Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 理學院
  3. 化學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/97935
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor劉如熹zh_TW
dc.contributor.advisorRu-Shi Liuen
dc.contributor.author史利瓦斯塔瓦 帕維特拉zh_TW
dc.contributor.authorPAVITRA SRIVASTAVAen
dc.date.accessioned2025-07-23T16:09:47Z-
dc.date.available2025-07-24-
dc.date.copyright2025-07-23-
dc.date.issued2025-
dc.date.submitted2025-07-01-
dc.identifier.citation(1) Mills, A. A. Early Voltaic Batteries: an Evaluation in Modern Units and Application to the Work of Davy and Faraday. Annals of Sci. 2010, 60, 373–398.
(2) Rogulski, Z.; Czerwiński, A. Cathode Modification in the Leclanché cell. J. Solid State Electrochem. 2003, 7, 118–121.
(3) Winter, M.; Barnett, B.; Xu, K. Before Li-Ion Batteries. Chem. Rev. 2018, 118, 11433–11456.
(4) Faria, R.; Marques, P.; Garcia, R.; Moura, P.; Freire, F.; Delgado, J.; de Almeida, A. T. Primary and Secondary use of Electric Mobility Batteries from a Life Cycle Perspective. J. Power Sources 2014, 262, 169–177.
(5) Mizushima, K.; Wiseman, P. J.; Goodenough, J.B. A New Cathode Material for Batteries of High Energy Density. Mat. Res. Bull. 1980, 15, 783–789.
(6) Yazami, R. A Reversible Graphite Lithium Negative Electrode for Electrochemical Generators. J. Power Sources 1983, 9, 365–371.
(7) Yoshino, A. The Birth of the Lithium-Ion Battery. Angew. Chem. Int. Ed. Engl 2012, 51, 5798–5800.
(8) He, B.; Zheng, H.; Tang, K.; Xi, P.; Li, M.; Wei, L.; Guan, Q. A Comprehensive Review of Lithium-Ion Battery (LIB) Recycling Technologies and Industrial Market Trend Insights. Recycling 2024, 9, 9.
(9) Whittingham, S. Electrointercalation in Transition Metal Disulphides. JCS Chem. Comm. 1974, 2, 328–329.
(10) Whittingham, S. Electrical Energy Storage and Intercalation Chemistry. Science, 1976, 192, 1126–1127.
(11) Nitta, N.; Wu, F.; Lee, J. T.; Yushin, G. Li-Ion Battery Materials: Present and Future. Mater. Today 2015, 18, 252–264.
(12) Zhang, S.; Yang, Z.; Lu, Y.; Xie, W.; Yan, Z.; Chen, J. Insights into Cation Migration and Intermixing in Advanced Cathode Materials for Lithium‐Ion Batteries. Adv. Ener. Mater. 2024, 14, 2402068.
(13) Lin, C.; Li, J.; Yin, Z. W.; Huang, W.; Zhao, Q.; Weng, Q.; Liu, Q.; Sun, J.; Chen, G.; Pan, F. Structural Understanding for High-Voltage Stabilization of Lithium Cobalt Oxide. Adv. Mater. 2024, 36, e2307404.
(14) Liu, J.; Wang, J.; Ni, Y.; Liu, J.; Zhang, Y.; Lu, Y.; Yan, Z.; Zhang, K.; Zhao, Q.; Cheng, F.; Chen, J. Tuning Interphase Chemistry to Stabilize High-Voltage LiCoO2 Cathode Material via Spinel Coating. Angew. Chem. Int. Ed. Engl. 2022, 61, e202207000.
(15) Whittingham, S. Lithium Batteries and Cathode Materials. Chem. Rev. 2004, 104, 4271–4301.
(16) Liu, Z. Synthesis and Characterization of LiNi1-x-yCoxMnyO2 as the Cathode Material for Secondary Lithium Batteries. J. Power Sources 1999, 81, 416–419.
(17) Britala, L.; Marinaro, M.; Kucinskis, G. A Review of the Degradation Mechanisms of NCM Cathodes and Corresponding Mitigation Strategies. J. Energy Stor. 2023, 73, 108875.
(18) Kim, J. H.; Park, K. J.; Kim, S. J.; Yoon, C. S.; Sun, Y. K. A method of increasing the energy density of layered Ni-rich Li[Ni1−2xCoxMnx]O2 cathodes (x = 0.05, 0.1, 0.2). J. Mater. Chem. A 2019, 7, 2694–2701.
(19) Yamanaka, S. Synthesis of Solid-Solutions in a System of LCO-LMO for Cathode Materials of Secondary Lithium Batteries. Chem. Lett. 1997, 26, 725–726.
(20) Zheng, H.; Han, X.; Guo, W.; Lin, L.; Xie, Q.; Liu, P.; He, W.; Wang, L.; Peng, D. L. Recent Developments and Challenges of Li-Rich Mn-based Cathode Materials for High-Energy Lithium-Ion Batteries. Mater. Today Ener. 2020, 18, 100518.
(21) Jacquet, Q.; Iadecola, A.; Saubanere, M.; Li, H.; Berg, E. J.; Rousse, G.; Cabana, J.; Doublet, M. L.; Tarascon, J. M. Charge Transfer Band Gap as an Indicator of Hysteresis in Li-Disordered Rock Salt Cathodes for Li-Ion Batteries. J. Am. Chem. Soc. 2019, 141, 11452–11464.
(22) Goodenough, J.B. Lithium Insertion Into Manganese Spinels. Mat. Res. Bull. 1983, 15, 461–472.
(23) Zhang, T.; Li, D.; Tao, Z.; Chen, J. Understanding Electrode Materials of Rechargeable Lithium Batteries via DFT Calculations. Progress in Nat. Sci. Mater. Int. 2013, 23, 256–272.
(24) Zheng, J.; Xia, R.; Baiju, S.; Sun, Z.; Kaghazchi, P.; Ten Elshof, J. E.; Koster, G.; Huijben, M. Stabilizing Crystal Framework of an Overlithiated Li(1+x)Mn(2)O(4) Cathode by Heterointerfacial Epitaxial Strain for High-Performance Microbatteries. ACS Nano 2023, 17, 25391–25404.
(25) Manthiram, A.; Chemelewski, K.; Lee, E. S. A perspective on the high-voltage LiMn1.5Ni0.5O4 spinel cathode for lithium-ion batteries. Energ. & Environ. Sci. 2014, 7, 1339–1350.
(26) Daniel, C.; Mohanty, D.; Li, J.; Wood, D. L. Cathode Materials Review. AIP Conf. Proceedings 2014, 10, 26–43.
(27) Cheng, H.; Shapter, J. G.; Li, Y.; Gao, G., Recent progress of advanced anode materials of lithium-ion batteries. Journal of Energy Chemistry 2021, 57, 451-468.
(28) Chang, H.; Wu, Y.R.; Han, X.; Yi, T.F. Recent developments in advanced anode materials for lithium-ion batteries. Energy Mater. 2022, 1, 100003.
(29) Didier, C.; Pang, W. K.; Guo, Z.; Schmid, S.; Peterson, V. K., Phase Evolution and Intermittent Disorder in Electrochemically Lithiated Graphite Determined Using in Operando Neutron Diffraction. Chem. Mater. 2020, 32, 2518–2531.
(30) Nam, K. H.; Jeong, S.; Yu, B. C.; Choi, J. H.; Jeon, K. J.; Park, C. M., Li-Compound Anodes: A Classification for High-Performance Li-Ion Battery Anodes. ACS Nano 2022, 16, 13704–13714.
(31) Zhang, X.; Xie, Z.; Zhou, Z., Recent Progress in Protecting Lithium Anodes for Li‐O2 Batteries. ChemElectroChem 2019, 6, 1969–1977.
(32) Aurbach, D.; Talyosef, Y.; Markovsky, B.; Markevich, E.; Zinigrad, E.; Asraf, L.; Gnanaraj, J. S.; Kim, H.J. Design of Electrolyte Solutions for Li and Li-ion Batteries: A Review. Electrochim. Acta 2004, 50, 247–254.
(33) Peled, E. The Electrochemcial Behavior of Alkali and Alkaline Earth Metals in Nonaqeous Battery Systems - The Solid Interphase Model, J. Electrochem. Soc. 1979, 126, 2047.
(34) Zhang, X.; Yang, Y.; Zhou, Z. Towards Practical Lithium-Metal Anodes. Chem. Soc. Rev. 2020, 49, 3040–3071.
(35) Qin, K.; Holguin, K.; Mohammadiroudbari, M.; Huang, J.; Kim, E. Y. S.; Hall, R.; Luo, C. Strategies in Structure and Electrolyte Design for High‐Performance Lithium Metal Batteries. Adv. Funct. Mater. 2021, 31, 2009694.
(36) Kummer, M.; Badillo, J. P.; Schmitz, A.; Bremes, H. G.; Winter, M.; Schulz, C.; Wiggers, H. Silicon/Polyaniline Nanocomposites as Anode Material for Lithium Ion Batteries. J. Electrochem. Soc. 2013, 161, 40–45.
(37) Obrovac, M. N.; Chevrier, V. L. Alloy Negative Electrodes for Li-ion Batteries. Chem. Rev. 2014, 114, 444–502.
(38) S Shen, H.; Wang, Q.; Chen, Z.; Rong, C.; Chao, D. Application and Development of Silicon Anode Binders for Lithium-Ion Batteries. Mater. 2023, 16, 4266.
(39) Gulavani, V.; Kanade, S.; Lokhande, A.; Ottakam Thotiyl, M.; John, B.; Yengantiwar, A. Core Shell Structured Silica/Porous Carbon Composite as an Efficient Anode for Lithium Ion Batteries. Energy Technol. 2024, 12, 2400094.
(40) Peng, M.; Shin, K.; Jiang, L.; Jin, Y.; Zeng, K.; Zhou, X.; Tang, Y. Alloy-Type Anodes for High-Performance Rechargeable Batteries. Angew. Chem. Int. Ed. Engl. 2022, 61, e202206770.
(41) Tsai, P.; Hsu, W.D.; Lin, S.K. Atomistic Structure and Ab Initio Electrochemical Properties of Li4Ti5O12Defect Spinel for Li-Ion Batteries. J. Electrochem. Soc. 2014, 161, 439–444.
(42) Thackeray, M. M.; Amine, K. Li4Ti5O12 spinel anodes. Nat. Energy 2021, 6, 683–683.
(43) Hubble, D.; Brown, D. E.; Zhao, Y.; Fang, C.; Lau, J.; McCloskey, B. D.; Liu, G. Liquid Electrolyte Development for Low-Temperature Lithium-ion Batteries. Energy Environ. Sci. 2022, 15, 550–578.
(44) Woolley, H. M.; Barbosa, N. M. Hybrid Solid Electrolyte-Liquid Electrolyte Systems for (almost) Solid-State Batteries: Why, How, and Where to? J. Mater. Chem. A 2023, 11, 1083–1097.
(45) Liu, Y. K.; Zhao, C. Z.; Du, J.; Zhang, X. Q.; Chen, A. B.; Zhang, Q. Research Progresses of Liquid Electrolytes in Lithium-Ion Batteries. Small 2023, 19, e2205315.
(46) Liu, J.; Bao, Z.; Cui, Y.; Dufek, E. J.; Goodenough, J. B.; Khalifah, P.; Li, Q.; Liaw, B. Y.; Liu, P.; Manthiram, A.; Meng, Y. S.; Subramanian, V. R.; Toney, M. F.; Viswanathan, V. V.; Whittingham, M. S.; Xiao, J.; Xu, W.; Yang, J.; Yang, X.Q.; Zhang, J.G. Pathways for Practical High-Energy Long-Cycling Lithium Metal Batteries. Nat. Energy 2019, 4, 180–186.
(47) Li, X.; Han, X.; Li, G.; Du, J.; Cao, Y.; Gong, H.; Wang, H.; Zhang, Y.; Liu, S.; Zhang, B.; Liu, X.; Khangale, P.; Hildebrandt, D.; Sun, J.; Chen, A. Nonsacrificial Nitrile Additive for Armoring High-Voltage LiNi0.83Co0.07Mn0.1O2 Cathode with Reliable Electrode-Electrolyte Interface toward Durable Battery. Small 2022, 18, e2202989.
(48) Grande, L.; Paillard, E.; Hassoun, J.; Park, J. B.; Lee, Y. J.; Sun, Y. K.; Passerini, S.; Scrosati, B. The Lithium/Air Battery: Still An Emerging System or a Practical Reality? Adv. Mater. 2015, 27, 784–800.
(49) Shen, X.; Liu, H.; Cheng, X.B.; Yan, C.; Huang, J.Q. Beyond Lithium-Ion Batteries: Higher Energy Density Battery Systems Based on Lithium Metal Anodes. Energy Storage Mater. 2018, 12, 161–175.
(50) Armand, M. Issues and Challenges facing Rechargeable Lithium Batteries. Nat. Insigt Rev. 2001, 414, 359–366.
(51) Cheng, X. B.; Zhang, R.; Zhao, C. Z.; Zhang, Q. Toward Safe Lithium Metal Anode in Rechargeable Batteries: A Review. Chem. Rev. 2017, 117, 10403–10473.
(52) Guo, Y.; Li, H.; Zhai, T. Reviving Lithium-Metal Anodes for Next-Generation High-Energy Batteries. Adv. Mater. 2017, 29, 1700007.
(53) Zhang, Z.; Han, W.Q. From Liquid to Solid-State Lithium Metal Batteries: Fundamental Issues and Recent Developments. Nano-Micro Lett. 2024, 16, 24, 1–58.
(54) Zhou, Y.; Wang, P.; Wang, K.; Fang, X.; Li, W.; Nai, J.; Liu, Y.; Wang, Y.; Zou, S.; Yuan, H.; Tao, X.; Luo, J. Developing High‐Performance Anode‐Free Lithium Batteries: Challenges, Strategies, and Opportunities. Adv. Funct. Mater. 2025, 35, 2424022.
(55) Weber, R.; Genovese, M.; Louli, A. J.; Hames, S.; Martin, C.; Hill, I. G.; Dahn, J. R. Long Cycle Life and Dendrite-Free Lithium Morphology in Anode-Free Lithium Pouch Cells Enabled by a Dual-Salt Liquid Electrolyte. Nat. Energy 2019, 4, 683–689.
(56) Nanda, S.; Gupta, A.; Manthiram, A. Anode‐Free Full Cells: A Pathway to High‐Energy Density Lithium‐Metal Batteries. Adv. Energy Mater. 2020, 11, 2000804.
(57) Genovese, M.; Louli, A. J.; Weber, R.; Hames, S.; Dahn, J. R. Measuring the Coulombic Efficiency of Lithium Metal Cycling in Anode-Free Lithium Metal Batteries. J. Electrochem. Soc. 2018, 165, 3321–3325.
(58) Yu, Z.; Wang, H.; Kong, X.; Huang, W.; Tsao, Y.; Mackanic, D. G.; Wang, K.; Wang, X.; Huang, W.; Choudhury, S.; Zheng, Y.; Amanchukwu, C. V.; Hung, S. T.; Ma, Y.; Lomeli, E. G.; Qin, J.; Cui, Y.; Bao, Z. Molecular Design for Electrolyte Solvents Enabling Energy-Dense and Long-Cycling Lithium Metal Batteries. Nat. Energy 2020, 5, 526–533.
(59) Tian, Y.; An, W.; Wei, C.; Jiang, H.; Xiong, S.; Feng, J.; Qian, Y. Recently Advances and Perspectives of Anode-Free Rechargeable Batteries. Nano Energy, 2020, 78, 105344.
(60) Shao, A.; Tang, X.; Zhang, M.; Bai, M.; Ma, Y. Challenges, Strategies, and Prospects of the Anode‐Free Lithium Metal Batteries. Adv. Energy Sustainability Res. 2022, 3, 2100197.
(61) Liu, L.; Wang, J. Overcoming Copper Substrate Thermodynamic Limitations in Anode-Free Lithium Pouch Cells via In Situ Seed Implantation. Nano Lett. 2023, 23, 10251–10258.
(62) Hatzell, K. B. Anode-Less or Anode-Free? ACS Energy Lett. 2023, 8, 4775–4776.
(63) Brown, Z. L.; Jurng, S.; Lucht, B. L. Investigation of the Lithium Solid Electrolyte Interphase in Vinylene Carbonate Electrolytes Using Cu||LiFePO4Cells. J. Electrochem. Soc. 2017, 164, 2186–2189.
(64) Ko, D. S.; Kim, S.; Lee, S.; Yoon, G.; Kim, D.; Shin, C.; Kim, D.; Lee, J.; Sul, S.; Yun, D. J.; Jung, C. Mechanism of Stable Lithium Plating and Stripping in a Metal-Interlayer-Inserted Anode-Less Solid-State Lithium Metal Battery. Nat. Commun. 2025, 16, 1066.
(65) Chen, R.; Li, Q.; Yu, X.; Chen, L.; Li, H. Approaching Practically Accessible Solid-State Batteries: Stability Issues Related to Solid Electrolytes and Interfaces. Chem. Rev. 2020, 120, 6820–6877.
(66) Thangadurai, V. Lithium Lanthanum Titanates: A Review. Chem. Mater. 2003, 15, 3974–3990.
(67) Y. Masatomo. Crystal Structure and Diffusion Path in the Fast Lithium Ion Conductor LLTO. J. Am. Chem. Soc. 2005, 127, 3491–3495.
(68) Yan, S.; Yim, C. H.; Pankov, V.; Bauer, M.; Baranova, E.; Weck, A.; Merati, A.; Abu-Lebdeh, Y. Perovskite Solid-State Electrolytes for Lithium Metal Batteries. Batteries 2021, 7, 75.
(69) Epp, V.; Ma, Q.; Hammer, E. M.; Tietz, F.; Wilkening, M. Very Fast Bulk Li-ion Diffusivity in Crystalline Li1.5Al0.5Ti1.5(PO4)3 As Seen Using NMR Relaxometry. Phys. Chem. Chem. Phys. 2015, 17, 32115–32121.
(70) Weiss, M.; Weber, D. A.; Senyshyn, A.; Janek, J.; Zeier, W. G., Correlating Transport and Structural Properties in Li1+xAlxGe2-x(PO4)3 (LAGP) Prepared from Aqueous Solution. ACS Appl. Mater. Interfaces 2018, 10, 10935–10944.
(71) Catti, M. Lithium Location in NASICON-type Li+ conductors by Neutron Diffraction. Solid State Ion. 1999, 123, 173–180.
(72) Aono, H. Ionic Conductivity of Solid Electrolytes Based on Lithium Titanium Phosphate. J. Electrochem. Soc. 1990, 137, 1023.
(73) Tolganbek, N.; Serikkazyyeva, A.; Kalybekkyzy, S.; Sarsembina, M.; Kanamura, K.; Bakenov, Z.; Mentbayeva, A., Interface Modification of NASICON-Type Li-ion Conducting Ceramic Electrolytes: a Critical Evaluation. Mater. Adv. 2022, 3, 3055–3069.
(74) Meesala, Y.; Liao, Y.K.; Jena, A.; Yang, N.H.; Pang, W. K.; Hu, S.F.; Chang, H.; Liu, C.E.; Liao, S.C.; Chen, J.M.; Guo, X.; Liu, R.S., An Efficient Multi-Doping Strategy to Enhance Li-ion Conductivity in the Garnet-Type Solid Electrolyte Li7La3Zr2O12. J. Mater. Chem. A 2019, 7, 8589–8601.
(75) Kumazaki, S.; Iriyama, Y.; Kim, K.-H.; Murugan, R.; Tanabe, K.; Yamamoto, K.; Hirayama, T.; Ogumi, Z., High Lithium Ion Conductive Li7La3Zr2O12 by Inclusion of Both Al and Si. Electrochem. Comm. 2011, 13, 509–512.
(76) Ting, Y.Y.; Ye, R.; Dashjav, E.; Ma, Q.; Taminato, S.; Mori, D.; Imanishi, N.; Finsterbusch, M.; Eikerling, M. H.; Guillon, O.; Kaghazchi, P.; Kowalski, P. M. Thermodynamic and Structural Characterization of High-Entropy Garnet Electrolytes for All-Solid-State Battery. Front. Energy Research 2024, 12, 619.
(77) Su, H.; Jiang, Z.; Liu, Y.; Li, J.; Gu, C.; Wang, X.; Xia, X.; Tu, J. Recent Progress of Sulfide Electrolytes for All-Solid-State Lithium Batteries. Energy Mater. 2022, 2, 200005.
(78) Asano, T.; Sakai, A.; Ouchi, S.; Sakaida, M.; Miyazaki, A.; Hasegawa, S. Solid Halide Electrolytes with High Lithium-Ion Conductivity for Application in 4 V Class Bulk-Type All-Solid-State Batteries. Adv. Mater. 2018, 30, e1803075.
(79) Nie, X.; Hu, J.; Li, C. Halide‐based solid electrolytes: The history, progress, and challenges. Interdisciplinary Mater. 2023, 2, 365–389.
(80) Xue, Z.; He, D.; Xie, X. Poly(ethylene oxide)-Based Electrolytes for Lithium-ion Batteries. J. Mater. Chem. A 2015, 3, 19218–19253.
(81) Fan, P.; Liu, H.; Marosz, V.; Samuels, N. T.; Suib, S. L.; Sun, L.; Liao, L. High Performance Composite Polymer Electrolytes for Lithium‐Ion Batteries. Adv. Funct. Mater. 2021, 31, 2101380.
(82) Maurya, D. K.; Bazri, B.; Srivastava, P.; Huang, J. Y.; Hung, Y. T.; Huang, W. T.; Wei, D. H.; Liu, R. S. Ceramic Rich Composite Electrolytes: An Overview of Paradigm Shift toward Solid Electrolytes for High‐Performance Lithium‐Metal Batteries. Adv. Energy Mater. 2024, 11, 2402402.
(83) Manthiram, A.; Yu, X.; Wang, S. Lithium Battery Chemistries Enabled by Solid-State Electrolytes. Nat. Rev. Mater. 2017, 2, 1–15.
(84) Chen, X.; Guan, Z.; Chu, F.; Xue, Z.; Wu, F.; Yu, Y. Air‐Stable Inorganic Solid‐State Electrolytes for High Energy Density Lithium Batteries: Challenges, Strategies, and Prospects. InfoMat 2021, 4, e12248.
(85) Zhao, J.; Wang, X.; Wei, T.; Zhang, Z.; Liu, G.; Yu, W.; Dong, X.; Wang, J. Current Challenges and Perspectives of Garnet-Based Solid-State Electrolytes. J. Energy Stor. 2023, 68, 107693.
(86) Srivastava, P.; Bazri, B.; Maurya, D. K.; Huang, W. T.; Liao, Y. K.; Huang, J. Y.; Wei, D. H.; Hu, S. F.; Liu, R. S. Interfacial Engineering for High-Performance Garnet-Based Lithium Metal Batteries: A Perspective on Lithiophilicity and Lithiophobicity. EnergyChem 2024, 6, 100122.
(87) Srivastava, P.; Liao, Y. K.; Iputera, K.; Hu, S. F.; Liu, R. S. Robust and Intimate Interface Enabled by Silicon Carbide as an Additive to Anodes for Lithium Metal Solid‐State Batteries. ChemSusChem 2023, 16, e202300504.
(88) Bunaciu, A. A.; Udristioiu, E. G.; Aboul-Enein, H. Y. X-Ray Diffraction: Instrumentation and Applications. Crit. Rev. Anal. Chem. 2015, 45, 289–299.
(89) Ameh, E. S. A Review of Basic Crystallography and X-Ray Diffraction Applications. Int. J. Adv. Manufacturing Technol. 2019, 105, 3289–3302.
(90) Llewellyn, A. V.; Matruglio, A.; Brett, D. J. L.; Jervis, R.; Shearing, P. R. Using In-Situ Laboratory and Synchrotron-Based X-ray Diffraction for Lithium-Ion Batteries Characterization: A Review on Recent Developments. Condens. Matter 2020, 5, 75.
(91) Seres, J.; Seres, E.; Verhoef, A. J. Tempea, G.; Streli, C.; Wobrauschek, P.; Yakovlev, V.; Scrinzi, A.; Spielmann, C.; Krausz, F. Source of Coherent Kiloelectronvolt X-Rays. Nature, 2005, 433, 596.
(92) Bressler, C.; Chergui, M. Ultrafast X-Ray Absorption Spectroscopy. Chem. Rev. 2004, 104, 1781–1812.
(93) Le Bail, A., Whole powder pattern decomposition methods and applications: A retrospection. Powder Diffraction 2012, 20 (4), 316–326.
(94) McCusker, B.; Dreele Von, B. R.; Cox, E. D.; Scardi, P. Rietveld Refinement Guidelines. J. Appl. Cryst. 1999, 32, 36–50.
(95) Uvarov, V. The Influence of X-Ray Diffraction Pattern Angular Range on Rietveld Refinement Results Used for Quantitative Analysis, Crystallite Size Calculation and Unit-Cell Parameter Refinement. J. Appl. Cryst. 2019, 52, 252–261.
(96) Toby, B. H. Rfactors in Rietveld Analysis: How Good is Good Enough? Powder Diffr. 2012, 21, 67–70.
(97) Yano, J.; Yachandra, V. K. X-Ray Absorption Spectroscopy. Photosynth. Res. 2009, 102, 241–254.
(98) Groot, F. D. High-Resolution X-Ray Emission and X-Ray Absorption Spectroscopy. Chem. Rev. 2001, 101, 1779–1808.
(99) Cai, M.; Sun, S.; Bao, J. Synchrotron Radiation Based X-ray Absorption Spectroscopy: Fundamentals and Applications in Photocatalysis. ChemPhysChem 2024, 25, e202300939.
(100) Adams, F. C. Elemental Speciation: Where Do We Come From? Where Do We Go? J. Anal. At. Spectrom. 2004, 19, 1090–1097.
(101) Kalaronis, D.; Ainali, N. M.; Evgenidou, E.; Kyzas, G. Z.; Yang, X.; Bikiaris, D. N.; Lambropoulou, D. A. Microscopic Techniques As Means for the Determination of Microplastics and Nanoplastics in the Aquatic Environment: A Concise Review. Green Anal. Chem. 2022, 3, 100036.
(102) Mohammed, A.; Abdullah, A. Scanning Electron Microscopy (SEM): A Review. In Proceedings of the 2018 International Conference on Hydraulics and Pneumatics, Romania 2019, 7–9.
(103) Buseck, P. R. Principles of Transmission Electron Microscopy. Minerals and Reactions at the Atomic Scale. Geochimica et Cosmochimica Acta 1993, 57, 4537–4538.
(104) Reyntjens, S.; Puers, R. A Review of Focused Ion Beam Applications in Microsystem Technology. J. Micromech. Microeng. 2001, 11, 287–300.
(105) Jones, R. R.; Hooper, D. C.; Zhang, L.; Wolverson, D.; Valev, V. K. Raman Techniques: Fundamentals and Frontiers. Nanoscale Res. Lett. 2019, 14, 231.
(106) Krishnan, R. S.; Shankar, R. K. Raman Effect: History of the Discovery. J. Raman Spectroscopy 2005, 10, 1–8.
(107) Kneipp, K.; Kneipp, H.; Corio, P.; Shafer, K.; Motz, J.; Marucci, A. Surface-Enhanced and Normal Stokes and Anti-Stokes Raman Spectroscopy of Single Walled Carbon NanoTubes. Phys. Rev. Lett. 2000, 84, 3470.
(108) Berthomieu, C.; Hienerwadel, R. Fourier Transform Infrared (FTIR) Spectroscopy. Photosynth. Res. 2009, 101, 157–170.
(109) Corcoran, C. J.; Tavassol, H.; Rigsby, M. A.; Bagus, P. S.; Wieckowski, A. Application of XPS to Study Electrocatalysts for Fuel Cells. J. Power Sources 2010, 195, 7856–7879.
(110) Jinghai, X.; Krisanu, B.; Dohoy, J. Experimental Investigation on the Correlation Between Nano-Fluid Characteristics and Thermal Properties of Al2O3 Nano-Particles Dispersed in Ethylene Glycol-Water Mixture. Int. J. Heat Mass Transf. 2016, 94, 262–268.
(111) Nikolova, M.; Bayryamov, S. A Review of Methods and Techniques for Characterization of Structure, Morphology and Dispersion Stability of Microcapsules; Conference: Proceedings of University of Ruse 2019, 58, 1–7.
(112) Lazanas, A. C.; Prodromidis, M. I. Electrochemical Impedance Spectroscopy: A Tutorial. ACS Meas. Sci. Au 2023, 3, 162–193.
(113) Yang, X.; Adair, K. R.; Gao, X.; Sun, X. Recent Advances and Perspectives on Thin Electrolytes for High-Energy-Density Solid-State Lithium Batteries. Energy Environ. Sci. 2021, 14, 643–671.
(114) Gao, X.; Yang, X.; Adair, K.; Liang, J.; Sun, Q.; Zhao, Y.; Li, R.; Sham, T. K.; Sun, X. Fast Charging All-Solid-State Lithium Batteries Enabled by Rational Design of Dual Vertically‐Aligned Electrodes. Adv. Func. Mater. 2020, 30, 2005357.
(115) Samson, A. J.; Hofstetter, K.; Bag, S.; Thangadurai, V. A Bird's-eye View of Li-Stuffed Garnet-type Li7La3Zr2O12 Ceramic Electrolytes for Advanced All-Solid-State Li Batteries. Energy Environ. Sci. 2019, 12, 2957–2975.
(116) Wu, J.; Liu, S.; Han, F.; Yao, X.; Wang, C. Lithium/Sulfide All-Solid-State Batteries using Sulfide Electrolytes. Adv. Mater. 2021, 33, e2000751.
(117) Goodenough, J. B.; Kafalas, J. A. Fast Na+– Ion Transport in Skelton Structures. Matt. Res. Bull. 1976, 11, 203–220.
(118) Woo, S.; Kang, B. Superior Compatibilities of a LISICON-type Oxide Solid Electrolyte Enable High Energy Density All-Solid-State Batteries. J. Mater. Chem. A 2022, 10, 23185–23194.
(119) Jiang, Z.; Xie, H.; Wang, S.; Song, X.; Yao, X.; Wang, H. Perovskite Membranes with Vertically Aligned Microchannels for All‐Solid‐State Lithium Batteries. Adv. Energy Mater. 2018, 8, 1801433.
(120) Gao, Y.; Sun, S.; Zhang, X.; Liu, Y.; Hu, J.; Huang, Z.; Gao, M.; Pan, H. Amorphous Dual‐Layer Coating: Enabling High Li‐Ion Conductivity of Non‐Sintered Garnet‐Type Solid Electrolyte. Adv. Funct. Mater. 2021, 31, 2009692.
(121) Yang, X.; Tang, S.; Zheng, C.; Ren, F.; Huang, Y.; Fei, X.; Yang, W.; Pan, S.; Gong, Z.; Yang, Y. From Contaminated to Highly Lithiated Interfaces: A Versatile Modification Strategy for Garnet Solid Electrolytes. Adv. Funct. Mater. 2022, 33, 2209120.
(122) Raj, V.; Venturi, V.; Kankanallu, V. R.; Kuiri, B.; Viswanathan, V.; Aetukuri, N. P. B. Direct Correlation Between Void Formation and Lithium Dendrite Growth in Solid-State Electrolytes with Interlayers. Nat. Mater. 2022, 21, 1050–1056.
(123) Wang, J.; Wang, H.; Xie, J.; Yang, A.; Pei, A.; Wu, C.-L.; Shi, F.; Liu, Y.; Lin, D.; Gong, Y.; Cui, Y. Fundamental Study on the Wetting Property of Liquid Lithium. Energy Storage Mater. 2018, 14, 345–350.
(124) Su, J.; Gao, B.; Chen, Z.; Fu, J.; An, W.; Peng, X.; Zhang, X.; Wang, L.; Huo, K.; Chu, P. K. Large-Scale Synthesis and Mechanism of β-SiC Nanoparticles from Rice Husks by Low-Temperature Magnesiothermic Reduction. ACS Sustain. Chem. Eng. 2016, 4, 6600–6607.
(125) Wu, H.; Zheng, L.; Zhan, J.; Du, N.; Liu, W.; Ma, J.; Su, L.; Wang, L. Recycling Silicon-based Industrial Waste as Sustainable Sources of Si/SiO2 Composites for High-Performance Li-ion Battery Anodes. J. Power Sources 2020, 449, 227513.
(126) Wood, K. N.; Teeter, G. XPS on Li-Battery-Related Compounds: Analysis of Inorganic SEI Phases and a Methodology for Charge Correction. ACS Appl. Energy Mater. 2018, 1, 4493–4504.
(127) Shen, C.; Fu, R.; Xia, Y.; Liu, Z. New Perspective to Understand the Effect of Electrochemical Prelithiation Behaviors on Silicon Monoxide. RSC Adv. 2018, 8, 14473–14478.
(128) Chae, O. B.; Lucht, B. L. Interfacial Issues and Modification of Solid Electrolyte Interphase for Li Metal Anode in Liquid and Solid Electrolytes. Adv. Energy Mater. 2023, 13, 22033791.
(129) He, X.; Ji, X.; Zhang, B.; Rodrigo, N. D.; Hou, S.; Gaskell, K.; Deng, T.; Wan, H.; Liu, S.; Xu, J.; Nan, B.; Lucht, B. L.; Wang, C. Tuning Interface Lithiophobicity for Lithium Metal Solid-State Batteries. ACS Energy Lett. 2021, 7, 131–139.
(130) Ensling, D.; Thissen, A.; Jaegermann, W. On the Formation of Lithium Oxides and Carbonates on Li Metal Electrodes in Comparison to LiCoO2 Surface Phases Investigated by Photoelectron Spectroscopy. Appl. Surface Sci. 2008, 255, 2517–2523.
(131) Roy, J.; Chandra, S. Oxidation Behavior of Silicon Carbide. Rev. Adv. Mater. Sci. 2014, 38, 29–39.
(132) Jung, S. C.; Kim, H. J.; Kim, J. H.; Han, Y. K. Atomic-Level Understanding toward a High-Capacity and High-Power Silicon Oxide (SiO) Material. J. Phys. Chem. C 2015, 120, 886–892.
(133) Deng, Y.; Eames, C.; Chotard, J. N.; Lalere, F.; Seznec, V.; Emge, S.; Pecher, O.; Grey, C. P.; Masquelier, C.; Islam, M. S., Structural and Mechanistic Insights into Fast Lithium-Ion Conduction in Li4SiO4-Li3PO4 Solid Electrolytes. J. Am. Chem. Soc. 2015, 137, 9136–9145.
(134) Liu, Z.; Yu, Q.; Zhao, Y.; He, R.; Xu, M.; Feng, S.; Li, S.; Zhou, L.; Mai, L. Silicon Oxides: A Promising Family of Anode Materials for Lithium-Ion Batteries. Chem. Soc. Rev. 2019, 48, 285–309.
(135) Srivastava, P.; Bazri, B.; Maurya, D. K.; Hung, Y. T.; Wei, D. H.; Liu, R. S. Green Strategy for Li2CO3 Regulation in Garnet-Type Solid-State Electrolytes via Acoustic Cavitation. ACS Energy Lett. 2025, 10, 1725–1732.
(136) Huo, H.; Luo, J.; Thangadurai, V.; Guo, X.; Nan, C. W.; Sun, X. Li2CO3: A Critical Issue for Developing Solid Garnet Batteries. ACS Energy Lett. 2019, 5, 252–262.
(137) Cai, D.; Zhang, J.; Li, F.; Han, X.; Zhong, Y.; Wang, X.; Tu, J. LLZTO Nanoparticle and Cellulose Mesh-Coreinforced Flexible Composite Electrolyte for Stable Li Metal Batteries. ACS Appl. Mater. Interfaces 2023, 15, 37884–37892.
(138) Siniscalchi, M.; Gibson, J. S.; Tufnail, J.; Swallow, J. E. N.; Lewis, J.; Matthews, G.; Karagoz, B.; van Spronsen, M. A.; Held, G.; Weatherup, R. S.; Grovenor, C. R. M.; Speller, S. C. Removal and Reoccurrence of LLZTO Surface Contaminants under Glovebox Conditions. ACS Appl. Mater. Interfaces 2024, 16, 27230–27241.
(139) Li, J.; Gong, Z.; Xie, W.; Yu, S.; Wei, Y.; Li, D.; Yang, L.; Chen, D.; Li, Y.; Chen, Y. Growth Process and Removal of Interface Contaminants for Garnet-Based Solid-State Lithium Metal Batteries. ACS Appl. Energy Mater. 2023, 6, 12432–12441.
(140) Wang, N.; Jia, M.; Bi, Z.; Guo, X. Composite Electrolytes with Li2CO3‐Free Garnets Achieved by One‐Step Poly(propylene carbonate) Treatment for High‐Rate and Long‐Life Solid Lithium Batteries. Adv. Funct. Mater. 2024, 34, 2401400.
(141) Zhou, Y.; Gao, A.; Duan, M.; Zhang, X.; Yang, M.; Gong, L.; Chen, J.; Song, S.; Xie, F.; Jia, H.; Wang, Y. Quasi-In Situ XPS Insights into the Surface Chemistry of Garnet-Type Li6.4La3Zr1.4Ta0.6O12 Solid-State Electrolytes: The Overlooked Impact of Pretreatments and a Direct Observation of the Formation of LiOH. ACS Appl. Mater. Interfaces 2023, 15, 45465–45474.
(142) Leng, J.; Wang, H.; Liang, H.; Xiao, Z.; Wang, S.; Zhang, Z.; Tang, Z. Storage of Garnet Solid Electrolytes: Insights into Air Stability and Surface Chemistry. ACS Appl. Energy Mater. 2022, 5, 5108–5116.
(143) Kim, A.; Song, K.; Avdeev, M.; Kang, B. High Energy Density Ultra-thin Li Metal Solid-State Battery Enabled by a Li2CO3-Proof Garnet-Type Solid Electrolyte. ACS Energy Lett. 2024, 9, 1976–1983.
(144) Guo, Y.; Cheng, J.; Zeng, Z.; Li, Y.; Zhang, H.; Li, D.; Ci, L. Li2CO3: Insights into Its Blocking Effect on Li-Ion Transfer in Garnet Composite Electrolytes. ACS Appl. Energy Mater. 2022, 5, 2853–2861.
(145) Yang, Y. N.; Li, Y. X.; Li, Y. Q.; Zhang, T. On-Surface Lithium Donor Reaction Enables Decarbonated Lithium Garnets and Compatible Interfaces Within Cathodes. Nat. Commun. 2020, 11, 5519.
(146) Yi, X.; Guo, Y.; Chi, S.; Pan, S.; Geng, C.; Li, M.; Li, Z.; Lv, W.; Wu, S.; Yang, Q. H. Surface Li2CO3 Mediated Phosphorization Enables Compatible Interfaces of Composite Polymer Electrolyte for Solid‐State Lithium Batteries. Adv. Funct. Mater. 2023, 33, 2303574.
(147) Zhan, X.; Pang, X.; Mao, F.; Lin, J.; Li, M.; Zhao, Y.; Xu, P.; Xu, Z.; Liao, K.; Zhang, Q.; Zhang, L. Interfacial Reconstruction Unlocks Inherent Ionic Conductivity of LiLaZrTaO Garnet in Organic Polymer Electrolyte for Durable Room‐Temperature All‐Solid‐State Batteries. Adv. Energy Mater. 2024, 14, 2402509.
(148) Qin, N.; Jin, L.; Lu, Y.; Wu, Q.; Zheng, J.; Zhang, C.; Chen, Z.; Zheng, J. P. Over‐Potential Tailored Thin and Dense Lithium Carbonate Growth in Solid Electrolyte Interphase for Advanced Lithium Ion Batteries. Adv. Energy Mater. 2022, 12, 2103402.
(149) Hoo, D. Y.; Low, Z. L.; Low, D. Y. S.; Tang, S. Y.; Manickam, S.; Tan, K. W.; Ban, Z. H. Ultrasonic Cavitation: An Effective Cleaner and Greener Intensification Technology in the Extraction and Surface Modification of Nanocellulose. Ultrason. Sonochem. 2022, 90, 106176.
(150) Yusof, N. S.; Babgi, B.; Alghamdi, Y.; Aksu, M.; Madhavan, J.; Ashokkumar, M. Physical and Chemical Effects of Acoustic Cavitation in Selected Ultrasonic Cleaning Applications. Ultrason. Sonochem. 2016, 29, 568–576.
(151) Tang, C.; Fan, Z.; Ding, B.; Xu, C.; Wu, H.; Dou, H.; Zhang, X. Functional Separator with PolyAcrylic Acid-Enabled Li2CO3-Free Garnet Coating for Long-Cycling Lithium Metal Batteries. Small 2025, 21, e2407558.
(152) Moradabadi, A.; Kaghazchi, P. Effect of Lattice and Dopant–Induced Strain on the Conductivity of Solid Electrolytes: Application of the Elastic Dipole Method. Materialia 2020, 9, 100607.
(153) Zhang, X.; Liu, W.; Yu, Y. The Effects of Local Strain on the Cubic Li7La3Zr2O12(001)/Li(001) Interface: A First-Principles Study. Solid State Ion. 2021, 360, 115546.
(154) Sahal, M.; Guo, J.; Chan, C. K.; Rolston, N. Surface Reduction of Li2CO3 on LLZTO Solid-State Electrolyte via Scalable Open-Air Plasma Treatment. Batteries 2024, 10, 249.
(155) Hornsveld, N.; Put, B.; Kessels, W. M. M.; Vereecken, P. M.; Creatore, M. Plasma-Assisted and Thermal Atomic Layer Deposition of Electrochemically Active Li2CO3. RSC Adv. 2017, 7, 41359–41368.
(156) Zhang, N.; Ren, G.; Li, L.; Wang, Z.; Yu, P.; Li, X.; Zhou, J.; Zhang, H.; Zhang, L.; Liu, Z.; Liu, X. Dynamical Evolution of CO2 and H2O on Garnet Electrolyte Elucidated by Ambient Pressure X-ray Spectroscopies. Nat. Commun. 2024, 15, 2777.
(157) Huff, L. A.; Rapp, J. L.; Zhu, L.; Gewirth, A. A. Identifying Lithium–Air Battery Discharge Products Through 6Li Solid-State MAS and 1H–13C Solution NMR Spectroscopy. J. Power Sources 2013, 235, 87–94.
(158) Wang, D.; Zhong, G.; Pang, W. K.; Guo, Z.; Li, Y.; McDonald, M. J.; Fu, R.; Mi, J. X.; Yang, Y. Toward Understanding the Lithium Transport Mechanism in Garnet-type Solid Electrolytes: Li+ Ion Exchanges and Their Mobility at Octahedral/Tetrahedral Sites. Chem. Mater. 2015, 27, 6650–6659.
(159) Li, W.; Sun, C.; Jin, J.; Li, Y.; Chen, C.; Wen, Z. Realization of the Li+ Domain Diffusion Effect via Constructing Molecular Brushes on the LLZTO Surface and its Application in All-Solid-State Lithium Batteries. J. Mater. Chem. A 2019, 7, 27304–27312.
(160) Larraz, G.; Orera, A.; Sanz, J.; Sobrados, I.; Diez-Gómez, V.; Sanjuán, M. L. NMR Study of Li Distribution in Li7−xHxLa3Zr2O12 Garnets. J. Mater. Chem. A 2015, 3, 5683–5691.
(161) Willner, J.; Fornalczyk, A.; Gajda, B.; Figlus, T.; Swieboda, A.; Wegrzyński, D.; Mlonka, A.; Perenc, B.; Kander, M. Direct Sonochemical Leaching of Li, Co, Ni, and Mn from Mixed Li-Ion Batteries with Organic Acids. Energies 2024, 17, 4055.
(162) Wang, C.; Mao, S.; Li, L. Study on Ultrasonic Leaching and Recovery of Fluoride from Spent Cathode Carbon of Aluminum Electrolysis. RSC Adv. 2023, 13, 16300–16310.
(163) Cui, C.; Bai, F.; Yang, Y.; Hou, Z.; Sun, Z.; Zhang, T. Ion-Exchange-Induced Phase Transition Enables an Intrinsically Air Stable Hydrogarnet Electrolyte for Solid-State Lithium Batteries. Adv. Sci. 2024, 11, e2310005.
(164) Gao, Z.; Sun, H.; Fu, L.; Ye, F.; Zhang, Y.; Luo, W.; Huang, Y. Promises, Challenges, and Recent Progress of Inorganic Solid-State Electrolytes for All-Solid-State Lithium Batteries. Adv. Mater. 2018, 30, e1705702.
(165) Zheng, J.; Tang, M.; Hu, Y. Y. Lithium Ion Pathway within Li7La3Zr2O12 -Polyethylene Oxide Composite Electrolytes. Angew. Chem. Int. Ed. Engl. 2016, 55, 12538–12542.
(166) Xu, B.; Li, X.; Yang, C.; Li, Y.; Grundish, N. S.; Chien, P. H.; Dong, K.; Manke, I.; Fang, R.; Wu, N.; Xu, H.; Dolocan, A.; Goodenough, J. B. Interfacial Chemistry Enables Stable Cycling of All-Solid-State Li Metal Batteries at High Current Densities. J. Am. Chem. Soc. 2021, 143, 6542–6550.
(167) Zhou, Q.; Ma, J.; Dong, S.; Li, X.; Cui, G. Intermolecular Chemistry in Solid Polymer Electrolytes for High-Energy-Density Lithium Batteries. Adv. Mater. 2019, 31, e1902029.
(168) Guo, Y.; Pan, S.; Yi, X.; Chi, S.; Yin, X.; Geng, C.; Yin, Q.; Zhan, Q.; Zhao, Z.; Jin, F. M.; Fang, H.; He, Y. B.; Kang, F.; Wu, S.; Yang, Q. H. Fluorinating All Interfaces Enables Super-Stable Solid-State Lithium Batteries by In Situ Conversion of Detrimental Surface Li2CO3. Adv. Mater. 2024, 36, e2308493.
(169) He, K.; Cheng, S. H.; Hu, J.; Zhang, Y.; Yang, H.; Liu, Y.; Liao, W.; Chen, D.; Liao, C.; Cheng, X.; Lu, Z.; He, J.; Tang, J.; Li, R. K. Y.; Liu, C. In-Situ Intermolecular Interaction in Composite Polymer Electrolyte for Ultralong Life Quasi-Solid-State Lithium Metal Batteries. Angew. Chem. Int. Ed. Engl. 2021, 60, 12116–12123.
(170) Jia, M.; Bi, Z.; Shi, C.; Zhao, N.; Guo, X. Air-Stable Dopamine-Treated Garnet Ceramic Particles for High-Performance Composite Electrolytes. J. Power Sources 2021, 486, 229363.
(171) Lü, H.; Chen, X.; Sun, Q.; Zhao, N.; Guo, X. Uniform Garnet Nanoparticle Dispersion in Composite Polymer Electrolytes. Acta. Phys. Chim. Sin. 2024, 40, 2305016.
(172) Zhang, Z.; Zhang, S.; Geng, S.; Zhou, S.; Hu, Z.; Luo, J. Agglomeration-Free Composite Solid Electrolyte and Enhanced Cathode-Electrolyte Interphase Kinetics for All-Solid-State Lithium Metal Batteries. Energy Storage Mater. 2022, 51, 19–28.
(173) Wu, L.; Wang, Y.; Tang, M.; Liang, Y.; Lin, Z.; Ding, P.; Zhang, Z.; Wang, B.; Liu, S.; Li, L.; Guo, X.; Yin, X.; Yu, H. Lithium-Ion Transport Enhancement with Bridged Ceramic-Polymer Interface. Energy Storage Mater. 2023, 58, 40–47.
(174) Duan, T.; Cheng, H.; Liu, Y.; Sun, Q.; Nie, W.; Lu, X.; Dong, P.; Song, M. K. A Multifunctional Janus Layer for LLZTO/PEO Composite Electrolyte with Enhanced Interfacial Stability in Solid-State Lithium Metal Batteries. Energy Storage Mater. 2024, 65, 103091.
(175) Blochl, P. E. Projector Augmented-Wave Method. Phys. Rev. B Condens. Matter 1994, 50, 17953–17979.
(176) Kresse, G.; Furthmeller, J. Efficiency of Ab-Initio Total Energy Calculations for Metals and Semiconductors Using a Plane Wave Basis Set. Comp. Mater. Sci. 1996, 5, 15–50.
(177) Monkhorst, H. J.; Pack, J. D. Special Points for Brillouin-Zone Integrations. Phys. Rev. B 1976, 13, 5188–5192.
(178) Perdew, J. P.; Burke, K.; Wang, Y. Generalized Gradient Approximation for the Exchange-Correlation Hole of a Many Electron System. Phys. Rev. B 1996, 54, 16533–16539.
(179) Sato, Y.; Hayami, R.; Gunji, T. Characterization of NMR, IR, and Raman Spectra for Siloxanes and Silsesquioxanes: A Mini Review. J. Sol-Gel Sci. Technol. 2022, 104, 36–52.
(180) Bistričić, L.; Volovšek, V.; Dananić, V. Conformational and Vibrational Analysis of Gamma-Aminopropyltriethoxysilane. J. Mol. Struct. 2007, 834, 355–363.
(181) Merad, L.; Cochez, M.; Margueron, S.; Jauchem, F.; Ferriol, M.; Benyoucef, B.; Bourson, P. In-Situ Monitoring of the Curing of Epoxy Resins by Raman Spectroscopy. Polym. Test 2009, 28, 42–45.
(182) Mueller, T.; Schwertheim, S.; Fahrner, W. R. Crystalline Silicon Surface Passivation by High-Frequency Plasma-Enhanced Chemical-Vapor-Deposited Nanocomposite Silicon Suboxides for Solar Cell Applications. J. Appl. Phys. 2010, 107, 014504.
(183) Wang, L.; Zhou, Y.; Xu, Q.; Wu, X. K.; Xu, G. D.; Guo, J. X.; Fang, D. Fabrication of In2S3/MIL-68(In) Heterojunction Composite Photocatalysts for Degradation of Rhodamine B and Hydrogen Evolution. J. Porous Mater. 2021, 29, 181–192.
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/97935-
dc.description.abstract隨著高性能鋰金屬電池(lithium metal batteries; LMBs)需求日益增加,開發兼具優異離子導電性與電化學穩定性之固態電解質(solid-state electrolytes; SSEs)已成為研究焦點。其中,以石榴石結構為主之電解質,尤其為Li6.75La3Zr1.75Ta0.25O12 (LLZTO),因其具備極佳之鋰離子導電性、寬廣之電化學穩定窗口及與鋰金屬負極之化學相容性,受到廣泛關注。本研究首先以燒結LLZTO錠片為電解質,並藉由添加改質材料進行界面優化,形成複合式負極,針對兩項關鍵問題進行改善:其一為高界面阻抗,其二為耐高電流密度能力不足。經界面改質後,可顯著降低阻抗並提高臨界電流密度(critical current density; CCD),從而提升整體電池性能。
然而,儘管LLZTO電解質於電化學特性上具備優勢,其製備成本及規模化應用經濟性有限。為解決此問題,本研究進一步轉向複合高分子電解質(composite polymer electrolyte; CPE)系統,將LLZTO作為無機填料均勻地分散於聚合物基材中,兼顧其優異導電性與電解質系統之可撓性與可製程性。此複合電解質展現更佳之離子導電性與結構穩定性,更適合實際應用需求。此外,本研究亦針對LLZTO奈米顆粒進行表面改質,以進一步提升其於高分子基材中之分散性與電解質整體性能。由控制表面污染物(如碳酸鋰)與官能化處理,有效優化其表面化學性質,進而促進LLZTO於基材中之均勻分布並提高整體離子導電率。
綜合以上成果,將所開發之石榴石型複合電解質應用於無陽極鋰電池(anode-less lithium battery)系統顯示極大應用前景。於此類架構中,鋰金屬會於初次充電時原位沉積於裸露之集流體上,因此更須仰賴高效之鋰離子傳輸與穩定之界面以實現高可逆性與均勻鋰沉積。本研究所開發之複合電解質於柔性、導電性及界面相容性方面皆能滿足無陽極設計所須條件,提供一條有效途徑以進一步提升固態鋰電池之能量密度,達到去除過量鋰金屬與降低非活性材料使用量之目的。本論文強調LLZTO於石榴石型固態電解質發展中之關鍵角色,並探討其於提升界面穩定性、導電性、規模化製程性等方面之潛力,對次世代鋰金屬電池之發展具重要意義。
zh_TW
dc.description.abstractThe growing demand for high-performance lithium metal batteries (LMBs) has spurred significant interest in developing solid-state electrolytes (SSEs) with superior ionic conductivity and electrochemical stability. Among them, garnet-type SSEs, particularly Li6.75La3Zr1.75Ta0.25O12 (LLZTO), have garnered attention due to their excellent lithium-ion conductivity, wide electrochemical stability window, and chemical compatibility with lithium metal anodes. In this research, LLZTO in pellet form was initially employed, with interface modifications using additive materials to create a composite anode that addresses two critical issues: high interfacial impedance and the need for improved tolerance to high current densities, which enhances the critical current density (CCD). This interface optimization showed promising results by significantly reducing impedance and increasing current tolerance, subsequently improving the battery’s overall performance.
However, despite its appealing electrochemical properties, the pellet form of LLZTO proved economically unfeasible for large-scale applications. My research transitioned to composite polymer electrolyte (CPE) systems to address this limitation, incorporating LLZTO as an active inorganic filler within a polymer matrix. This approach leverages the advantageous properties of LLZTO while enhancing the flexibility and scalability of the electrolyte system. The composite electrolyte systems demonstrated improved ionic conductivity and structural integrity, making them more practical for real-world applications. Additionally, the surface modification of LLZTO nanoparticles was investigated to enhance the electrolyte's performance further. By regulating surface contaminants, such as Li2CO3, and implementing functionalization techniques, the surface chemistry was optimized to improve the dispersion of LLZTO nanoparticles within the polymer matrix, leading to a notable enhancement in the ionic conductivity of the composite system. Building upon these advances, the developed garnet-based composite electrolytes show significant promise for application in anode-less lithium battery systems, where lithium is plated in situ onto a bare current collector during the initial charge. In such configurations, the need for efficient lithium-ion transport and stable interfaces becomes even more critical to enable high reversibility and uniform lithium deposition. The flexibility, ionic conductivity, and interfacial compatibility demonstrated in this work align well with the stringent requirements of anode-less designs, offering a pathway to further increase the energy density of solid-state lithium batteries by eliminating excess lithium and reducing inactive components.
This thesis highlights the potential of LLZTO as a key material in advancing garnet-based solid-state electrolytes and its critical role in addressing challenges associated with interfacial stability, conductivity, and scalability in next-generation lithium metal batteries.
en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2025-07-23T16:09:47Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2025-07-23T16:09:47Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontents口試委員審定書 I
Acknowledgments II
摘要 IV
Abstract V
Figure Contents XIV
Table Contents XXIX
Abbreviations List XXX
Chapter 1. Introduction 1
1.1 Research Background of Batteries 1
1.2 Conventional Lithium-Ion Battery 3
1.2.1 Search for cathode 5
1.2.1.1 Single transition metal layered oxide cathodes 7
1.2.1.2 Ni-rich layered oxide cathodes 10
1.2.1.3 Li-rich Mn-based layered oxide cathodes 12
1.2.1.4 Spinel cathodes 14
1.2.1.5 Olivine cathodes 15
1.2.2 Search for anode 16
1.2.2.1 Lithium metal anode 19
1.2.2.2 Carbon-based anode 21
1.2.2.3 Alloy-based anode 23
1.2.2.4 Oxide-based anode 25
1.2.3 Liquid electrolytes 27
1.3 Lithium Metal Battery 30
1.4 Anode-less Lithium Metal Battery 33

1.5 Solid-State Electrolytes 36
1.5.1 Inorganic solid electrolytes 36
1.5.1.1 Oxide-based SSEs 37
1.5.1.1.1 LLTO (Li3xLa2/3-xTiO3, Perovskite-type) 37
1.5.1.1.2 LATP/LAGP (Li1+xAlxTi/Ge2-x(PO4)3, NASICON-type) 39
1.5.1.1.3 LZGO (Li14ZnGe4O16, LISICON-type) 41
1.5.1.1.4 LLZO (Li7La3Zr2O12, garnet-type) 41
1.5.1.2 Sulfide-based SSEs 43
1.5.1.2.1 LGPS (Li10Ge2PS12, thio-LISICON-type) 43
1.5.1.2.2 LPSX (Li6PS5Cl, argyrodite-type) 45
1.5.1.2.3 Li2S – MxSy (Amorphous Sulfide) 46
1.5.1.3 Halide-based SSEs 46
1.5.1.3.1 Halide spinel with cubic symmetry (Fd-3m) 47
1.5.1.3.2 Metal halide with monoclinic symmetry (C2/m) 48
1.5.1.3.3 Metal halide with trigonal symmetry (P-3m1) 49
1.5.1.3.4 Metal halide with orthorhombic symmetry (Pnma) 49
1.5.2 Solid-polymer electrolytes 50
1.5.2.1 PEO-based SPEs 50
1.5.2.2 Other polymer-based electrolytes 51
1.5.2.3 Composite SPEs 52
1.6 Choice of SSE 54
1.7 Garnet-Type LLZO 58
1.8 Challenges with Garnet-Based Composite Polymer Electrolytes 63
1.8 Research Motivation/Purpose 65
Chapter 2. Experimental Approaches and Techniques 69
2.1 LLZTO Synthesis 71
2.1.1 Materials/Chemicals 71
2.1.2 Experimental steps 71
2.2 LLZTO Pellet Processing 73
2.2.1 Mechanical polishing 74
2.2.2 Acid treatment 75
2.3 Interfacial Engineering on LLZTO Pellet 76
2.4 Surface Modification of LLZTO NPs 81
2.4.1 Acoustic cavitation-induced air-stability 83
2.4.2 Surface functionalization via silane coupling reagents 85
2.5 CPE Fabrication 87
2.6 Cathode Preparation 89
2.7 Current Collector Modification 91
2.7 Cell Assembly 95
2.7.1 Symmetry cell 95
2.7.2 Full cell 97
2.7.3 Anode-less full cell 97
2.8 Instrumentation and Characterization Techniques 98
2.8.1 X-ray diffraction 99
2.8.1.1 In-house XRD setup 101
2.8.1.2 Synchrotron source XRD 103
2.8.2 X-ray absorption spectroscopy 106
2.8.3 Electron microscopy 108
2.8.3.1 Scanning electron microscopy 109
2.8.3.2 Transmission electron microscopy 110
2.8.4 Raman spectroscopy 113
2.8.5 Fourier transform infrared spectroscopy 117
2.8.6 X-ray photoelectron spectroscopy 120
2.8.7 In-situ ambient pressure XPS 121
2.8.8 Dynamic light scattering and Zeta potential 122
2.8.9 Thermo-gravimetric analysis 124
2.8.10 Nuclear magnetic resonance spectroscopy 126
2.8.11 Atomic force microscopy 128
2.8.12 Electrochemical workstation 130
2.8.13 Battery tester 136
Chapter 3. Robust and Intimate Interface Enabled by Silicon Carbide as an Additive to Anode for Solid-State Lithium Metal Batteries 138
3.1 Introduction 138
3.2 Experimental Section 140
3.2.1 Preparation of garnet-type SSE 140
3.2.2 Li-SiC composite anode fabrication 142
3.2.3 Cathode preparation and cell assembly 142
3.2.4 Electrochemical studies 143
3.2.5 Characterization techniques 144
3.3 Results and Discussion 145
3.3.1 LLZTO analysis and wettability tests 145
3.3.2 Optimziation of Li-SiC composite anode 150
3.3.3 Structural and compositional analysis 152
3.3.4 Electrochemical analysis 156
3.3.4.1 Symmetry cell performance 157
3.3.4.2 Full cell performance 159
3.4 Summary 162
Chapter 4. Green Strategy for Li2CO3 Regulation in Garnet-Type Solid-State Electrolytes via Acoustic Cavitation 164
4.1 Introduction 165
4.2 Experimental Section 168
4.2.1 Preparation of garnet-type LLZTO NPs 168
4.2.2 Preparation of ES-LLZTO NPs 168
4.2.3 Preparation of AT-LLZTO NPs 168
4.2.4 Fabrication of CIP films 169
4.2.5 Fabrication of PIC films 169
4.2.6 Cathode fabrication and cell assembly 170
4.2.7 Electrochemical studies 170
4.2.8 Characterization techniques 171
4.3 Results and Discussion 172
4.3.1 LLZTO NPs structural analysis 172
4.3.2 ES-LLZTO NPs preliminary analysis 173
4.3.3 ES-LLZTO NPs confirmatory analysis 183
4.3.3.1 XPS analysis 183
4.3.3.2 TEM analysis 185
4.3.3.3 Li-NMR studies 188
4.3.4 Stability comparison: AT-LLZTO vs ES-LLZTO 190
4.3.4.1 Raman spectroscopy 190
4.3.4.2 Time-dependent Raman spectroscopy 191
4.3.4.3 In-situ AP-XPS 193
4.3.5 Electrochemical analysis 197
4.3.5.1 CIP-type SSEs 198
4.3.5.2 PIC-type SSEs 203
4.4 Summary 210
Chapter 5. Surface Chemistry Engineering of Garnet Nanoparticles for High-Performance Composite Electrolytes in Lithium Metal Batteries 211
5.1 Introduction 211
5.2 Experimental Section 215
5.2.1 Synthesis of LLZTO NPs 215
5.2.2 Silane modification of LLZTO NPs 215
5.2.3 CIP-type CPEs fabrication 216
5.2.4 Cathode preparation and cell assembly 216
5.2.5 Electrochemical studies 217
5.2.6 Characterization techniques 218
5.2.7 Computational studies 219
5.3 Results and Discussion 219
5.3.1 Structural analysis of pristine and functionalized LLZTO NPs 219
5.3.2 CIPs incorporated with functionalized LLZTO NPs 233
5.3.3 Electrochemical studies of CIP-type CPEs (symmetry cell) 236
5.3.4 Computational studies 241
5.3.5 Investigating Li+ migration pathways 246
5.3.6 Electrochemical studies of CIP-type CPEs (full cell) 249
5.4 Summary 251
Chapter 6. Toward Anode-less Lithium Metal Batteries Enabled by Garnet-Based Composite Polymer Electrolytes 254
6.1 Introduction 255
6.2 Experimental Section 256
6.2.1 Preparation of current collector 256
6.2.2 Half cell assembly 258
6.2.3 Anode-less full cell assembly 259
6.3 Results and Discussions 259
6.3.1 Modified Cu-In CCs 259
6.3.2 Evaluating optimized Cu-In CC condition based on electrochemical and structural characteristics 264
6.3.3 Anode-less full cell analysis 270
6.3.3 Post-cycling analysis of the current collector 272
6.4 Summary 274
Chapter 7. Conclusion 276
References 278
-
dc.language.isoen-
dc.subject固態電池zh_TW
dc.subject無機填料zh_TW
dc.subject複合聚合物電解質zh_TW
dc.subject石榴石型電解質zh_TW
dc.subject鋰金屬負極zh_TW
dc.subject固態電池zh_TW
dc.subject無機填料zh_TW
dc.subject複合聚合物電解質zh_TW
dc.subject石榴石型電解質zh_TW
dc.subject鋰金屬負極zh_TW
dc.subjectsolid-state batteryen
dc.subjectinorganic filleren
dc.subjectsolid-state batteryen
dc.subjectlithium metal anodeen
dc.subjectgarnet-type electrolyteen
dc.subjectcomposite polymer electrolyteen
dc.subjectinorganic filleren
dc.subjectcomposite polymer electrolyteen
dc.subjectgarnet-type electrolyteen
dc.subjectlithium metal anodeen
dc.title固態鋰金屬電池之石榴石型電解質zh_TW
dc.titleGarnet-Based Electrolytes for Solid-State Lithium Metal Batteriesen
dc.typeThesis-
dc.date.schoolyear113-2-
dc.description.degree博士-
dc.contributor.oralexamcommittee梁文傑;王復民;洪太峰;陳致融;蔡大翔;廖世傑;鄭智洋zh_TW
dc.contributor.oralexamcommitteeMan-Kit Leung;Fu-Ming Wang;Tai-Feng Hung;Chih-Jung Chen;Dah-Shyang Tsai;Shih Chieh Liao;Jack Chengen
dc.subject.keyword固態電池,鋰金屬負極,石榴石型電解質,複合聚合物電解質,無機填料,zh_TW
dc.subject.keywordsolid-state battery,lithium metal anode,garnet-type electrolyte,composite polymer electrolyte,inorganic filler,en
dc.relation.page302-
dc.identifier.doi10.6342/NTU202501428-
dc.rights.note同意授權(全球公開)-
dc.date.accepted2025-07-02-
dc.contributor.author-college理學院-
dc.contributor.author-dept化學系-
dc.date.embargo-lift2027-07-30-
顯示於系所單位:化學系

文件中的檔案:
檔案 大小格式 
ntu-113-2.pdf
  此日期後於網路公開 2027-07-30
20.72 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved