, Horaguchi T, Saito A, Tokuhashi Y, et al. Evaluation of the tunnel placement in the anatomical double-bundle ACL reconstruction: a cadaver study. Knee surgery, sports traumatology, arthroscopy. 2010;18:1226-31.
17. Pietrini SD, Ziegler CG, Anderson CJ, Wijdicks CA, Westerhaus BD, Johansen S, et al. Radiographic landmarks for tunnel positioning in double-bundle ACL reconstructions. Knee Surgery, Sports Traumatology, Arthroscopy. 2011;19:792-800.
18. Lintner DM, Dewitt SE, Moseley JB. Radiographic evaluation of native anterior cruciate ligament attachments and graft placement for reconstruction: a cadaveric study. The American Journal of Sports Medicine. 1996;24(1):72-8.
19. Berg EE, Agnew DK. Radiographic evaluation of anterior cruciate ligament reconstructive graft placement. Clinical Journal of Sport Medicine. 1993;3(3):161-5.
20. Amis AA, Jakob RP. Anterior cruciate ligament graft positioning, tensioning and twisting. Knee Surgery, Sports Traumatology, Arthroscopy. 1998;6:S2-S12.
21. Stäubli H-U, Rauschning W. Tibial attachment area of the anterior cruciate ligament in the extended knee position: anatomy and cryosections in vitro complemented by magnetic resonance arthrography in vivo. Knee Surgery, Sports Traumatology, Arthroscopy. 1994;2:138-46.
22. Doi M, Takahashi M, Abe M, Suzuki D, Nagano A. Lateral radiographic study of the tibial sagital insertions of the anteromedial and posterolateral bundles of human anterior cruciate ligament. Knee Surgery, Sports Traumatology, Arthroscopy. 2009;17:347-51.
23. Kasten P, Szczodry M, Irrgang J, Kropf E, Costello J, Fu FH. What is the role of intra-operative fluoroscopic measurements to determine tibial tunnel placement in anatomical anterior cruciate ligament reconstruction? Knee Surgery, Sports Traumatology, Arthroscopy. 2010;18:1169-75.
24. Pietrini SD, LaPrade RF, Griffith CJ, Wijdicks CA, Ziegler CG. Radiographic identification of the primary posterolateral knee structures. The American Journal of Sports Medicine. 2009;37(3):542-51.
25. Schöttle PB, Schmeling A, Rosenstiel N, Weiler A. Radiographic landmarks for femoral tunnel placement in medial patellofemoral ligament reconstruction. The American journal of sports medicine. 2007;35(5):801-4.
26. Wijdicks CA, Griffith CJ, LaPrade RF, Johansen S, Sunderland A, Arendt EA, et al. Radiographic identification of the primary medial knee structures. JBJS. 2009;91(3):521-9.
27. Athwal K, Willinger L, Shinohara S, Ball S, Williams A, Amis AA. The bone attachments of the medial collateral and posterior oblique ligaments are defined anatomically and radiographically. Knee surgery, sports traumatology, arthroscopy. 2020;28:3709-19.
28. Bicer EK, Magnussen RA, Neyret P. Intra-articular landmarks for anterior cruciate ligament reconstructions: A review. International Journal of Clinical Rheumatology. 2010;5(6):677.
29. Ferretti M, Ekdahl M, Shen W, Fu FH. Osseous landmarks of the femoral attachment of the anterior cruciate ligament: an cadaveric dissection and radiographic study. Arthroscopy: The Journal of Arthroscopic & Related Surgery. 2006;22(9):984-92.
30. Hutchinson MR, Bae TS. Reproducibility of anatomic tibial landmarks for anterior cruciate ligament reconstructions. The American journal of sports medicine. 2001;29(6):777-80.
31. Purnell ML, Larson AI, Clancy W. Anterior cruciate ligament insertions on the tibia and femur and their relationships to critical bony landmarks using high-resolution volume-rendering computed tomography. The American journal of sports medicine. 2008;36(11):2083-90.
32. Shino K, Suzuki T, Iwahashi T, Mae T, Nakamura N, Nakata K, et al. The resident’s ridge as an arthroscopic landmark for anatomical femoral tunnel drilling in ACL reconstruction. Knee Surgery, Sports Traumatology, Arthroscopy. 2010;18:1164-8.
33. Rowan FA, Marshall T, Gombosh MR, Farrow LD. Utilization of osseous landmarks for anatomic anterior cruciate ligament femoral tunnel placement. The Journal of Knee Surgery. 2017;30(04):359-63.
34. Tensho K, Shimodaira H, Aoki T, Narita N, Kato H, Kakegawa A, et al. Bony landmarks of the anterior cruciate ligament tibial footprint: a detailed analysis comparing 3-dimensional computed tomography images to visual and histological evaluations. The American Journal of Sports Medicine. 2014;42(6):1433-40.
35. Berg EE. Parsons' Knob (Tuberculum Intercondylare Tedium): A Guide to Tibial Anterior Cruciate Ligament Insertion. Clinical Orthopaedics and Related Research®. 1993;292:229-31.
36. Nishimori M, Furuta T, Deie M. Parsons' knob, the bony landmark of the tibial insertion of the anterior cruciate ligament, evaluated by three-dimensional computed tomography. Asia-Pacific journal of sports medicine, arthroscopy, rehabilitation and technology. 2014;1(4):126-31.
37. Morgan CD, Kalman VR, Grawl DM. Definitive landmarks for reproducible tibial tunnel placement in anterior cruciate ligament reconstruction. Arthroscopy: The Journal of Arthroscopic & Related Surgery. 1995;11(3):275-88.
38. Zantop T, Petersen W, Sekiya JK, Musahl V, Fu FH. Anterior cruciate ligament anatomy and function relating to anatomical reconstruction. Knee surgery, sports traumatology, arthroscopy. 2006;14:982-92.
39. Ferretti M, Doca D, Ingham SM, Cohen M, Fu FH. Bony and soft tissue landmarks of the ACL tibial insertion site: an anatomical study. Knee Surgery, Sports Traumatology, Arthroscopy. 2012;20:62-8.
40. Swami VG, Cheng-Baron J, Hui C, Thompson R, Jaremko JL. Reliability of estimates of ACL attachment locations in 3-dimensional knee reconstruction based on routine clinical MRI in pediatric patients. The American Journal of Sports Medicine. 2013;41(6):1319-29.
41. Al Mohammad B, Gharaibeh MA. Magnetic Resonance Imaging of Anterior Cruciate Ligament Injury. Orthopedic Research and Reviews. 2024:233-42.
42. Sadoghi P, Röggla V, Beiglböck H, Schett B, Reschl M, Fischerauer S, et al. Prediction of individual graft for anterior cruciate ligament reconstruction using anthropometric data. Archives of Orthopaedic and Trauma Surgery. 2023;143(6):3219-27.
43. Araujo P, van Eck CF, Torabi M, Fu FH. How to optimize the use of MRI in anatomic ACL reconstruction. Knee Surgery, Sports Traumatology, Arthroscopy. 2013;21:1495-501.
44. Araki D, Thorhauer E, Tashman S. Three-dimensional isotropic magnetic resonance imaging can provide a reliable estimate of the native anterior cruciate ligament insertion site anatomy. Knee Surgery, Sports Traumatology, Arthroscopy. 2018;26:1311-8.
45. Rachmat H, Janssen D, Zevenbergen W, Verkerke GJ, Diercks R, Verdonschot N. Generating finite element models of the knee: How accurately can we determine ligament attachment sites from MRI scans? Medical engineering & physics. 2014;36(6):701-7.
46. Innocenti B, Salandra P, Pascale W, Pianigiani S. How accurate and reproducible are the identification of cruciate and collateral ligament insertions using MRI? The Knee. 2016;23(4):575-81.
47. Swami VG, Cheng-Baron J, Hui C, Thompson RB, Jaremko JL. Reliability of 3D localisation of ACL attachments on MRI: comparison using multi-planar 2D versus high-resolution 3D base sequences. Knee Surgery, Sports Traumatology, Arthroscopy. 2015;23:1206-14.
48. Li K, O’Farrell M, Martin D, Kopf S, Harner C, Zhang X. Mapping ligament insertion sites onto bone surfaces in knee by co-registration of CT and digitization data. Journal of biomechanics. 2009;42(15):2624-6.
49. Ascani D, Mazzà C, De Lollis A, Bernardoni M, Viceconti M. A procedure to estimate the origins and the insertions of the knee ligaments from computed tomography images. Journal of biomechanics. 2015;48(2):233-7.
50. Pillet H, Bergamini E, Rochcongar G, Camomilla V, Thoreux P, Rouch P, et al. Femur, tibia and fibula bone templates to estimate subject-specific knee ligament attachment site locations. Journal of Biomechanics. 2016;49(14):3523-8.
51. Asseln M, Haenisch C, Alhares G, Quack V, Radermacher K, editors. A mesh morphing based method to estimate cruciate ligament attachments based on CT-data. Proceedings of the Annual Meetings of CAOS International, Vancouver, British Colombia; 2015.
52. Bolia A, Winkels P, Böttcher P. Radiographic location of the femoral footprint of the cranial cruciate ligament in dogs. Tierärztliche Praxis Ausgabe K: Kleintiere/Heimtiere. 2015;43(01):23-30.
53. Tanegashima K, Edamura K, Akita Y, Yamazaki A, Yasukawa S, Seki M, et al. Functional anatomy of the craniomedial and caudolateral bundles of the cranial cruciate ligament in beagle dogs. Veterinary and Comparative Orthopaedics and Traumatology. 2019;32(03):182-91.
54. Tanegashima K, Edamura K, Ogawa T, Tomo Y, Yamazaki A, Seki M, et al. Functional anatomy of the craniolateral and caudomedial bundles of the caudal cruciate ligament in Beagle dogs. Veterinary and Comparative Orthopaedics and Traumatology. 2021;34(05):312-20.
55. Stindel E, Briard J, Merloz P, Plaweski S, Dubrana F, Lefevre C, et al. Bone morphing: 3D morphological data for total knee arthroplasty. Computer Aided Surgery. 2002;7(3):156-68.
56. Parthasarathy J. 3D modeling, custom implants and its future perspectives in craniofacial surgery. Annals of maxillofacial surgery. 2014;4(1):9-18.
57. Wang M, Li D, Shang X, Wang J. A review of computer‐assisted orthopaedic surgery systems. The International Journal of Medical Robotics and Computer Assisted Surgery. 2020;16(5):1-28.
58. Leardini A, Belvedere C, Nardini F, Sancisi N, Conconi M, Parenti-Castelli V. Kinematic models of lower limb joints for musculo-skeletal modelling and optimization in gait analysis. Journal of biomechanics. 2017;62:77-86.
59. Rathnayaka K, Momot KI, Noser H, Volp A, Schuetz MA, Sahama T, et al. Quantification of the accuracy of MRI generated 3D models of long bones compared to CT generated 3D models. Medical engineering & physics. 2012;34(3):357-63.
60. Neubert A, Wilson KJ, Engstrom C, Surowiec RK, Paproki A, Johnson N, et al. Comparison of 3D bone models of the knee joint derived from CT and 3T MR imaging. European Journal of Radiology. 2017;93:178-84.
61. Lamecker H, Wenckebach TH, Hege H-C, editors. Atlas-based 3D-shape reconstruction from X-ray images. 18th International Conference on Pattern Recognition (ICPR'06); 2006: ieee.
62. Akkoul S, Hafiane A, Rozenbaum O, Lespessailles E, Jennane R. 3D Reconstruction of the proximal femur shape from few pairs of x-ray radiographs. Signal Processing: Image Communication. 2017;59:65-72.
63. Karade V, Ravi B. 3D femur model reconstruction from biplane X-ray images: a novel method based on Laplacian surface deformation. International journal of computer assisted radiology and surgery. 2015;10:473-85.
64. Le Bras A, Laporte S, Bousson V, Mitton D, De Guise JA, Laredo J, et al. 3D reconstruction of the proximal femur with low-dose digital stereoradiography. Computer Aided Surgery. 2004;9(3):51-7.
65. Baka N, Kaptein BL, de Bruijne M, van Walsum T, Giphart J, Niessen WJ, et al. 2D–3D shape reconstruction of the distal femur from stereo X-ray imaging using statistical shape models. Medical image analysis. 2011;15(6):840-50.
66. Zhu Z, Li G. Construction of 3D human distal femoral surface models using a 3D statistical deformable model. Journal of biomechanics. 2011;44(13):2362-8.
67. Heap T, Hogg D. Extending the point distribution model using polar coordinates. Image and Vision Computing. 1996;14(8):589-99.
68. Markelj P, Tomaževič D, Likar B, Pernuš F. A review of 3D/2D registration methods for image-guided interventions. Medical image analysis. 2012;16(3):642-61.
69. Reyneke CJF, Lüthi M, Burdin V, Douglas TS, Vetter T, Mutsvangwa TE. Review of 2-D/3-D reconstruction using statistical shape and intensity models and X-ray image synthesis: toward a unified framework. IEEE reviews in biomedical engineering. 2018;12:269-86.
70. Bijhold J. Three‐dimensional verification of patient placement during radiotherapy using portal images. Medical physics. 1993;20(2):347-56.
71. Sundar H, Khamene A, Xu C, Sauer F, Davatzikos C, editors. A novel 2D-3D registration algorithm for aligning fluoro images with 3D pre-op CT/MR images. Medical Imaging 2006: Visualization, Image-Guided Procedures, and Display; 2006: SPIE.
72. Goitein M, Abrams M, Rowell D, Pollari H, Wiles J. Multi-dimensional treatment planning: II. Beam's eye-view, back projection, and projection through CT sections. International Journal of Radiation Oncology* Biology* Physics. 1983;9(6):789-97.
73. Lu HY, Shih KS, Lin CC, Lu TW, Li SY, Kuo HW, et al. Three-dimensional subject-specific knee shape reconstruction with asynchronous fluoroscopy images using statistical shape modeling. Frontiers in Bioengineering and Biotechnology. 2021;9:736420.
74. Besl PJ, McKay ND, editors. Method for registration of 3-D shapes. Sensor fusion IV: control paradigms and data structures; 1992: Spie.
75. Myronenko A, Song X. Point set registration: Coherent point drift. IEEE transactions on pattern analysis and machine intelligence. 2010;32(12):2262-75.
76. Cootes TF, Taylor CJ, editors. Statistical models of appearance for medical image analysis and computer vision. Medical Imaging 2001: Image Processing; 2001: SPIE.
77. Goodall C. Procrustes methods in the statistical analysis of shape. Journal of the Royal Statistical Society: Series B (Methodological). 1991;53(2):285-321.
78. Wold S, Esbensen K, Geladi P. Principal component analysis. Chemometrics and intelligent laboratory systems. 1987;2(1-3):37-52.
79. Lu TW, Tsai TY, Kuo MY, Hsu HC, Chen HL. In vivo three-dimensional kinematics of the normal knee during active extension under unloaded and loaded conditions using single-plane fluoroscopy. Medical engineering & physics. 2008;30(8):1004-12.
80. Bindels BJ, Weijers RA, van Mourik MS, Homan R, Rongen JJ, Smits ML, et al. Assessing the accuracy of a new 3D2D registration algorithm based on a non-invasive skin marker model for navigated spine surgery. International Journal of Computer Assisted Radiology and Surgery. 2022;17(10):1933-45.
81. McLaughlin RA, Hipwell J, Hawkes DJ, Noble JA, Byrne JV, Cox TC. A comparison of a similarity-based and a feature-based 2-D-3-D registration method for neurointerventional use. IEEE Transactions on Medical Imaging. 2005;24(8):1058-66.
82. Kim T, Phillips M, Bhandari M, Watson J, Malhotra R. What differences in morphologic features of the knee exist among patients of various races? A systematic review. Clinical Orthopaedics and Related Research®. 2017;475:170-82.
83. Huart J, Pozzi A, Bleedorn J, Lu T-W, Knell S, Park B. Statistical shape modeling of the geometric morphology of the canine femur, tibia, and patella. Frontiers in Veterinary Science. 2024;11:1366827.
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/97975-
dc.description.abstract準確的骨骼外型與韌帶附著點資訊對於生物力學研究及韌帶疾病的個體化 解剖重建至關重要。雖然電腦斷層掃描(CT)為傳統上建立骨骼模型的標準方 法,但其應用受限於較高的成本、麻醉相關風險以及較高的輻射暴露量等因素。 此外,犬隻膝關節韌帶附著點相關資訊在獸醫文獻中極為稀少。為克服上述問題, 特別是在犬隻患者中,先前研究建立了一套基於統計形狀模型(SSM)之可變形 形狀模板(DST),能夠利用 CT 建構之骨骼模型精確預測犬隻膝關節韌帶的附著點。
本研究旨在開發一種新演算法,利用雙平面 X 光影像結合基於輪廓配對之 SSM 二維至三維(2D–3D)註冊方法,以重建個體化骨骼外型,並套用先前建立 之 DST 於註冊後的骨骼模型上進行韌帶附著點的預測。為驗證本研究提出的方 法,將 2D–3D 註冊所得之骨骼模型與 CT 所得之骨骼模型進行重建誤差比較, 並評估分別使用不同來源骨骼模型的 DST 之韌帶附著點預測準確性。
本研究使用手術用 C-arm 透視系統,對納入於先前 DST 建構研究之 12 具犬 隻後肢標本進行與頭尾方向(cranial–caudal)視角相夾 0°、30°、60°與 90°等角 度之 X 光影像拍攝。2D–3D 註冊以 90°–0°、90°–30°與 90°–60°之三組雙平面影 像組合進行。當 SSM 依據 X 光影像進行 2D–3D 註冊時,DST 中所嵌入之韌帶 附著點亦會相應變形(DSTreg ),以進行個體化韌帶附著點預測。預測之韌帶附 著點將進一步與實際量測資料及以 DST 與 CT 骨骼模型進行最佳化擬合後所得之預測結果(DSTopt )進行比較,並分析影像組合角度變化對骨骼重建與韌帶附著點預測準確度之影響。 股骨與脛骨骨骼模型之平均均方根誤差分別為 0.7–0.9 毫米與 0.6–0.7 毫米, 而韌帶附著點之歐幾里得距離誤差範圍則為 0.9–2.7 毫米。整體而言,DST reg 所得之預測結果與 DST opt 相當,顯示本研究提出之方法為一種準確且更安全的替代方案,無須依賴 CT 即可取得個體化的犬隻膝關節韌帶附著位置。
zh_TW
dc.description.abstractAccurate bone shape and ligament footprint data are critical for biomechanical research and patient-specific anatomical reconstruction in cases of ligament disorders. While computed tomography (CT) has traditionally been the standard for acquiring bone shape models, its application is limited by high cost, anesthesia-related risks, and increased radiation exposure. On the other hand, ligament footprint data was scarcely reported in veterinary medicine. To address these limitations, especially in canine patients, a previous study introduced a deformable shape template (DST) based on a statistical shape model (SSM), which enabled precise prediction of canine stifle ligament footprints using CT-derived bone models.
The present study aimed to develop an SSM-constrained silhouette-based two-dimensional to three-dimensional (2D–3D) registration method using dual-plane X-ray images to reproduce patient-specific bone shape models. The DST from the previous study was applied to the registered bone shapes in an attempt to estimate ligament footprints. To validate the proposed method, reconstruction errors of the 2D–3D registered bone shapes were compared to those of CT-derived bone models, and the accuracy of ligament footprint estimations using the DST-based bone shapes obtained from different sources was evaluated.
Dual-plane X-rays were acquired from 12 hindlimb specimens at 90°, 60°, 30°, and 0° to the cranial-caudal perspective using a surgical C-arm fluoroscopy system. For 2D–3D registration, image pairs at 90°–0°, 90°–30°, and 90°–60° were utilized. As the SSM was registered to the paired X-ray images, the embedded ligament footprints within the DST were deformed accordingly (DSTreg). Predicted ligament footprint locations were compared to the ground truth data and to those estimated by optimally fitting the DST to CT-derived bone models (DSTopt). The influence of image pair angles on the accuracy of bone shape reconstruction and ligament footprint estimation was evaluated.
The average root-mean-squared error for femoral and tibial bone shape reconstructions ranged from 0.7–0.9 mm and 0.6–0.7 mm, respectively. The Euclidean distance error for ligament footprint predictions ranged from 0.9–2.7 mm. Overall, the accuracy of DSTreg was comparable to that of DSTopt, suggesting that the proposed method offers a viable and safer alternative for acquiring accurate, patient-specific ligament footprint positions without the need for CT imaging.
en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2025-07-23T16:18:48Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2025-07-23T16:18:48Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontentsContents
致謝 i
中文摘要 iii
Abstract v
Contents vii
Lists of figures ix
List of tables xi
Chapter 1 Introduction 1
Chapter 2 Literature review 3
2.1 Functional and anatomical studies of the stifle ligaments 3
2.1.1 Cruciate ligaments 3
2.1.2 Collateral ligaments 7
2.2 Acquisition of the anatomical location of the cranial cruciate ligament footprint 8
2.2.1 Radiography 8
2.2.1.1 Cruciate ligaments 9
2.2.1.2 Collateral ligaments 16
2.2.2 Arthroscopy 21
2.2.3 Magnetic resonance imaging approach 26
2.2.4 Deformable shape template approach 29
2.2.5 Locating canine stifle ligament footprints in veterinary literature 34
2.2.6 Deformable shape template based on SSM for canine stifle ligament prediction 36
2.3 Bone shape acquisition 36
2.3.1 CT- and MRI-based modeling 37
2.3.2 2D-3D reconstructions 38
2.3.2.1 The main step of 2D-3D reconstruction 39
2.3.2.2 Types of template models 39
2.3.2.3 Methods of 2D-3D registration 40
2.3.2.4 Limitations in Veterinary Applications 41
2.4 Objectives of the study 42
Chapter 3 Materials and methods 44
3.1 Deformable shape template (DST) 44
3.2 Ligament footprint estimation 46
3.3 Experimental design 52
3.4 Analysis of estimation errors 56
3.5 Statistical analysis 57
Chapter 4 Results 58
4.1 Accuracy of the predicted bone shape 58
4.2 Bias of the footprint centroid predictions 59
4.3 Errors of the footprint centroid predictions 65
4.4 Discrepancies of footprint centroids predicted using optimally fitted DST and the registered DST 73
Chapter 5 Discussion 75
5.1 Accuracy of bone shape prediction 75
5.2 Bias of the footprint estimation results 78
5.3 Discrepancies between the estimation with optimally fitted DST and registered DST 81
5.4 Further applications 82
5.5 Limitations 84
Chapter 6 Conclusion 86
Chapter 7 References 87
-
dc.language.isoen-
dc.subject二維-三維影像註冊zh_TW
dc.subject雙平面X光zh_TW
dc.subject可變形形狀模板zh_TW
dc.subject膝關節韌帶zh_TW
dc.subject統計形狀模型zh_TW
dc.subject2D-3D registrationen
dc.subjectstifle ligament footprintsen
dc.subjectstatistical shape modelen
dc.subjectdeformable shape templateen
dc.subjectdual-plane X-rayen
dc.title使用雙平面X光透視攝影圖像以可變形模板預測犬隻膝關節韌帶附著區域zh_TW
dc.titlePrediction of stifle ligament footprints in dogs using dual-plane X-ray fluoroscopic images and deformable shape templateen
dc.typeThesis-
dc.date.schoolyear113-2-
dc.description.degree碩士-
dc.contributor.oralexamcommittee林正忠;盧炫綸zh_TW
dc.contributor.oralexamcommitteeCheng-Chung Lin;Hsuan-Lun Luen
dc.subject.keyword膝關節韌帶,統計形狀模型,可變形形狀模板,雙平面X光,二維-三維影像註冊,zh_TW
dc.subject.keywordstifle ligament footprints,statistical shape model,deformable shape template,dual-plane X-ray,2D-3D registration,en
dc.relation.page93-
dc.identifier.doi10.6342/NTU202501381-
dc.rights.note同意授權(全球公開)-
dc.date.accepted2025-07-04-
dc.contributor.author-college生物資源暨農學院-
dc.contributor.author-dept臨床動物醫學研究所-
dc.date.embargo-lift2030-06-30-
顯示於系所單位:臨床動物醫學研究所

文件中的檔案:
檔案 大小格式 
ntu-113-2.pdf
  此日期後於網路公開 2030-06-30
14.82 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved