Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 環境工程學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/97941
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor闕蓓德zh_TW
dc.contributor.advisorPei-Te Chiuehen
dc.contributor.author洪鈺珊zh_TW
dc.contributor.authorYu-Shan Hongen
dc.date.accessioned2025-07-23T16:11:07Z-
dc.date.available2025-07-24-
dc.date.copyright2025-07-23-
dc.date.issued2025-
dc.date.submitted2025-07-10-
dc.identifier.citationAhmed, T., Zounemat-Kermani, M., & Scholz, M. (2020). Climate change, water quality and water-related challenges: a review with focus on Pakistan. International journal of environmental research and public health, 17(22), 8518.
Akhoundi, A., & Nazif, S. (2020). Life-cycle assessment of tertiary treatment technologies to treat secondary municipal wastewater for reuse in agricultural irrigation, artificial recharge of groundwater, and industrial usages. Journal of Environmental Engineering, 146(6), 04020031.
Akhtar, N., Ishak, M. I. S., Ahmad, M. I., Umar, K., Md Yusuff, M. S., Anees, M. T., ... & Ali Almanasir, Y. K. (2021). Modification of the water quality index (WQI) process for simple calculation using the multi-criteria decision-making (MCDM) method: a review. Water, 13(7), 905.
Alihosseini, S. H., Torabian, A., & Semiromi, F. B. (2020). Evaluation of treated municipal wastewater effluent for agricultural irrigation purposes using the fuzzy effluent quality index (FEQI). Water Supply, 20(1), 148-156.
Amores, M. J., Meneses, M., Pasqualino, J., Antón, A., & Castells, F. (2013). Environmental assessment of urban water cycle on Mediterranean conditions by LCA approach. Journal of cleaner production, 43, 84-92.
Ayers, R. S., & Westcot, D. W. (1985). Water quality for agriculture (Vol. 29, p. 174). Rome: Food and agriculture organization of the United Nations.
Barzegar, Y., Gorelova, I., Bellini, F., & D’Ascenzo, F. (2023). Drinking water quality assessment using a fuzzy inference system method: a case study of Rome (Italy). International journal of environmental research and public health, 20(15), 6522.
Batarseh, M., Imreizeeq, E., Tilev, S., Al Alaween, M., Suleiman, W., Al Remeithi, A. M., ... & Al Alawneh, M. (2021). Assessment of groundwater quality for irrigation in the arid regions using irrigation water quality index (IWQI) and GIS-Zoning maps: Case study from Abu Dhabi Emirate, UAE. Groundwater for Sustainable Development, 14, 100611.
Bayart, J. B., Worbe, S., Grimaud, J., & Aoustin, E. (2014). The Water Impact Index: a simplified single-indicator approach for water footprinting. The International Journal of Life Cycle Assessment, 19, 1336-1344.
Berger, M., Pfister, S., & Motoshita, M. (2016). Water footprinting in life cycle assessment: How to count the drops and assess the impacts?. Special Types of Life Cycle Assessment, 73-114.
Boehlert, B., Strzepek, K. M., Chapra, S. C., Fant, C., Gebretsadik, Y., Lickley, M., ... & Martinich, J. (2015). Climate change impacts and greenhouse gas mitigation effects on US water quality. Journal of Advances in Modeling Earth Systems, 7(3), 1326-1338.
Boulay, A. M., Bare, J., Benini, L., Berger, M., Lathuillière, M. J., Manzardo, A., ... & Pfister, S. (2018). The WULCA consensus characterization model for water scarcity footprints: assessing impacts of water consumption based on available water remaining (AWARE). The International Journal of Life Cycle Assessment, 23, 368-378.
Boulay, A. M., Bulle, C., Bayart, J. B., Deschênes, L., & Margni, M. (2011). Regional characterization of freshwater use in LCA: modeling direct impacts on human health. Environmental science & technology, 45(20), 8948-8957.
Boulay, A. M., Bare, J., Benini, L., Berger, M., Lathuillière, M. J., Manzardo, A., ... & Pfister, S. (2018). The WULCA consensus characterization model for water scarcity footprints: assessing impacts of water consumption based on available water remaining (AWARE). The International Journal of Life Cycle Assessment, 23, 368-378.
Boulay, A. M., Bayart, J. B., Bulle, C., Franceschini, H., Motoshita, M., Muñoz, I., ... & Margni, M. (2015). Analysis of water use impact assessment methods (part B): applicability for water footprinting and decision making with a laundry case study. The International Journal of Life Cycle Assessment, 20, 865-879.
Boulay, A. M., Motoshita, M., Pfister, S., Bulle, C., Muñoz, I., Franceschini, H., & Margni, M. (2015). Analysis of water use impact assessment methods (part A): evaluation of modeling choices based on a quantitative comparison of scarcity and human health indicators. The international journal of life cycle assessment, 20, 139-160.
Canaj, K., Mehmeti, A., Morrone, D., Toma, P., & Todorović, M. (2021). Life cycle-based evaluation of environmental impacts and external costs of treated wastewater reuse for irrigation: A case study in southern Italy. Journal of Cleaner Production, 293, 126142.
Chang, C. H., Cai, L. Y., Lin, T. F., Chung, C. L., Van der Linden, L., & Burch, M. (2015). Assessment of the impacts of climate change on the water quality of a small deep reservoir in a humid-subtropical climatic region. Water, 7(4), 1687-1711.
Chaudhary, J. K. (2019). Estimation of groundwater contamination using fuzzy logic: a case study of Haridwar, India. Groundwater for Sustainable Development, 8, 644-653.
Cheng, H. H., Yu, W. S., Tseng, S. C., Wu, Y. J., Hsieh, C. L., Lin, S. S., ... & Whang, L. M. (2023). Reclaimed water in Taiwan: current status and future prospects. Sustainable Environment Research, 33(1), 16.
Chhabra, R. (2021). Irrigation water: Quality criteria. Salt-affected soils and marginal waters: global perspectives and sustainable management, 431-486.
Chidiac, S., El Najjar, P., Ouaini, N., El Rayess, Y., & El Azzi, D. (2023). A comprehensive review of water quality indices (WQIs): history, models, attempts and perspectives. Reviews in Environmental Science and Bio/Technology, 22(2), 349-395.
Corominas, L., Byrne, D. M., Guest, J. S., Hospido, A., Roux, P., Shaw, A., & Short, M. D. (2020). The application of life cycle assessment (LCA) to wastewater treatment: A best practice guide and critical review. Water Research, 184, 116058.
Delpla, I., Jung, A. V., Baures, E., Clement, M., & Thomas, O. (2009). Impacts of climate change on surface water quality in relation to drinking water production. Environment international, 35(8), 1225-1233.
Dhaoui, O., Agoubi, B., Antunes, I. M., Tlig, L., & Kharroubi, A. (2023). Groundwater quality for irrigation in an arid region—application of fuzzy logic techniques. Environmental Science and Pollution Research, 30(11), 29773-29789.
Gharibi, H., Mahvi, A. H., Nabizadeh, R., Arabalibeik, H., Yunesian, M., & Sowlat, M. H. (2012). A novel approach in water quality assessment based on fuzzy logic. Journal of Environmental Management, 112, 87-95.
Godo-Pla, L., Rodríguez, J. J., Suquet, J., Emiliano, P., Valero, F., Poch, M., & Monclús, H. (2021). Control of primary disinfection in a drinking water treatment plant based on a fuzzy inference system. Process Safety and Environmental Protection, 145, 63-70.
Hajibabaei, M., Nazif, S., & Sereshgi, F. T. (2018). Life cycle assessment of pipes and piping process in drinking water distribution networks to reduce environmental impact. Sustainable cities and society, 43, 538-549.
He, C., Liu, Z., Wu, J., Pan, X., Fang, Z., Li, J., & Bryan, B. A. (2021). Future global urban water scarcity and potential solutions. Nature communications, 12(1), 4667.
Hoekstra, A. Y., & Hung, P. Q. (2003, December). Virtual water trade. In Proceedings of the international expert meeting on virtual water trade (Vol. 12, pp. 1-244).
Hoekstra, A., Chapagain, A. K., Aldaya, M. M., & Mekonnen, M. M. (2012). The water footprint assessment manual: Setting the global standard. Routledge.
Hsien, C., Low, J. S. C., Fuchen, S. C., & Han, T. W. (2019). Life cycle assessment of water supply in Singapore—A water-scarce urban city with multiple water sources. Resources, Conservation and Recycling, 151, 104476.
Hughes, J., Cowper-Heas, K., Olesson, E., Bell, R., & Stroombergen, A. (2021). Impacts and implications of climate change on wastewater systems: A New Zealand perspective. Climate Risk Management, 31, 100262.
Huijbregts, M. A., Steinmann, Z. J., Elshout, P. M., Stam, G., Verones, F., Vieira, M., ... & Van Zelm, R. (2017). ReCiPe2016: a harmonised life cycle impact assessment method at midpoint and endpoint level. The International Journal of Life Cycle Assessment, 22, 138-147.
Islam, M. S., & Mostafa, M. G. (2022). Development of an integrated irrigation water quality index (IIWQIndex) model. Water Supply, 22(2), 2322-2337.
ISO, I. (2014). 14046: 2014. Environmental Management—Water Footprint—Principles, Requirements and Guidelines.
Jamshidzadeh, Z., & Tavangari Barzi, M. (2020). Wastewater quality index (WWQI) as an assessment tool of treated wastewater quality for agriculture: a case of North Wastewater Treatment Plant effluent of Isfahan. Environmental Science and Pollution Research, 27, 7366-7378.
Kounina, A., Margni, M., Bayart, J. B., Boulay, A. M., Berger, M., Bulle, C., ... & Humbert, S. (2013). Review of methods addressing freshwater use in life cycle inventory and impact assessment. The International Journal of Life Cycle Assessment, 18, 707-721.
Lane, J. L., De Haas, D. W., & Lant, P. A. (2015). The diverse environmental burden of city-scale urban water systems. Water Research, 81, 398-415.
Leao, S., Roux, P., Nunez, M., Loiseau, E., Junqua, G., Sferratore, A., ... & Rosenbaum, R. K. (2018). A worldwide-regionalised water supply mix (WSmix) for life cycle inventory of water use. Journal of Cleaner Production, 172, 302-313.
Lee, T. Y., Lai, Y. P., Teng, T. Y., & Chiu, C. C. (2024). Impact Assessment of Climate Change on Water Supply to Hsinchu Science Park in Taiwan. Water, 16(12), 1746.
Lepawsky, J. (2024). Climate change induced water stress and future semiconductor supply chain risk. Iscience, 27(2).
Lermontov, A., Yokoyama, L., Lermontov, M., & Machado, M. A. S. (2009). River quality analysis using fuzzy water quality index: Ribeira do Iguape river watershed, Brazil. Ecological Indicators, 9(6), 1188-1197.
Liu, J., Yang, H., Gosling, S. N., Kummu, M., Flörke, M., Pfister, S., ... & Oki, T. (2017). Water scarcity assessments in the past, present, and future. Earth's future, 5(6), 545-559.
Loganathan, S., & Sathiyamoorthy, M. (2024). Groundwater quality assessment for drinking, irrigation purposes and fuzzy logic-based water quality index for industrial suitability in Walajapet taluk, Ranipet district, Tamil Nadu, India. AQUA—Water Infrastructure, Ecosystems and Society, 73(8), 1766-1787.
Mankikar, T. Y. (2021). Comparison of indices for scaling and corrosion tendency of groundwater: Case study of unconfined aquifer from Mahoba District, UP State. Applied Water Science, 11(6), 94.
Meron, N., Blass, V., & Thoma, G. (2020). A national-level LCA of a water supply system in a Mediterranean semi-arid climate—Israel as a case study. The International Journal of Life Cycle Assessment, 25, 1133-1144.
Mikosch, N., Berger, M., & Finkbeiner, M. (2021). Addressing water quality in water footprinting: current status, methods and limitations. The International Journal of Life Cycle Assessment, 26, 157-174.
Misaghi, F., Delgosha, F., Razzaghmanesh, M., & Myers, B. (2017). Introducing a water quality index for assessing water for irrigation purposes: A case study of the Ghezel Ozan River. Science of the Total Environment, 589, 107-116.
Mohebbi, M. R., Saeedi, R., Montazeri, A., Vaghefi, K. A., Labbafi, S., Oktaie, S., ... & Mohagheghian, A. (2013). Assessment of water quality in groundwater resources of Iran using a modified drinking water quality index (DWQI). Ecological indicators, 30, 28-34.
Molinos-Senante, M., & Sala-Garrido, R. (2017). Energy intensity of treating drinking water: Understanding the influence of factors. Applied Energy, 202, 275-281.
Nguyen, H. H., Recknagel, F., Meyer, W., Frizenschaf, J., & Shrestha, M. K. (2017). Modelling the impacts of altered management practices, land use and climate changes on the water quality of the Millbrook catchment-reservoir system in South Australia. Journal of Environmental Management, 202, 1-11.
Nsabimana, A., & Li, P. (2023). Hydrogeochemical characterization and appraisal of groundwater quality for industrial purpose using a novel industrial water quality index (IndWQI) in the Guanzhong Basin, China. Geochemistry, 83(1), 125922.
Parmesan, C., Morecroft, M. D., & Trisurat, Y. (2022). Climate change 2022: Impacts, adaptation and vulnerability (Doctoral dissertation, GIEC).
Pasqualino, J. C., Meneses, M., & Castells, F. (2011). Life cycle assessment of urban wastewater reclamation and reuse alternatives. Journal of Industrial Ecology, 15(1), 49-63.
Pfister, S., Koehler, A., & Hellweg, S. (2009). Assessing the environmental impacts of freshwater consumption in LCA. Environmental science & technology, 43(11), 4098-4104.
Pierrat, É., Laurent, A., Dorber, M., Rygaard, M., Verones, F., & Hauschild, M. (2023). Advancing water footprint assessments: Combining the impacts of water pollution and scarcity. Science of the Total Environment, 870, 161910.
Pintilie, L., Torres, C. M., Teodosiu, C., & Castells, F. (2016). Urban wastewater reclamation for industrial reuse: An LCA case study. Journal of cleaner production, 139, 1-14.
Pradinaud, C., Núñez, M., Roux, P., Junqua, G., & Rosenbaum, R. K. (2019). The issue of considering water quality in life cycle assessment of water use. The International Journal of Life Cycle Assessment, 24, 590-603.
Prapanchan, V. N., Subramani, T., & Karunanidhi, D. (2024). GIS and fuzzy analytical hierarchy process to delineate groundwater potential zones in southern parts of India. Groundwater for Sustainable Development, 25, 101110.
Prézélus, F., Tiruta-Barna, L., Guigui, C., & Remigy, J. C. (2021). A generic process modelling–LCA approach for UF membrane fabrication: Application to cellulose acetate membranes. Journal of Membrane Science, 618, 118594.
Razman, K. K., Hanafiah, M. M., & Mohammad, A. W. (2022). An overview of LCA applied to various membrane technologies: Progress, challenges, and harmonization. Environmental Technology & Innovation, 27, 102803.ISO 690
Ribera, G., Clarens, F., Martínez-Lladó, X., Jubany, I., Martí, V., & Rovira, M. (2014). Life cycle and human health risk assessments as tools for decision making in the design and implementation of nanofiltration in drinking water treatment plants. Science of the Total Environment, 466, 377-386.
Rodríguez-Chueca, J., Bañuelos, A. C., & Rodríguez, J. P. (2024). Life cycle assessment to evaluate the integral water cycle in industrial supply: A real case study. Science of The Total Environment, 931, 172891.
Santana, M. V., Zhang, Q., & Mihelcic, J. R. (2014). Influence of water quality on the embodied energy of drinking water treatment. Environmental science & technology, 48(5), 3084-3091.
Sarwar, S., Ahmmed, I., Mustari, S., & Shaibur, M. R. (2020). Use of weighted arithmetic water quality index (WAWQI) to determine the suitability of groundwater of Chaugachcha and Manirampur Upazila, Jashore, Bangladesh. Biol. Res, 2(2), 22-30.
Selvaraj, A., Saravanan, S., & Jennifer, J. J. (2020). Mamdani fuzzy based decision support system for prediction of groundwater quality: an application of soft computing in water resources. Environmental Science and Pollution Research, 27, 25535-25552.
Shah, M., Patel, H., Viramgama, P., Varanava, D., & Maheshwari, D. (2021). Characterization and assessment of groundwater aquifers from Bakreshwar and Tantloi geothermal fields for its industrial applications. Groundwater for Sustainable Development, 12, 100535.
Shi, J., Wang, L., Yang, Y., & Huang, T. (2022). A case study of thermal and chemical stratification in a drinking water reservoir. Science of the Total Environment, 848, 157787.
Soroush, F., Mousavi, S. F., & Gharechahi, A. (2011). A fuzzy industrial water quality index: case study of Zayandehrud river system.
Spandana, M. P., Suresh, K. R., & Prathima, B. (2013). Developing an irrigation water quality index for Vrishabavathi command area. Int. J. Eng. Res. Technol, 2, 821-830.
Stang, S., Wang, H., Gardner, K. H., & Mo, W. (2018). Influences of water quality and climate on the water-energy nexus: A spatial comparison of two water systems. Journal of environmental management, 218, 613-621.
Sutadian, A. D., Muttil, N., Yilmaz, A. G., & Perera, B. J. C. (2016). Development of river water quality indices—a review. Environmental monitoring and assessment, 188, 1-29.
Tong, L., Liu, X., Liu, X., Yuan, Z., & Zhang, Q. (2013). Life cycle assessment of water reuse systems in an industrial park. Journal of environmental management, 129, 471-478.
Tsai, S. C., Lee, S. H., & Chu, T. J. (2024). On the tailor-made water governance mechanism for Taiwan's semiconductor industry. Water Resources and Industry, 31, 100252.
Uddin, M. G., Nash, S., & Olbert, A. I. (2021). A review of water quality index models and their use for assessing surface water quality. Ecological Indicators, 122, 107218.
Uslu, A., Dugan, S. T., El Hmaidi, A., & Muhammetoglu, A. (2024). Comparative evaluation of spatiotemporal variations of surface water quality using water quality indices and GIS. Earth Science Informatics, 1-16.
Vadiati, M., Asghari-Moghaddam, A., Nakhaei, M., Adamowski, J., & Akbarzadeh, A. H. (2016). A fuzzy-logic based decision-making approach for identification of groundwater quality based on groundwater quality indices. Journal of Environmental Management, 184, 255-270.
Vahidi, E., Jin, E., Das, M., Singh, M., & Zhao, F. (2016). Environmental life cycle analysis of pipe materials for sewer systems. Sustainable Cities and Society, 27, 167-174.
Van Vliet, M. T., Flörke, M., & Wada, Y. (2017). Quality matters for water scarcity. Nature Geoscience, 10(11), 800-802.
Van Vliet, M. T., Thorslund, J., Strokal, M., Hofstra, N., Flörke, M., Ehalt Macedo, H., ... & Mosley, L. M. (2023). Global river water quality under climate change and hydroclimatic extremes. Nature Reviews Earth & Environment, 4(10), 687-702.
von Eiff, D., Yeo, J., An, A. K., & Chopra, S. S. (2023). Comparative economic and life cycle analysis of future water supply mix scenarios for Hong Kong–a water scarce city. Journal of Environmental Management, 325, 116370.
Zeng, Z., Liu, J., & Savenije, H. H. (2013). A simple approach to assess water scarcity integrating water quantity and quality. Ecological indicators, 34, 441-449.
Zhang, R., Wang, Q., Shen, H., Yang, Y., Liu, P., & Dong, Y. (2024). Environmental benefits of macroalgae products: A case study of agar based on life cycle assessment. Algal Research, 78, 103384.
丁澈士(2021)。地下水人工補注與伏流水開發之回顧與前瞻。土木水利,48(6),46-58。
中華經濟研究院 (1991) 台灣地區工業用水需求分析及其經濟價值分析,計畫編號:80:070082,經濟部水資源統一規劃委員會。
台灣自來水公司第五區管理處(2022年8月12日)。自來水處理設備觀摩區。https://www.water.gov.tw/dist5/Subject/Detail/69213?nodeId=7952
林佳君(2020) 區域性水資源耗用衝擊特徵模式之建立,國立臺灣大學 環境工程學研究所碩士論文。
科技部、中央研究院環境變遷研究中心、交通部中央氣象局、 臺灣師範大學地球科學系、國家災害防救科技中心(2021)。IPCC 氣候變遷第六次評估報告之科學重點摘錄 與臺灣氣候變遷評析更新報告。
財團法人成大研究發展基金會(2022)。氣候變遷對重要供水水系水源水量影響分析。經濟部水利署水利規劃試驗所。
國立成功大學國際水質研究中心(2017)。106年南區水庫水質永續管理計畫(EPA-106-U101-03-A111)。行政院環境保護署。
陳昭安、李明營、劉子明、許晃雄、羅資婷、陳永明、童裕翔、吳芊瑩、洪浩哲、鄭兆尊、林思穎(2023)。 2023臺灣氣候變遷分析系列報告:2020-2021 極端乾旱事件與未來推估。國家災害防救科技中心。
楊偉甫. (2010). 台灣地區水資源利用現況與未來發展問題. 台灣水環境再生協會, 用水合理化與新生水水源開發論壇.
楊瑞芳、林信忠、楊昭端(2022)。極端氣候與水處理用藥-以烏山頭、南化淨水場為例。自來水會刊,41(1),1–7。
經濟部(2018)。前瞻基礎建設計畫--水環境建設 曾文南化聯通管工程計畫 (核定本)。經濟部。
經濟部水利署(2021)。臺灣各區水資源經理基本計畫 (核定本)。經濟部。
經濟部水利署(2022)。伏流水開發工程計畫第二期(核定本)。經濟部。
經濟部水利署(2022)。備援調度幹管工程計畫(第1次修正)(核定本)。經濟部。
經濟部水利署(2022)。臺南海水淡化廠工程計畫(第一期)(核定本)。經濟部。
經濟部水利署(2024)。再生水媒合資訊平台。經濟部。https://rwrisp.wra.gov.tw/wraInfo.aspx
劉維民、洪志雄、劉奇峯(2016)。鋼骨繞線式集水管之伏流水取水工程探討。自來水會刊,35(2),19-26。
蔡文魁、林高玄、王國堅(2014)。高雄與臺南地區供水調配管理及策進作為。自來水會刊,33(3),14-21。
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/97941-
dc.description.abstract在氣候變遷與水資源壓力日益升高的背景下,單一傳統自來水供水系統逐漸無法因應極端氣候所帶來的水量與水質衝擊,發展多元供水系統已成為全球趨勢。臺灣受限於地理與氣候條件,水資源調配困難,缺水風險日益嚴峻,促使政府積極推動再生水、海水淡化、聯通管等多元供水方案。然而,現行評估方法多著重於水量與建設成本,對於不同供水系統在水質提升與實質環境與社會效益之差異仍缺乏全面性探討。本研究以臺南地區為研究對象,應用生命週期評估結合模糊邏輯與水質指標,量化再生水、自來水、海淡水等供水系統在環境衝擊、水可用性與經濟效益上的表現。
研究首先以供應至用戶端每立方公尺水作為功能單位進行生命週期評估,分析系統在全球暖化、水消耗等18項衝擊指標下之環境影響,並進行情境分析以探討能源結構與管材使用年限對衝擊結果之影響。其次,結合Water Quality index (WQI)與模糊推論系統,依據農業、工業與民生三大用水需求,建構不同用途的水質功能性指標,進而推導水資源可及性剝奪指標(Water Availability Deprivation Index, WADI),以彌補傳統水可用性及水稀缺指標未考慮水質之限制。最後,以缺水附加價值為基礎,量化水質提升對應之經濟效益,評估各供水系統在不同用途下的價值創造潛力。
研究結果顯示,再生水每立方公尺產水之全球暖化潛勢達1.95 kg CO₂ eq,約為自來水的10倍,主因為其高能耗與高處理強度。海淡水於18項指標中有9項環境衝擊最高,全球暖化潛勢高達3.64 kg CO₂ eq,為各系統之最。聯通管則因為管路建設耗用大量鋼材,在8項衝擊項目上為各系統中最高。自來水則受建設影響顯著,顯示傳統系統雖能耗較低,惟其基礎設施仍為重要衝擊來源。在水質功能性與可用性提升方面,WADI指標結果顯示再生水(WADI = -0.49)具最高水可用性改善幅度,反映其由低品質放流水提升至高適用性產水之能力。海淡水與自來水亦呈現可觀的水質改善效益,WADI分別為 -0.14與 -0.25。經濟效益評估顯示,再生水在民生與工業用途之每立方公尺價值提升分別達7,490元與7,395元,顯示其在水質提升對應價值創造上具高度潛力。
本研究提出結合水質功能性、水可用性與環境衝擊之整合性評估方法,建立WADI與價值提升估算機制,填補現有LCA方法中對水質應用價值考量之不足,提供決策者於供水政策、資源配置與永續管理上具體的量化依據。研究成果亦強調非傳統水源在水資源管理中之潛在角色,為未來建構具韌性與效益兼具之多元供水體系提供重要參考。
zh_TW
dc.description.abstractUnder the growing pressure of climate change and global water scarcity, traditional single-source tap water systems have become increasingly vulnerable to disruptions in water quantity and quality caused by extreme weather events. The development of multi-supply water systems—such as reclaimed water, seawater desalination, and interconnecting pipeline—has emerged as a global trend. In Taiwan, geographic and climatic constraints have made water resource management particularly challenging, leading to severe shortages in recent years. Although government initiatives promote non-conventional water sources, current assessments mainly emphasize water quantity and construction costs, lacking comprehensive evaluations of water quality improvements and the associated environmental and socioeconomic benefits.
This study focuses on Tainan City and employs Life Cycle Assessment integrated with fuzzy logic and water quality indicators to evaluate the environmental impacts, water availability, and economic benefits of reclaimed water, tap water, and desalinated water systems. Life cycle models were established using real operational data to quantify environmental impacts per cubic meter of water delivered, across 18 categories including global warming potential, water consumption. Scenario analyses were conducted to assess the influence of energy structure and infrastructure lifespan assumptions. Secondly, fuzzy water quality indices (FWQI) were developed for agricultural, industrial, and domestic uses using water quality parameters and fuzzy inference. These were aggregated into a Water Availability Deprivation Index (WADI) to capture water quality-related availability improvements often overlooked by conventional indicators. Finally, the economic value of water quality improvement was estimated using marginal value loss under scarcity, providing a monetary perspective on supply system functionality.
Results show that reclaimed water emits 1.95 kg CO₂ eq per cubic meter—about ten times higher than tap water—due to intensive energy use. Desalinated water showed the highest impact in 9 of 18 categories, with global warming potential reaching 3.64 kg CO₂ eq. The interconnecting pipeline system demonstrates the highest impacts in several categories due to its heavy consumption of steel for pipeline construction. Tap water had lower emissions but significant infrastructure-related impacts. In terms of functionality, WADI values for reclaimed water (-0.49), tap water (-0.25), and desalinated water (-0.14) indicate reclaimed water provides the most substantial usability improvement, transforming low-quality effluent into highly functional water. The other systems also showed notable gains. Economic analysis revealed reclaimed water can generate NT$8,585 and NT$6,131 per cubic meter for domestic and industrial uses, respectively, underscoring its potential for value creation.
This study proposes an integrated assessment framework combining water quality, availability, and environmental impact, incorporating WADI and economic valuation to address key gaps in conventional LCA. The results provide quantitative evidence for more sustainable, functionality-driven water supply planning and highlight the vital role of non-traditional sources in resilient water management.
en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2025-07-23T16:11:07Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2025-07-23T16:11:07Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontents摘要 iii
Abstract v
目次 vii
圖次 x
表次 xi
第1章 緒論 1
1.1. 研究背景與動機 1
1.2. 研究目的 3
1.3. 研究流程與架構 4
第2章 文獻回顧與探討 6
2.1. 臺灣供水現況 6
2.1.1. 臺灣再生水發展現況 7
2.1.2. 臺灣水資源困境 8
2.1.3. 臺灣多元供水系統 10
2.2. 生命週期評估 12
2.2.1. ReCiPe 2016 Method 13
2.3. 水質評估 14
2.3.1. 水質指標 14
2.3.2. 模糊邏輯 17
2.3.3. 氣候變遷對於水質之影響 17
2.4. 生命週期衝擊評估於水處理之應用 20
2.4.1. 再生水環境衝擊評估文獻回顧 20
2.4.2. 多元供水環境衝擊評估文獻回顧 22
2.5. 水資源可用性指標 23
第3章 研究方法 29
3.1. 評估流程建立 29
3.2. 研究案例介紹 30
3.3. 現有供水系統盤查 31
3.3.1. 再生水廠 33
3.3.2. 淨水廠 35
3.4. 多元供水系統盤查 36
3.5. 情境分析 38
3.6. 未來情境分析 39
3.7. 水可用性剝奪指標建立 43
3.7.1. 農業用水 46
3.7.2. 民生用水 47
3.7.3. 工業用水 48
3.7.4. 水可用性剝奪指標 51
3.7.5. 經濟效益評估 53
第4章 研究結果 54
4.1. 現有供水系統環境衝擊評估 54
4.1.1. 再生水 55
4.1.2. 自來水 57
4.2. 多元供水系統環境衝擊評估 60
4.2.1. 海淡水 62
4.2.2. 伏流水 64
4.2.3. 聯通管 66
4.3. 情境分析結果 68
4.4. 氣候變遷情境對自來水供水衝擊預測 72
4.5. 水可用性剝奪指標結果 77
4.5.1. 模糊水質指標建立 77
4.5.2. 多元供水系統之水可用性剝奪結果 79
第5章 結論與建議 83
5.1. 研究結論 83
5.2. 研究限制 85
5.3. 建議 87
第6章 參考文獻 89
第7章 附錄 99
-
dc.language.isozh_TW-
dc.subject水質zh_TW
dc.subject再生水zh_TW
dc.subject多元供水系統zh_TW
dc.subject模糊邏輯zh_TW
dc.subject再生水zh_TW
dc.subject生命週期評估zh_TW
dc.subject自來水zh_TW
dc.subject水質指標zh_TW
dc.subject水質zh_TW
dc.subject多元供水系統zh_TW
dc.subject模糊邏輯zh_TW
dc.subject生命週期評估zh_TW
dc.subject水質指標zh_TW
dc.subject自來水zh_TW
dc.subjectWater quality indexen
dc.subjectLife cycle assessmenten
dc.subjectFuzzy logicen
dc.subjectWater qualityen
dc.subjectMulti-supply water systemen
dc.subjectReclaimed wateren
dc.subjectTap wateren
dc.subjectWater quality indexen
dc.subjectLife cycle assessmenten
dc.subjectFuzzy logicen
dc.subjectWater qualityen
dc.subjectMulti-supply water systemen
dc.subjectReclaimed wateren
dc.subjectTap wateren
dc.title區域性多元供水系統之環境影響及效益評析zh_TW
dc.titleEnvironmental Impacts and Benefit Assessment of Regional Multi-Supply Water Systemen
dc.typeThesis-
dc.date.schoolyear113-2-
dc.description.degree碩士-
dc.contributor.oralexamcommittee駱尚廉;林子羿zh_TW
dc.contributor.oralexamcommitteeShang-Lien Lo;Zih-Ee Linen
dc.subject.keyword生命週期評估,模糊邏輯,多元供水系統,再生水,水質,自來水,水質指標,zh_TW
dc.subject.keywordLife cycle assessment,Fuzzy logic,Water quality,Multi-supply water system,Reclaimed water,Tap water,Water quality index,en
dc.relation.page109-
dc.identifier.doi10.6342/NTU202501666-
dc.rights.note同意授權(限校園內公開)-
dc.date.accepted2025-07-14-
dc.contributor.author-college工學院-
dc.contributor.author-dept環境工程學研究所-
dc.date.embargo-lift2030-07-08-
顯示於系所單位:環境工程學研究所

文件中的檔案:
檔案 大小格式 
ntu-113-2.pdf
  未授權公開取用
2.91 MBAdobe PDF檢視/開啟
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved