請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/97964完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 葉伊純 | zh_TW |
| dc.contributor.advisor | Yi-Cheun Yeh | en |
| dc.contributor.author | 王姿穎 | zh_TW |
| dc.contributor.author | Tzu-Ying Wang | en |
| dc.date.accessioned | 2025-07-23T16:16:14Z | - |
| dc.date.available | 2025-09-09 | - |
| dc.date.copyright | 2025-07-23 | - |
| dc.date.issued | 2025 | - |
| dc.date.submitted | 2025-07-17 | - |
| dc.identifier.citation | 1. Yang, S.-R.; Wang, R.; Yan, C.-J.; Lin, Y.-Y.; Yeh, Y.-J.; Yeh, Y.-Y.; Yeh, Y.-C., Ultrasonic interfacial crosslinking of TiO2-based nanocomposite hydrogels through thiol–norbornene reactions for sonodynamic antibacterial treatment. Biomater. Sci. 2023, 11 (12), 4184-4199.
2. Kasi, P. B.; Azar, M. G.; Dodda, J. M.; Belsky, P.; Kovárík, T.; Slouf, M.; Dobrá, J. K.; Babuska, V., Chitosan and cellulose-based composite hydrogels with embedded titanium dioxide nanoparticles as candidates for biomedical applications. Int. J. Biol. Macromol. 2023, 243, 125334. 3. Gunatilake, U. B.; Garcia-Rey, S.; Ojeda, E.; Basabe-Desmonts, L.; Benito-Lopez, F., TiO2 Nanotubes Alginate Hydrogel Scaffold for Rapid Sensing of Sweat Biomarkers: Lactate and Glucose. ACS Appl Mater Interfaces 2021, 13 (31), 37734-37745. 4. Gao, W.; Kang, H. C.; Zhong, M.; Han, L. J.; Guo, X.; Su, B. T.; Lei, Z. Q., Chitosan-Promoted TiO2-Loaded Double-Network Hydrogels for Dye Removal and Wearable Sensors. Biomacromolecules 2024, 25 (12), 8016-8025. 5. Liu, Y.; Huang, J.; Guo, Z., TiO2 deposited dual functional hydrogel coatings with superhydrophilic and photocatalytic properties for efficient oil/water separation and dye photodegradation. J. Environ. Chem. Eng. 2024, 12 (4), 113133. 6. Wu, T. M.; Sawut, A.; Simayi, R.; Gong, X. K.; Zhang, X. H.; Jiang, M. H.; Zhu, Z. W., Green synthesis and environmental applications of alginate/polyacrylamide/titanium dioxide composite hydrogel. J. Appl. Polym. Sci. 2023, 140 (37), e54394. 7. Zhang, Z.; Xiao, F.; Guo, Y.; Wang, S.; Liu, Y., One-pot self-assembled three-dimensional TiO2-graphene hydrogel with improved adsorption capacities and photocatalytic and electrochemical activities. ACS Appl Mater Interfaces 2013, 5 (6), 2227-33. 8. Wang, H.; Guan, C.; Wang, X.; Fan, H. J., A high energy and power Li-ion capacitor based on a TiO2 nanobelt array anode and a graphene hydrogel cathode. Small 2015, 11 (12), 1470-7. 9. Li, M.; Yin, J. J.; Wamer, W. G.; Lo, Y. M., Mechanistic characterization of titanium dioxide nanoparticle-induced toxicity using electron spin resonance. J Food Drug Anal 2014, 22 (1), 76-85. 10. Scherz-Shouval, R.; Elazar, Z., Regulation of autophagy by ROS: physiology and pathology. Trends Biochem Sci 2011, 36 (1), 30-8. 11. Brieger, K.; Schiavone, S.; Miller, F. J., Jr.; Krause, K. H., Reactive oxygen species: from health to disease. Swiss Med Wkly 2012, 142 (3334), w13659. 12. Yue, Y.; Wang, X.; Wu, Q.; Han, J.; Jiang, J., Highly recyclable and super-tough hydrogel mediated by dual-functional TiO2 nanoparticles toward efficient photodegradation of organic water pollutants. J Colloid Interface Sci 2020, 564, 99-112. 13. Seixas, A.; Quendera, A.; Sousa, J.; Silva, A.; Arraiano, C.; Andrade, J., Bacterial response to oxidative stress and RNA oxidation. Front. Genet. 2021, 12, 821535. 14. Wang, J. M.; Zhang, C.; Yang, Y. Q.; Fan, A. L.; Chi, R. F.; Shi, J.; Zhang, X. Y., Poly (vinyl alcohol) (PVA) hydrogel incorporated with Ag/TiO2 for rapid sterilization by photoinspired radical oxygen species and promotion of wound healing. Appl. Surf. Sci. 2019, 494, 708-720. 15. Cao, X.; Li, M.; Liu, Q.; Zhao, J.; Lu, X.; Wang, J., Inorganic sonosensitizers for sonodynamic therapy in cancer treatment. Small 2023, 19 (42), 2303195. 16. Su, H.; Zheng, R.; Jiang, L.; Zeng, N.; Yu, K.; Zhi, Y.; Shan, S., Dextran hydrogels via disulfide-containing Schiff base formation: Synthesis, stimuli-sensitive degradation and release behaviors. Carbohydr Polym 2021, 265, 118085. 17. Zhong, Y. T.; Cen, Y.; Xu, L.; Li, S. Y.; Cheng, H., Recent progress in carrier‐free nanomedicine for tumor phototherapy. Adv. Healthcare Mater. 2023, 12 (4), 2202307. 18. Han, X. X.; Huang, J.; Jing, X. X.; Yang, D. Y.; Lin, H.; Wang, Z. G.; Li, P.; Chen, Y., Oxygen-Deficient Black Titania for Synergistic/Enhanced Sonodynamic and Photoinduced Cancer Therapy at Near Infrared-II Biowindow. ACS Nano 2018, 12 (5), 4545-4555. 19. Naldoni, A.; Allieta, M.; Santangelo, S.; Marelli, M.; Fabbri, F.; Cappelli, S.; Bianchi, C. L.; Psaro, R.; Dal Santo, V., Effect of nature and location of defects on bandgap narrowing in black TiO2 nanoparticles. J Am Chem Soc 2012, 134 (18), 7600-3. 20. Wajid Shah, M.; Zhu, Y.; Fan, X.; Zhao, J.; Li, Y.; Asim, S.; Wang, C., Facile Synthesis of Defective TiO2-x Nanocrystals with High Surface Area and Tailoring Bandgap for Visible-light Photocatalysis. Sci Rep 2015, 5 (1), 15804. 21. Hu, H.; Zhao, J.; Ma, K.; Wang, J.; Wang, X.; Mao, T.; Xiang, C.; Luo, H.; Cheng, Y.; Yu, M.; Qin, Y.; Yang, K.; Li, Q.; Sun, Y.; Wang, S., Sonodynamic therapy combined with phototherapy: Novel synergistic strategy with superior efficacy for antitumor and antiinfection therapy. J Control Release 2023, 359, 188-205. 22. Li, L.; Cao, L.; Xiang, X.; Wu, X.; Ma, L.; Chen, F.; Cao, S.; Cheng, C.; Deng, D.; Qiu, L., ROS‐catalytic transition‐metal‐based enzymatic nanoagents for tumor and bacterial eradication. Adv. Funct. Mater. 2022, 32 (1), 2107530. 23. Xin, H. L.; Liu, Y. Y.; Xiao, Y. N.; Wen, M.; Sheng, L. Y.; Jia, Z. J., Design and Nanoengineering of Photoactive Antimicrobials for Bioapplications: from Fundamentals to Advanced Strategies. Adv. Funct. Mater. 2024, 34 (38), 2402607. 24. Cheng, S.; Qi, M.; Li, W.; Sun, W.; Li, M.; Lin, J.; Bai, X.; Sun, Y.; Dong, B.; Wang, L., Dual-Responsive Nanocomposites for Synergistic Antibacterial Therapies Facilitating Bacteria-Infected Wound Healing. Adv Healthc Mater 2023, 12 (6), e2202652. 25. Liu, H.; Li, J.; Liu, X.; Li, Z.; Zhang, Y.; Liang, Y.; Zheng, Y.; Zhu, S.; Cui, Z.; Wu, S., Photo-Sono Interfacial Engineering Exciting the Intrinsic Property of Herbal Nanomedicine for Rapid Broad-Spectrum Bacteria Killing. ACS Nano 2021, 15 (11), 18505-18519. 26. Chen, X. E.; Yan, C. J.; Lu, C. H.; Yeh, Y. C., Fabrication of NIR-II-Responsive Polydextran Aldehyde/Gelatin/Gold Nanoparticle-Decorated Graphene Oxide Nanocomposite Hydrogels for Antibacterial Applications. ACS Appl. Polym. Mater. 2024, 6 (13), 7340-7356. 27. Zhou, B.; Gao, M.; Feng, X. J.; Huang, L. L.; Huang, Q. X.; Kootala, S.; Larsson, T. E.; Zheng, L.; Bowden, T., Carbazate modified dextrans as scavengers for carbonylated proteins. Carbohydr. Polym. 2020, 232, 115802. 28. Nadrah, P.; Gaberscek, M.; Skapin, A. S., Selective degradation of model pollutants in the presence of core@shell TiO2@SiO2 photocatalyst. Appl. Surf. Sci. 2017, 405, 389-394. 29. Lu, C. H.; Yeh, Y. C., Synthesis and Processing of Dynamic Covalently Crosslinked Polydextran/Carbon Dot Nanocomposite Hydrogels with Tailorable Microstructures and Properties. ACS Biomater Sci Eng 2022, 8 (10), 4289-4300. 30. Zhao, H.; Heindel, N. D., Determination of degree of substitution of formyl groups in polyaldehyde dextran by the hydroxylamine hydrochloride method. Pharm Res 1991, 8 (3), 400-2. 31. Herman, J.; Neal, S. L., Efficiency comparison of the imidazole plus RNO method for singlet oxygen detection in biorelevant solvents. Anal Bioanal Chem 2019, 411 (20), 5287-5296. 32. Satoh, A. Y.; Trosko, J. E.; Masten, S. J., Methylene blue dye test for rapid qualitative detection of hydroxyl radicals formed in a Fenton's reaction aqueous solution. Environ Sci Technol 2007, 41 (8), 2881-7. 33. Kim, M.-J., Synergistic Effect of the Hybrid of Au Nanoislands on TiO2 Nanowires (Au-TNW) in Laser Desorption and Ionization. In Laser Desorption Ionization Mass Spectrometry Based on Nanophotonic Structure: From Material Design to Mechanistic Understanding, Springer: 2023; pp 15-28. 34. Chen, S.; Xiao, Y.; Wang, Y.; Hu, Z.; Zhao, H.; Xie, W., A Facile Approach to Prepare Black TiO2 with Oxygen Vacancy for Enhancing Photocatalytic Activity. Nanomaterials (Basel) 2018, 8 (4), 245. 35. Ren, S. J.; Sun, P. P.; Wu, A. L.; Sun, N.; Sun, L. X.; Dong, B.; Zheng, L. Q., Ultra-fast self-healing PVA organogels based on dynamic covalent chemistry for dye selective adsorption. New J. Chem. 2019, 43 (20), 7701-7707. 36. Liu, C. Y.; Yue, S. L.; Li, R. Z.; Wang, L.; Zhang, K.; Wang, S. W.; Yu, S. M.; Shafiq, F.; Liu, Y.; Qiao, W. H., Synthesis of a series of dextran-based DA-AHA hydrogels for wound healing dressings. Eur. Polym. J. 2024, 221, 113521. 37. Li, G. L.; Zhang, X. H.; Huang, J.; Li, T.; Yang, S. B.; Wang, Y.; Jiang, J.; Xia, B. H.; Chen, M. Q.; Dong, W. F., Hydrazone bond enhance the mechanical properties, heating resistance, and water resistance of imine-based thermosets. Chem. Eng. J. 2022, 435, 134766. 38. Cengiz, I. F.; Oliveira, J. M.; Reis, R. L., Micro-CT - a digital 3D microstructural voyage into scaffolds: a systematic review of the reported methods and results. Biomater Res 2018, 22 (1), 26. 39. Rigby, S. P., New methodologies in mercury porosimetry. In Stud. Surf. Sci. Catal., Elsevier: 2002; Vol. 144, pp 185-192. 40. Yang, H.; Fustin, C. A., Design and Applications of Dynamic Hydrogels Based on Reversible C=N Bonds. Macromol. Chem. Phys. 2023, 224 (20), 2300211. 41. Nair, R.; Roy Choudhury, A., Synthesis and rheological characterization of a novel shear thinning levan gellan hydrogel. Int J Biol Macromol 2020, 159, 922-930. 42. Ansari, S.; Rashid, M. A. I.; Waghmare, P. R.; Nobes, D. S., Measurement of the flow behavior index of Newtonian and shear-thinning fluids via analysis of the flow velocity characteristics in a mini-channel. SN Appl. Sci. 2020, 2 (11), 1787. 43. Arakha, M.; Pal, S.; Samantarrai, D.; Panigrahi, T. K.; Mallick, B. C.; Pramanik, K.; Mallick, B.; Jha, S., Antimicrobial activity of iron oxide nanoparticle upon modulation of nanoparticle-bacteria interface. Sci Rep 2015, 5 (1), 14813. 44. Behera, N.; Arakha, M.; Priyadarshinee, M.; Pattanayak, B. S.; Soren, S.; Jha, S.; Mallick, B. C., Oxidative stress generated at nickel oxide nanoparticle interface results in bacterial membrane damage leading to cell death. RSC Adv. 2019, 9 (43), 24888-24894. 45. Mahmoud, N. N.; Alkilany, A. M.; Khalil, E. A.; Al-Bakri, A. G., Nano-Photothermal ablation effect of Hydrophilic and Hydrophobic Functionalized Gold Nanorods on Staphylococcus aureus and Propionibacterium acnes. Sci Rep 2018, 8 (1), 6881. 46. Andersson, M. A.; Madsen, L. B.; Schmidtchen, A.; Puthia, M., Development of an Experimental Ex Vivo Wound Model to Evaluate Antimicrobial Efficacy of Topical Formulations. Int J Mol Sci 2021, 22 (9), 5045. 47. Huang, S.; Liu, H.; Liao, K.; Hu, Q.; Guo, R.; Deng, K., Functionalized GO Nanovehicles with Nitric Oxide Release and Photothermal Activity-Based Hydrogels for Bacteria-Infected Wound Healing. ACS Appl Mater Interfaces 2020, 12 (26), 28952-28964. 48. Li, Y.; Wang, J.; Yang, Y.; Shi, J.; Zhang, H.; Yao, X.; Chen, W.; Zhang, X., A rose bengal/graphene oxide/PVA hybrid hydrogel with enhanced mechanical properties and light-triggered antibacterial activity for wound treatment. Mater Sci Eng C Mater Biol Appl 2021, 118, 111447. 49. Shao, N. N.; Yao, J. K.; Qi, Y. X.; Huang, Y. B., Design of an anti-scald photothermal hydrogel for rapid bacteria removal and hemostasis. Chem. Eng. J. 2023, 476, 146642. 50. Wu, X.; He, Y.; Fu, J.; Zhao, Y., Study on Electrochemical Behaviors of Heat-Treated Escherichia coli and Staphylococcus aureus. ACS Omega 2024, 9 (45), 44907-44915. 51. Zupanc, M.; Pandur, Z.; Perdih, T. S.; Stopar, D.; Petkovsek, M.; Dular, M., Effects of cavitation on different microorganisms: The current understanding of the mechanisms taking place behind the phenomenon. A review and proposals for further research. Ultrason. Sonochem. 2019, 57, 147-165. 1. El-Husseiny, H. M.; Mady, E. A.; Hamabe, L.; Abugomaa, A.; Shimada, K.; Yoshida, T.; Tanaka, T.; Yokoi, A.; Elbadawy, M.; Tanaka, R., Smart/stimuli-responsive hydrogels: Cutting-edge platforms for tissue engineering and other biomedical applications. Mater. Today Bio 2022, 13, 100186. 2. Yin, B.; Xu, J.; Lu, J.; Ou, C.; Zhang, K.; Gao, F.; Zhang, Y., Responsive Hydrogel-Based Drug Delivery Platform for Osteoarthritis Treatment. Gels 2024, 10 (11), 696. 3. Yu, H.; Gao, R.; Liu, Y.; Fu, L.; Zhou, J.; Li, L., Stimulus‐Responsive Hydrogels as Drug Delivery Systems for Inflammation Targeted Therapy. Adv. Sci. 2024, 11 (1), 2306152. 4. Zhang, Q.; Chen, W.; Li, G.; Ma, Z.; Zhu, M.; Gao, Q.; Xu, K.; Liu, X.; Lu, W.; Zhang, W., A factor‐free hydrogel with ROS scavenging and responsive degradation for enhanced diabetic bone healing. Small 2024, 20 (24), 2306389. 5. Ma, W.; Wang, X.; Zhang, D.; Mu, X., Research progress of disulfide bond based tumor microenvironment targeted drug delivery system. Int. J. Nanomed. 2024, 7547-7566. 6. Bhat, A. P.; Holkar, C. R.; Jadhav, A. J.; Pinjari, D. V., Acoustic and hydrodynamic cavitation assisted hydrolysis and valorisation of waste human hair for the enrichment of amino acids. Ultrason. Sonochem. 2021, 71, 105368. 7. Sun, Z.; Ding, Y.; Wang, Z.; Luo, H.; Feng, Q.; Cao, X., Ros-responsive hydrogel with size-dependent sequential release effects for anti-bacterial and anti-inflammation in diabetic wound healing. Chem. Eng. J. 2024, 493, 152511. 8. Xu, X.; Zeng, Z.; Huang, Z.; Sun, Y.; Huang, Y.; Chen, J.; Ye, J.; Yang, H.; Yang, C.; Zhao, C., Near-infrared light-triggered degradable hyaluronic acid hydrogel for on-demand drug release and combined chemo-photodynamic therapy. Carbohydr. Polym. 2020, 229, 115394. 9. Zhou, Y.; Liu, G.; Guo, S., Advances in ultrasound-responsive hydrogels for biomedical applications. J. Mater. Chem. B 2022, 10 (21), 3947-3958. 10. Wu, S.; Zhang, H.; Wang, S.; Sun, J.; Hu, Y.; Liu, H.; Liu, J.; Chen, X.; Zhou, F.; Bai, L., Ultrasound-triggered in situ gelation with ROS-controlled drug release for cartilage repair. Mater. Horiz. 2023, 10 (9), 3507-3522. 11. Xing, X.; Zhao, S.; Xu, T.; Huang, L.; Zhang, Y.; Lan, M.; Lin, C.; Zheng, X.; Wang, P., Advances and perspectives in organic sonosensitizers for sonodynamic therapy. Coord. Chem. Rev. 2021, 445, 214087. 12. Chen, P.; Zhang, P.; Shah, N. H.; Cui, Y.; Wang, Y., A comprehensive review of inorganic sonosensitizers for sonodynamic therapy. Int. J. Mol. Sci. 2023, 24 (15), 12001. 13. Pang, X.; Li, D.; Zhu, J.; Cheng, J.; Liu, G., Beyond antibiotics: photo/sonodynamic approaches for bacterial theranostics. Nano Micro Lett. 2020, 12, 1-23. 14. Cao, X.; Li, M.; Liu, Q.; Zhao, J.; Lu, X.; Wang, J., Inorganic sonosensitizers for sonodynamic therapy in cancer treatment. Small 2023, 19 (42), 2303195. 15. Hao, N.; Dai, Z.; Xiong, M.; Han, X.; Zuo, Y.; Qian, J.; Wang, K., Rapid Potentiometric Detection of Chemical Oxygen Demand Using a Portable Self-Powered Sensor Chip. Anal Chem 2021, 93 (24), 8393-8398. 16. Su, H.; Zheng, R.; Jiang, L.; Zeng, N.; Yu, K.; Zhi, Y.; Shan, S., Dextran hydrogels via disulfide-containing Schiff base formation: Synthesis, stimuli-sensitive degradation and release behaviors. Carbohydr Polym 2021, 265, 118085. 17. Zhao, H.; Heindel, N. D., Determination of degree of substitution of formyl groups in polyaldehyde dextran by the hydroxylamine hydrochloride method. Pharm Res 1991, 8 (3)m 400-2. | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/97964 | - |
| dc.description.abstract | 本研究提出黑色二氧化鈦(bTiO2)奈米複合物水凝膠,並將其應用於生醫領域。TiO2奈米粒子做為光聲敏劑,在超音波和光刺激下能夠生成活性氧物種(ROS)。然而,TiO2的能隙較窄,限制了其在近紅外光(NIR)下活化,且電子-電洞對的快速癒合也會降低ROS的生成效率。第一部分的研究,我們通過水熱法合成的bTiO2,展現了獨特的氧空缺特性,可顯著降低電子電洞對的癒合速率,進而增加ROS的生成,並且還顯示出卓越的光熱性能。在NIR照射下,bTiO2能有效地將光能轉換為熱能,導致局部溫度升高,進而對細菌產生破壞性影響。我們將bTiO2奈米粒子引入由葡聚醣醛(PDA)和葡聚醣肼(PDH)交聯形成的高分子水凝膠網絡中,並進一步將bTiO2進行表面氨基修飾(bTiO2@MS-NH2),透過亞胺鍵交聯強化奈米粒子與水凝膠間的界面。該修飾不僅顯著改善bTiO2的分散穩定性,亦提升水凝膠的機械強度,其壓縮模數達約 83 kPa,儲能模數約為 4500 Pa。經過綜合研究,含bTiO2的PDA/PDH奈米複合物水凝膠在超音波及近紅外光照射下,透過聲動力治療(SDT)、光動力治療(PDT)與光熱治療(PTT)三重機制作用,展現高達 99%以上的抗菌效率。第二部分的研究,我們進一步通過將bTiO2表面修飾為含有硫化銅(CuS)的CuS/bTiO2奈米粒子(CuSBT),有效促進電子從bTiO2的導帶轉移至CuS的導帶,進而抑制電子電洞對的癒合,提高了ROS的生成效率。為了增加水凝膠的ROS響應性能,我們將PDA與胱胺(Cystamine)通過亞胺鍵交聯,製備具備雙硫鍵的水凝膠。在此系統中,CuS/bTiO2同樣功能化為CuS/bTiO2@MS-NH2(CuSBTN)奈米粒子,增強了奈米粒子與水凝膠之間的鍵結。當受到超音波刺激時,CuSBTN生成的ROS會攻擊水凝膠中的雙硫鍵,導致其斷裂並釋放出裝載的活性物質。綜合以上,這些bTiO2奈米複合物水凝膠系統具有外部刺激響應性,能提高ROS生成效率,並實現超音波誘導的控制釋放,為抗菌治療、藥物傳遞及生醫應用提供了更多潛力。 | zh_TW |
| dc.description.abstract | Titanium dioxide (TiO2)-based nanocomposite hydrogels are developed in this study for advanced biomedical applications. TiO2 nanoparticles act as sono-/photosensitizers capable of generating reactive oxygen species (ROS) under ultrasound and light stimulation. However, their narrow bandgap restricts activation to ultraviolet (UV) light, and the rapid recombination of electron-hole pairs reduces ROS generation efficiency. To overcome these limitations, we synthesize black TiO2 (bTiO2) through a hydrothermal method, which exhibits oxygen vacancies that significantly reduce electron-hole recombination and enhance ROS generation. In addition, bTiO2 demonstrates excellent photothermal conversion under near-infrared (NIR) irradiation, producing localized heating with antibacterial effects. To improve interfacial integration, bTiO2 nanoparticles are further functionalized with amino groups, enabling the formation of imine crosslinks with the polymer. This modification enhances nanoparticle dispersion and increases the compressive modulus of the hydrogel to ~83 kPa, with a storage modulus of ~4500 Pa, thereby strengthening the mechanical properties of the hydrogel network. A comparative analysis is conducted among bTiO₂-based hydrogels, white TiO₂-based hydrogels, and only polymeric network hydrogels to evaluate structural and functional performance differences. The bTiO2-based polydextran aldehyde (PDA)/polydextran hydrazine (PDH) nanocomposite hydrogels exhibit superior ROS generation and photothermal behavior under ultrasound and NIR light, resulting in over 99% antibacterial efficacy through the combined effects of sonodynamic therapy (SDT), photodynamic therapy (PDT), and photothermal therapy (PTT). In the second project, we further enhance ROS generation by modifying bTiO2 with copper sulfide (CuS), forming CuS/bTiO2 (CuSBT) nanoparticles. This configuration promotes electron transfer from bTiO2 to CuS, further minimizing electron-hole recombination. A disulfide bond-containing hydrogel is prepared through imine crosslinking between PDA and cystamine (Cys) to improve hydrogel responsiveness and controlled release. Upon ultrasound stimulation, ROS generated by CuS/bTiO2@MS-NH2 (CuSBTN) cleave disulfide bonds within the hydrogel network, triggering the release of the encapsulated bioactive agent. Overall, these bTiO2-based nanocomposite hydrogel systems demonstrate excellent responsiveness to external stimuli, enhanced ROS generation, and ultrasound-triggered controlled release, offering significant potential for antibacterial therapy, drug delivery, and various biomedical applications. | en |
| dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2025-07-23T16:16:14Z No. of bitstreams: 0 | en |
| dc.description.provenance | Made available in DSpace on 2025-07-23T16:16:14Z (GMT). No. of bitstreams: 0 | en |
| dc.description.tableofcontents | 誌謝 i
中文摘要 ii Abstract iii Contents v List of figures ix List of tables xv Project 1 1 1.1 Introduction 2 1.2 Experimental section 9 1.2.1 Materials 9 1.2.2 Characterization techniques 9 1.2.3 Synthesis of polydextran aldehyde (PDA) and polydextran hydrazine (PDH) 10 1.2.4 Synthesis of black TiO2 11 1.2.5 Synthesis of bTiO2@MS-NH2 11 1.2.6 Preparation of hydrogels 12 1.2.7 Mechanical properties of hydrogels 12 1.2.8 Microstructural analysis of hydrogels 13 1.2.9 Swelling ratio and water content of hydrogels 14 1.2.10 Degradation rate of hydrogels 14 1.2.11 Singlet oxygen (1O2) detection 14 1.2.12 Hydroxyl radical (•OH) detection 15 1.2.13 Thermal behavior of hydrogels under irradiation 15 1.2.14 In vitro cytocompatibility of hydrogels 15 1.2.15 In vitro antibacterial test of hydrogels 16 1.2.16 Ex vivo antibacterial test 17 1.2.17 Statistical analysis 18 1.3 Results and discussion 18 1.3.1 Syntheses and characterizations of polymers 18 1.3.2 Syntheses and characterizations of nanoparticles 22 1.3.3 Preparations and characterizations of hydrogels 30 1.3.4 Microstructures and properties of hydrogels 34 1.3.5 Swelling behavior, degradation, and stability of hydrogels 42 1.3.6 Self-healing, shear-thinning, and injectable properties of hydrogels 44 1.3.7 pH-responsiveness of hydrogels 47 1.3.8 Photothermal effect of hydrogels 48 1.3.9 ROS generation of hydrogels 51 1.3.10 In vitro cytocompatibility of hydrogels 55 1.3.11 In vitro antibacterial effect 56 1.3.12 Ex vivo antibacterial effect 64 1.4 Conclusion 70 1.5 Reference 71 Project 2 78 2.1 Introduction 79 2.2 Experimental section 83 2.2.1 Materials 83 2.2.2 Characterization techniques 83 2.2.3 Synthesis of CuS/bTiO2 nanoparticles 83 2.2.4 Synthesis of CuS/bTiO2@MS-NH2 84 2.2.5 Preparation of Dex-SS hydrogels 84 2.2.6 Mechanical properties studies of hydrogels 84 2.2.7 Hydroxyl radical (•OH) detection 84 2.3 Results and discussion 84 2.3.1 Syntheses and characterizations of polymers 84 2.3.2 Syntheses and characterizations of nanoparticles 85 2.3.3 Preparations and characterizations of hydrogels 90 2.3.4 Shear-thinning and injectable properties of hydrogels 92 2.3.5 Stability of hydrogels 93 2.3.6 In vitro cytocompatibility of hydrogels 94 2.4 Conclusion and future work 95 2.5 Reference 96 | - |
| dc.language.iso | en | - |
| dc.subject | 二氧化鈦 | zh_TW |
| dc.subject | 奈米複合物水凝膠 | zh_TW |
| dc.subject | 抗菌 | zh_TW |
| dc.subject | 控制釋放 | zh_TW |
| dc.subject | 聲動力治療 | zh_TW |
| dc.subject | 光動力治療 | zh_TW |
| dc.subject | 光熱治療 | zh_TW |
| dc.subject | antibacterial | en |
| dc.subject | photothermal therapy | en |
| dc.subject | photodynamic therapy | en |
| dc.subject | titanium dioxide | en |
| dc.subject | sonodynamic therapy | en |
| dc.subject | controlled release | en |
| dc.subject | nanocomposite hydrogel | en |
| dc.title | 多重刺激響應性黑色二氧化鈦奈米複合物水凝膠於增強抗菌治療 | zh_TW |
| dc.title | Multi-stimuli-responsive black titanium dioxide-based nanocomposite hydrogels for enhanced antibacterial therapy | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 113-2 | - |
| dc.description.degree | 碩士 | - |
| dc.contributor.oralexamcommittee | 游佳欣;王如邦;楊博智 | zh_TW |
| dc.contributor.oralexamcommittee | Jiashing Yu;Reuben Wang;Po-Chih Yang | en |
| dc.subject.keyword | 二氧化鈦,奈米複合物水凝膠,抗菌,控制釋放,聲動力治療,光動力治療,光熱治療, | zh_TW |
| dc.subject.keyword | titanium dioxide,nanocomposite hydrogel,antibacterial,controlled release,sonodynamic therapy,photodynamic therapy,photothermal therapy, | en |
| dc.relation.page | 98 | - |
| dc.identifier.doi | 10.6342/NTU202501931 | - |
| dc.rights.note | 同意授權(限校園內公開) | - |
| dc.date.accepted | 2025-07-18 | - |
| dc.contributor.author-college | 工學院 | - |
| dc.contributor.author-dept | 高分子科學與工程學研究所 | - |
| dc.date.embargo-lift | 2030-07-16 | - |
| 顯示於系所單位: | 高分子科學與工程學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-113-2.pdf 未授權公開取用 | 6.57 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
