Skip navigation

DSpace JSPUI

DSpace preserves and enables easy and open access to all types of digital content including text, images, moving images, mpegs and data sets

Learn More
DSpace logo
English
中文
  • Browse
    • Communities
      & Collections
    • Publication Year
    • Author
    • Title
    • Subject
    • Advisor
  • Search TDR
  • Rights Q&A
    • My Page
    • Receive email
      updates
    • Edit Profile
  1. NTU Theses and Dissertations Repository
  2. 理學院
  3. 數學系
Please use this identifier to cite or link to this item: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/97962
Full metadata record
???org.dspace.app.webui.jsptag.ItemTag.dcfield???ValueLanguage
dc.contributor.advisor楊一帆zh_TW
dc.contributor.advisorYi-Fan Yangen
dc.contributor.author林侑勳zh_TW
dc.contributor.authorYuw-Hsun Linen
dc.date.accessioned2025-07-23T16:15:45Z-
dc.date.available2025-07-24-
dc.date.copyright2025-07-23-
dc.date.issued2025-
dc.date.submitted2025-07-17-
dc.identifier.citation[1] H. Baaziz. Equations for the modular curve X1(N) and models of elliptic curves with torsion points. MATHEMATICS OF COMPUTATION, 79(272): 2371–2386, 2010.
[2] H. Cohen and F. Strömberg. Modular Form: A Classical Approach, volume 179 of Graduate Studies in Mathematics. American Mathematical Society, Providence, RI, 2017.
[3] P. Deligne and M. Rapoport. Les schémas de modules de courbes elliptiques. In P. Deligne and W. Kuijk, editors, Modular Functions of One Variable II, pages 143–316, Berlin, Heidelberg, 1973. Springer Berlin Heidelberg. ISBN 978-3-540-37855-6.
[4] J. S. Fred Diamond. A First Course in Modular Forms. Springer New York, NY, 2010.
[5] T. Miyake. Modular Forms. Springer Berlin, Heidelberg, 2005.
[6] J. H. Silverman. The Arithmetic of Elliptic Curves. Springer New York, NY, 2nd edition, 2009.
[7] Y. Yang. Transformation formulas for generalized dedekind eta functions. Bulletin of the London Mathematical Society, 36(5):671–682, 2004.
[8] Y. Yang. Defining equations of modular curves. Advances in Mathematics,204(2):481–508, 2006. ISSN 0001-8708.
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/97962-
dc.description.abstract本論文探討帶有N階點的橢圓曲線組成之模空間,其中N為4到20之間的整數。目標是將橢圓曲線之Tate標準形式的係數,以明確的模函數表示。這些模函數由廣義戴德金η函數組成,並且生成由對應模群Γ1(N)的模函數組成的體。zh_TW
dc.description.abstractIn this thesis, we study the moduli space of elliptic curves with a specified N-torsion, for 4 ≤ N ≤ 20. Our focus is on expressing the coefficients of the Tate normal form of elliptic curves in terms of explicit modular functions. These modular functions are specific generators for the field of modular functions on Γ1(N) constructed from Generalized η-functions.en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2025-07-23T16:15:45Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2025-07-23T16:15:45Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontentsVerification Letter from the Oral Examination Committee i
Acknowledgements iii
摘要 v
Abstract vii
Contents ix
List of Tables xi
Chapter 1 Introduction 1
Chapter 2 Preliminaries 3
2.1 Complex Elliptic Curves 3
2.2 Tate Normal Form 9
2.3 Modular Forms and Modular Functions 12
2.4 Valence Formula 19
2.5 Transformation Formula for ℘(sτ + t; τ ) 20
2.6 Elliptic Function and Jacobi Theta Functions 23
2.7 Generalized Dedekind Eta Function 25
2.8 Generators for the field of modular functions with respect to Γ1(N) 27
Chapter 3 Main Result 31
3.1 The order at cusps of f and g 31
3.2 A representation of f and g in terms of generators 38
3.3 Table of Results 43
References 47
-
dc.language.isoen-
dc.subject模形式zh_TW
dc.subject模形式zh_TW
dc.subjectTate Normal Formen
dc.subjectModular Formen
dc.subjectTate Normal Formen
dc.subjectModular Formen
dc.title具N階點之橢圓曲線的參數表示zh_TW
dc.titleExplicit parametrizations of elliptic curves with N-torsionsen
dc.typeThesis-
dc.date.schoolyear113-2-
dc.description.degree碩士-
dc.contributor.oralexamcommittee李庭諭;凃芳婷zh_TW
dc.contributor.oralexamcommitteeTing-Yu Lee;Fang-Ting Tuen
dc.subject.keyword模形式,zh_TW
dc.subject.keywordModular Form,Tate Normal Form,en
dc.relation.page48-
dc.identifier.doi10.6342/NTU202501859-
dc.rights.note同意授權(全球公開)-
dc.date.accepted2025-07-18-
dc.contributor.author-college理學院-
dc.contributor.author-dept數學系-
dc.date.embargo-lift2025-07-24-
Appears in Collections:數學系

Files in This Item:
File SizeFormat 
ntu-113-2.pdf692.51 kBAdobe PDFView/Open
Show simple item record


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved