請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/97942完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 蔡政安 | zh_TW |
| dc.contributor.advisor | Chen-An Tsai | en |
| dc.contributor.author | 許芳慈 | zh_TW |
| dc.contributor.author | Fang-Tzu Hsu | en |
| dc.date.accessioned | 2025-07-23T16:11:20Z | - |
| dc.date.available | 2025-07-24 | - |
| dc.date.copyright | 2025-07-23 | - |
| dc.date.issued | 2025 | - |
| dc.date.submitted | 2025-07-08 | - |
| dc.identifier.citation | [1] A. Y. Barrera-Animas, L. O. Oyedele, M. Bilal, T. D. Akinosho, J. M. Davila Delgado, and L. A. Akanbi. Rainfall prediction: A comparative analysis of modern machine learning algorithms for time-series forecasting. Machine Learning with Applications, 7:100204, 2022.
[2] R. J. Carroll, D. Ruppert, L. A. Stefanski, and C. M. Crainiceanu. Measurement error in nonlinear models: a modern perspective. Chapman and Hall/CRC, 2006. [3] R. J. Carroll and L. A. Stefanski. Approximate quasi-likelihood estimation in models with surrogate predictors. Journal of the American Statistical Association, 85(411):652–663, 1990. [4] D. Cheng, A. J. Branscum, and J. D. Stamey. Accounting for response misclassification and covariate measurement error improves power and reduces bias in epidemiologic studies. Annals of epidemiology, 20(7):562–567, 2010. [5] Z. Cui, R. Ke, Z. Pu, and Y. Wang. Deep bidirectional and unidirectional lstm recurrent neural network for network-wide traffic speed prediction. arXiv preprint arXiv:1801.02143, 2018. [6] J. P. Delhomme. Kriging in the hydrosciences. Advances in water resources, 1(5):251–266, 1978. [7] J. L. Elman. Finding structure in time. Cognitive science, 14(2):179–211, 1990. [8] W. A. Fuller. Measurement error models. John Wiley & Sons, 2009. [9] K. Gan, S. Sun, S. Wang, and Y. Wei. A secondary-decomposition-ensemble learning paradigm for forecasting pm2. 5 concentration. Atmospheric Pollution Research, 9(6):989–999, 2018. [10] K. Greff, R. K. Srivastava, J. Koutník, B. R. Steunebrink, and J. Schmidhuber. Lstm: A search space odyssey. IEEE transactions on neural networks and learning systems, 28(10):2222–2232, 2016. [11] P. Gustafson. Measurement error and misclassification in statistics and epidemiology: impacts and Bayesian adjustments. Chapman and Hall/CRC, 2003. [12] J. Hausman, J. Abrevaya, and F. Scott-Morton. Misclassification of the dependent variable in a discrete-response setting. Journal of Econometrics, 87(2):239–269, 1998. [13] I. Hossain, H. Rasel, M. A. Imteaz, and F. Mekanik. Long-term seasonal rainfall forecasting using linear and non-linear modelling approaches: a case study for western australia. Meteorology and Atmospheric Physics, 132:131–141, 2020. [14] A. G. Journel and C. J. Huijbregts. Mining geostatistics. 1976. [15] Q. Liu, Y. Zou, X. Liu, and N. Linge. A survey on rainfall forecasting using artificial neural network. International Journal of Embedded Systems, 11(2):240–249, 2019. [16] Y. Ma, K. Shin, G. Lee, and J. J. Song. Spatial classification in the presence of measurement error. Spatial Statistics, 59:100812, 2024. [17] L. Ni, D. Wang, V. P. Singh, J. Wu, Y. Wang, Y. Tao, and J. Zhang. Streamflow and rainfall forecasting by two long short-term memory-based models. Journal of Hydrology, 583:124296, 2020. [18] E. Pebesma. spacetime: Spatio-temporal data in r. Journal of Statistical Software, 51(7):1–30, 2012. [19] D. B. Rubin. Multiple imputation for nonresponse in surveys, volume 81. John Wiley & Sons, 2004. [20] P. Singh and B. Borah. Indian summer monsoon rainfall prediction using artificial neural network. Stochastic environmental research and risk assessment, 27:1585– 1599, 2013. [21] A. Vaswani. Attention is all you need. Advances in Neural Information Processing Systems, 2017. [22] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez, L. Kaiser, and I. Polosukhin. Attention is all you need, 2023. [23] C. Wu and K.-W. Chau. Prediction of rainfall time series using modular soft computingmethods. Engineering applications of artificial intelligence, 26(3):997–1007, 2013. [24] Y. Xiang, L. Gou, L. He, S. Xia, and W. Wang. A svr–ann combined model based on ensemble emd for rainfall prediction. Applied Soft Computing, 73:874–883, 2018. [25] Z. Yu, S. Miller, F. Montalto, and U. Lall. The bridge between precipitation and temperature–pressure change events: Modeling future non‑stationary precipitation. Journal of Hydrology, 562:346–357, 2018. [26] L. Yunpeng, H. Di, B. Junpeng, and Q. Yong. Multi-step ahead time series forecasting for different data patterns based on lstm recurrent neural network. In 2017 14th web information systems and applications conference (WISA), pages 305–310. IEEE, 2017. | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/97942 | - |
| dc.description.abstract | 本研究旨在建立融合時空資料補值與深度學習模型的逐時降雨預測模型,針對臺灣地區氣象資料進行系統性分析與最佳化。研究以有人氣象站資料為黃金標準,透過時空克里金法補值自動站資料,並依縣市分別建構模型以掌握區域特性。模型比較結果顯示,Transformer(視窗長度=1)具最佳表現,遂作為基準模型,並進一步加入空間平滑項(Spatial Smoothing Term)與卷積神經網路(CNN)進行特徵擷取,並移除氣壓變數以增加模型的穩定性。最後,透過Softplus函數轉換以解決負降雨值問題,建構出最終模型「STformer」。實驗結果顯示STformer 預測模型顯著提升雨量預測準確度及物理合理性,並展現穩定且具泛化能力的預測表現,具高度實務應用潛力。 | zh_TW |
| dc.description.abstract | This study developed an hourly rainfall prediction model for Taiwan, integrating spatio-temporal data imputation with deep learning techniques. We used data from manned weather stations as a gold standard, applying spatio-temporal Kriging to impute missing automatic station data. To better understand and adapt to Taiwan's diverse weather patterns, we built a unique prediction model for each county. Through extensive model comparisons, a Transformer architecture with a window length of one consistently showed the best performance, making it our chosen baseline model. We further refined this by adding a Spatial Smoothing Term and employing Convolutional Neural Networks (CNNs) for robust feature extraction. To enhance model stability, the atmospheric pressure variable was removed. Finally, we incorporated a Softplus function to address the issue of negative rainfall predictions, resulting in our final model, called "STformer." Experimental results confirm that STformer markedly improves rainfall prediction accuracy and physical consistency. Its stable and generalizable predictive capabilities underscore its high potential for real-world applications in rainfall forecasting. | en |
| dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2025-07-23T16:11:20Z No. of bitstreams: 0 | en |
| dc.description.provenance | Made available in DSpace on 2025-07-23T16:11:20Z (GMT). No. of bitstreams: 0 | en |
| dc.description.tableofcontents | 口試委員審定書 i
致謝 iii 摘要 v Abstract vii 目次 ix 圖次 xiii 表次 xv 第一章 研究勤機 1 第二章 文獻回顧 3 第三章 研究方法 7 3.1 研究流程 7 3.2 克里金法 (Kriging) 10 3.2.1 半變異函數 (Semi-variogram) 12 3.2.2 理論半變異數模型 (Theoretical Semi-Variogram Models) 13 3.2.3 常見理論半變異函數模型 14 3.3 時空克里金 (Spatio-Temporal Kriging) 15 3.3.1 模型假設 15 3.3.2 時空變異數模型 16 3.3.3 分離模型 (Separable Model) 16 3.3.4 非分離模型 (Non-Separable Model) 17 3.3.5 時空克里金預測公式 18 3.3.6 權重計算 18 3.4 空間廣義線性混合模型 (Spatial Generalized Linear Mixed Model, SGLMM) 20 3.4.1 模型描述 21 3.4.2 協方差函數 21 3.4.3 參數估计 22 3.4.4 陪層概似 22 3.4.5 未觀測點的預測 23 3.5 長短期記憶 (Long Short-Term Memory, LSTM) 23 3.5.1 模型假设 23 3.5.2 地理嵌入層 (Geographical Inflow Layer) 25 3.6 Transformer 網路 (Transformer Network) 27 3.6.1 模型架構 28 3.7 空間平滑項 30 3.7.1 空間平滑的數學定義 30 3.7.2 廣義加性模型 (GAM) 應用於空間平滑 31 3.7.3 平滑樣條函數 (Spline Function) 31 3.7.4 GAM 空間平滑計算流程 33 3.8 CNN 特徵擷取層 33 3.9 Softplus 函數修正 34 3.10 詳估指標 35 3.10.1 均方誤差(Mean Squared Error, MSE) 35 3.10.2 平均絕對誤差(Mean Absolute Error, MAE) 36 第四章 資料介紹 37 4.1 資料來源與範圍 37 4.1.1 測站資料處理與篩選流程 38 4.1.2 有效測站統計與分佈 38 4.2 探索性資料分析 40 第五章 研究結果 47 5.1 時空克里金 47 5.1.1 時空半變異函數圖 47 5.1.1.1 補值結果比較 51 5.2 預測模型初步比較 52 5.2.1 模型的自注意力機制與縣市數據切割 54 5.2.2 縣市數據切割與模型評估 54 5.2.3 時序模型比較 55 5.2.4 基準模型選擇與進一步比較 56 5.3 負值修正 60 5.4 Overfitting 與模型穩定性檢測 65 5.5 不同模型的穩健性比較 67 5.6 STformer 預測績效之城市排序分析 70 第六章 結論 73 第七章 討論 75 參考文獻 79 | - |
| dc.language.iso | zh_TW | - |
| dc.subject | CNN | zh_TW |
| dc.subject | 時空克里金法 | zh_TW |
| dc.subject | Transformer | zh_TW |
| dc.subject | 空間平滑項 | zh_TW |
| dc.subject | Softplus函數 | zh_TW |
| dc.subject | 降雨預測 | zh_TW |
| dc.subject | 資料補值 | zh_TW |
| dc.subject | 時空克里金法 | zh_TW |
| dc.subject | Transformer | zh_TW |
| dc.subject | 空間平滑項 | zh_TW |
| dc.subject | CNN | zh_TW |
| dc.subject | Softplus函數 | zh_TW |
| dc.subject | 降雨預測 | zh_TW |
| dc.subject | 資料補值 | zh_TW |
| dc.subject | Softplus Function | en |
| dc.subject | Spatial Smoothing | en |
| dc.subject | CNN | en |
| dc.subject | Rainfall Forecasting | en |
| dc.subject | Spatial-Temporal Kriging | en |
| dc.subject | Transformer | en |
| dc.subject | Spatial Smoothing | en |
| dc.subject | CNN | en |
| dc.subject | Data Imputation | en |
| dc.subject | Softplus Function | en |
| dc.subject | Rainfall Forecasting | en |
| dc.subject | Data Imputation | en |
| dc.subject | Spatial-Temporal Kriging | en |
| dc.subject | Transformer | en |
| dc.title | 結合時空克里金與Transformer神經網路架構於臺灣時降雨量預測模型之建構 | zh_TW |
| dc.title | Integrating Spatial-Temporal Kriging with Transformer Network for Enhancing Rainfall Prediction in Taiwan | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 113-2 | - |
| dc.description.degree | 碩士 | - |
| dc.contributor.oralexamcommittee | 薛慧敏;陳錦華 | zh_TW |
| dc.contributor.oralexamcommittee | Huey-Miin Hsueh;Jin-Hua Chen | en |
| dc.subject.keyword | 時空克里金法,Transformer,空間平滑項,CNN,Softplus函數,降雨預測,資料補值, | zh_TW |
| dc.subject.keyword | Spatial-Temporal Kriging,Transformer,Spatial Smoothing,CNN,Softplus Function,Rainfall Forecasting,Data Imputation, | en |
| dc.relation.page | 82 | - |
| dc.identifier.doi | 10.6342/NTU202501427 | - |
| dc.rights.note | 同意授權(全球公開) | - |
| dc.date.accepted | 2025-07-10 | - |
| dc.contributor.author-college | 共同教育中心 | - |
| dc.contributor.author-dept | 統計碩士學位學程 | - |
| dc.date.embargo-lift | 2030-06-30 | - |
| 顯示於系所單位: | 統計碩士學位學程 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-113-2.pdf 此日期後於網路公開 2030-06-30 | 10.27 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
