請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/97929完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 楊欣洲 | zh_TW |
| dc.contributor.advisor | Hsin-Chou Yang | en |
| dc.contributor.author | 馬培峰 | zh_TW |
| dc.contributor.author | Pei-Feng Ma | en |
| dc.date.accessioned | 2025-07-23T16:08:29Z | - |
| dc.date.available | 2025-07-24 | - |
| dc.date.copyright | 2025-07-23 | - |
| dc.date.issued | 2024 | - |
| dc.date.submitted | 2025-06-26 | - |
| dc.identifier.citation | Avants, B. B., Tustison, N. J., Song, G., Cook, P. A., Klein, A., & Gee, J. C. (2011). A reproducible evaluation of ANTs similarity metric performance in brain image registration. NeuroImage, 54(3), 2033–2044. https://doi.org/10.1016/j.neuroimage.2010.09.025
Bellenguez, C., Küçükali, F., Jansen, I. E., Kleineidam, L., Moreno-Grau, S., Amin, N., Naj, A. C., Campos-Martin, R., Grenier-Boley, B., Andrade, V., Holmans, P. A., Boland, A., Damotte, V., Van Der Lee, S. J., Costa, M. R., Kuulasmaa, T., Yang, Q., De Rojas, I., Bis, J. C., … Lambert, J.-C. (2022). New insights into the genetic etiology of Alzheimer’s disease and related dementias. Nature Genetics, 54(4), 412–436. https://doi.org/10.1038/s41588-022-01024-z Bertram, L., & Tanzi, R. E. (2009). Genome-wide association studies in Alzheimer’s disease. Human Molecular Genetics, 18(R2), R137–R145. https://doi.org/10.1093/hmg/ddp406 Bravo-Ortiz, M. A., Holguin-Garcia, S. A., Quiñones-Arredondo, S., Mora-Rubio, A., Guevara-Navarro, E., Arteaga-Arteaga, H. B., Ruz, G. A., & Tabares-Soto, R. (2024). A systematic review of vision transformers and convolutional neural networks for Alzheimer’s disease classification using 3D MRI images. Neural Computing and Applications, 36(35), 21985–22012. https://doi.org/10.1007/s00521-024-10420-x Chen, T., & Guestrin, C. (2016). XGBoost: A Scalable Tree Boosting System. https://doi.org/10.48550/ARXIV.1603.02754 Choi, S. W., Mak, T. S.-H., & O’Reilly, P. F. (2020). Tutorial: A guide to performing polygenic risk score analyses. Nature Protocols, 15(9), 2759–2772. https://doi.org/10.1038/s41596-020-0353-1 Corder, E. H., Saunders, A. M., Strittmatter, W. J., Schmechel, D. E., Gaskell, P. C., Small, G. W., Roses, A. D., Haines, J. L., & Pericak-Vance, M. A. (1993). Gene Dose of Apolipoprotein E Type 4 Allele and the Risk of Alzheimer’s Disease in Late Onset Families. Science, 261(5123), 921–923. https://doi.org/10.1126/science.8346443 DeLong, E. R., DeLong, D. M., & Clarke-Pearson, D. L. (1988). Comparing the areas under two or more correlated receiver operating characteristic curves: A nonparametric approach. Biometrics, 44(3), 837–845. Dreses-Werringloer, U., Lambert, J.-C., Vingtdeux, V., Zhao, H., Vais, H., Siebert, A., Jain, A., Koppel, J., Rovelet-Lecrux, A., Hannequin, D., Pasquier, F., Galimberti, D., Scarpini, E., Mann, D., Lendon, C., Campion, D., Amouyel, P., Davies, P., Foskett, J. K., … Marambaud, P. (2008). A Polymorphism in CALHM1 Influences Ca2+ Homeostasis, Aβ Levels, and Alzheimer’s Disease Risk. Cell, 133(7), 1149–1161. https://doi.org/10.1016/j.cell.2008.05.048 Ertekin-Taner, N. (2010). Genetics of Alzheimer disease in the pre- and post-GWAS era. Alzheimer’s Research & Therapy, 2(1), 3. https://doi.org/10.1186/alzrt26 Fung, Y. R., Guan, Z., Kumar, R., Wu, J. Y., & Fiterau, M. (2019). Alzheimer’s Disease Brain MRI Classification: Challenges and Insights (Version 1). arXiv. https://doi.org/10.48550/ARXIV.1906.04231 Gatz, M., Reynolds, C. A., Fratiglioni, L., Johansson, B., Mortimer, J. A., Berg, S., Fiske, A., & Pedersen, N. L. (2006). Role of Genes and Environments for Explaining Alzheimer Disease. Archives of General Psychiatry, 63(2), 168. https://doi.org/10.1001/archpsyc.63.2.168 Goate, A., Chartier-Harlin, M.-C., Mullan, M., Brown, J., Crawford, F., Fidani, L., Giuffra, L., Haynes, A., Irving, N., James, L., Mant, R., Newton, P., Rooke, K., Roques, P., Talbot, C., Pericak-Vance, M., Roses, A., Williamson, R., Rossor, M., … Hardy, J. (1991). Segregation of a missense mutation in the amyloid precursor protein gene with familial Alzheimer’s disease. Nature, 349(6311), 704–706. https://doi.org/10.1038/349704a0 Harold, D., Abraham, R., Hollingworth, P., Sims, R., Gerrish, A., Hamshere, M. L., Pahwa, J. S., Moskvina, V., Dowzell, K., Williams, A., Jones, N., Thomas, C., Stretton, A., Morgan, A. R., Lovestone, S., Powell, J., Proitsi, P., Lupton, M. K., Brayne, C., … Williams, J. (2009). Genome-wide association study identifies variants at CLU and PICALM associated with Alzheimer’s disease. Nature Genetics, 41(10), 1088–1093. https://doi.org/10.1038/ng.440 Harrison, J. R., Mistry, S., Muskett, N., & Escott-Price, V. (2020). From Polygenic Scores to Precision Medicine in Alzheimer’s Disease: A Systematic Review. Journal of Alzheimer’s Disease, 74(4), 1271–1283. https://doi.org/10.3233/JAD-191233 International Human Genome Sequencing Consortium, Whitehead Institute for Biomedical Research, Center for Genome Research:, Lander, E. S., Linton, L. M., Birren, B., Nusbaum, C., Zody, M. C., Baldwin, J., Devon, K., Dewar, K., Doyle, M., FitzHugh, W., Funke, R., Gage, D., Harris, K., Heaford, A., Howland, J., Kann, L., Lehoczky, J., … Morgan, M. J. (2001). Initial sequencing and analysis of the human genome. Nature, 409(6822), 860–921. https://doi.org/10.1038/35057062 Koppelmans, V., Silvester, B., & Duff, K. (2022). Neural Mechanisms of Motor Dysfunction in Mild Cognitive Impairment and Alzheimer’s Disease: A Systematic Review. Journal of Alzheimer’s Disease Reports, 6(1), 307–344. https://doi.org/10.3233/ADR-210065 Kunkle, B. W., Alzheimer Disease Genetics Consortium (ADGC), The European Alzheimer’s Disease Initiative (EADI), Cohorts for Heart and Aging Research in Genomic Epidemiology Consortium (CHARGE), Genetic and Environmental Risk in AD/Defining Genetic, Polygenic and Environmental Risk for Alzheimer’s Disease Consortium (GERAD/PERADES), Grenier-Boley, B., Sims, R., Bis, J. C., Damotte, V., Naj, A. C., Boland, A., Vronskaya, M., Van Der Lee, S. J., Amlie-Wolf, A., Bellenguez, C., Frizatti, A., Chouraki, V., Martin, E. R., Sleegers, K., … Pericak-Vance, M. A. (2019). Genetic meta-analysis of diagnosed Alzheimer’s disease identifies new risk loci and implicates Aβ, tau, immunity and lipid processing. Nature Genetics, 51(3), 414–430. https://doi.org/10.1038/s41588-019-0358-2 Lambert, J.-C., European Alzheimer’s Disease Initiative (EADI), Genetic and Environmental Risk in Alzheimer’s Disease (GERAD), Alzheimer’s Disease Genetic Consortium (ADGC), Cohorts for Heart and Aging Research in Genomic Epidemiology (CHARGE), Ibrahim-Verbaas, C. A., Harold, D., Naj, A. C., Sims, R., Bellenguez, C., Jun, G., DeStefano, A. L., Bis, J. C., Beecham, G. W., Grenier-Boley, B., Russo, G., Thornton-Wells, T. A., Jones, N., Smith, A. V., … Amouyel, P. (2013). Meta-analysis of 74,046 individuals identifies 11 new susceptibility loci for Alzheimer’s disease. Nature Genetics, 45(12), 1452–1458. https://doi.org/10.1038/ng.2802 LaMontagne, P. J., Benzinger, T. Ls., Morris, J. C., Keefe, S., Hornbeck, R., Xiong, C., Grant, E., Hassenstab, J., Moulder, K., Vlassenko, A. G., Raichle, M. E., Cruchaga, C., & Marcus, D. (2019). OASIS-3: Longitudinal Neuroimaging, Clinical, and Cognitive Dataset for Normal Aging and Alzheimer Disease. Radiology and Imaging. https://doi.org/10.1101/2019.12.13.19014902 Liu, C.-C., Kanekiyo, T., Xu, H., & Bu, G. (2013). Apolipoprotein E and Alzheimer disease: Risk, mechanisms and therapy. Nature Reviews Neurology, 9(2), 106–118. https://doi.org/10.1038/nrneurol.2012.263 Liu, Luthman, J., Cedarbaum, J. M., Schmidt, M. E., Cole, P. E., Hendrix, J., Carrillo, M. C., Jones‐Davis, D., Tarver, E., Novak, G., De Santi, S., Soares, H. D., Potter, W. Z., Siemers, E., & Schwarz, A. J. (2015). Perspective: The Alzheimer’s Disease Neuroimaging Initiative and the role and contributions of the Private Partner Scientific Board (PPSB). Alzheimer’s & Dementia, 11(7), 840–849. https://doi.org/10.1016/j.jalz.2015.04.001 Marek, K., Chowdhury, S., Siderowf, A., Lasch, S., Coffey, C. S., Caspell‐Garcia, C., Simuni, T., Jennings, D., Tanner, C. M., Trojanowski, J. Q., Shaw, L. M., Seibyl, J., Schuff, N., Singleton, A., Kieburtz, K., Toga, A. W., Mollenhauer, B., Galasko, D., Chahine, L. M., … the Parkinson’s Progression Markers Initiative. (2018). The Parkinson’s progression markers initiative (PPMI) – establishing a PD biomarker cohort. Annals of Clinical and Translational Neurology, 5(12), 1460–1477. https://doi.org/10.1002/acn3.644 Patterson, C. (2018). Alzheimer’s Disease International World Alzheimer Report 2018–The State of the Art of Dementia Research. Alzheimer’s Disease International: London, UK. Petersen, R. C., Aisen, P. S., Beckett, L. A., Donohue, M. C., Gamst, A. C., Harvey, D. J., Jack, C. R., Jagust, W. J., Shaw, L. M., Toga, A. W., Trojanowski, J. Q., & Weiner, M. W. (2010). Alzheimer’s Disease Neuroimaging Initiative (ADNI): Clinical characterization. Neurology, 74(3), 201–209. https://doi.org/10.1212/WNL.0b013e3181cb3e25 Qiu, C., Kivipelto, M., & von Strauss, E. (2009). Epidemiology of Alzheimer’s disease: Occurrence, determinants, and strategies toward intervention. Dialogues in Clinical Neuroscience, 11(2), 111–128. https://doi.org/10.31887/DCNS.2009.11.2/cqiu Rogaeva, E., Meng, Y., Lee, J. H., Gu, Y., Kawarai, T., Zou, F., Katayama, T., Baldwin, C. T., Cheng, R., Hasegawa, H., Chen, F., Shibata, N., Lunetta, K. L., Pardossi-Piquard, R., Bohm, C., Wakutani, Y., Cupples, L. A., Cuenco, K. T., Green, R. C., … St George-Hyslop, P. (2007). The neuronal sortilin-related receptor SORL1 is genetically associated with Alzheimer disease. Nature Genetics, 39(2), 168–177. https://doi.org/10.1038/ng1943 Ruan, Y. (2022). Improving polygenic prediction in ancestrally diverse populations. Nat Genet, 54, 573–580. Ruopp, M. D., Perkins, N. J., Whitcomb, B. W., & Schisterman, E. F. (2008). Youden Index and Optimal Cut‐Point Estimated from Observations Affected by a Lower Limit of Detection. Biometrical Journal, 50(3), 419–430. https://doi.org/10.1002/bimj.200710415 Scheltens, P., De Strooper, B., Kivipelto, M., Holstege, H., Chételat, G., Teunissen, C. E., Cummings, J., & Van Der Flier, W. M. (2021). Alzheimer’s disease. The Lancet, 397(10284), 1577–1590. https://doi.org/10.1016/S0140-6736(20)32205-4 Schwartzentruber, J., Cooper, S., Liu, J. Z., Barrio-Hernandez, I., Bello, E., Kumasaka, N., Young, A. M. H., Franklin, R. J. M., Johnson, T., Estrada, K., Gaffney, D. J., Beltrao, P., & Bassett, A. (2021). Genome-wide meta-analysis, fine-mapping and integrative prioritization implicate new Alzheimer’s disease risk genes. Nature Genetics, 53(3), 392–402. https://doi.org/10.1038/s41588-020-00776-w Selvaraju, R. R., Cogswell, M., Das, A., Vedantam, R., Parikh, D., & Batra, D. (2019). Grad-CAM: Visual Explanations from Deep Networks via Gradient-based Localization. https://doi.org/10.1007/s11263-019-01228-7 Sherrington, R., Rogaev, E. I., Liang, Y., Rogaeva, E. A., Levesque, G., Ikeda, M., Chi, H., Lin, C., Li, G., Holman, K., Tsuda, T., Mar, L., Foncin, J.-F., Bruni, A. C., Montesi, M. P., Sorbi, S., Rainero, I., Pinessi, L., Nee, L., … St George-Hyslop, P. H. (1995). Cloning of a gene bearing missense mutations in early-onset familial Alzheimer’s disease. Nature, 375(6534), 754–760. https://doi.org/10.1038/375754a0 The 1000 Genomes Project Consortium, Corresponding authors, Auton, A., Abecasis, G. R., Steering committee, Altshuler, D. M., Durbin, R. M., Abecasis, G. R., Bentley, D. R., Chakravarti, A., Clark, A. G., Donnelly, P., Eichler, E. E., Flicek, P., Gabriel, S. B., Gibbs, R. A., Green, E. D., Hurles, M. E., Knoppers, B. M., … Abecasis, G. R. (2015). A global reference for human genetic variation. Nature, 526(7571), 68–74. https://doi.org/10.1038/nature15393 The International HapMap Consortium, Genotyping centres: Baylor College of Medicine and ParAllele BioScience, Gibbs, R. A., Belmont, J. W., Hardenbol, P., Willis, T. D., Yu, F., Chinese HapMap Consortium, Yang, H., Ch’ang, L.-Y., Huang, W., Liu, B., Shen, Y., Tam, P. K.-H., Tsui, L.-C., Waye, M. M. Y., Wong, J. T.-F., Zeng, C., Zhang, Q., … Tanaka, T. (2003). The International HapMap Project. Nature, 426(6968), 789–796. https://doi.org/10.1038/nature02168 Vemuri, P., & Jack, C. R. (2010). Role of structural MRI in Alzheimer’s disease. Alzheimer’s Research & Therapy, 2(4), 23. https://doi.org/10.1186/alzrt47 Weiner, M. W., Veitch, D. P., Aisen, P. S., Beckett, L. A., Cairns, N. J., Cedarbaum, J., Donohue, M. C., Green, R. C., Harvey, D., Jack, C. R., Jagust, W., Morris, J. C., Petersen, R. C., Saykin, A. J., Shaw, L., Thompson, P. M., Toga, A. W., Trojanowski, J. Q., & Alzheimer’s Disease Neuroimaging Initiative. (2015). Impact of the Alzheimer’s Disease Neuroimaging Initiative, 2004 to 2014. Alzheimer’s & Dementia, 11(7), 865–884. https://doi.org/10.1016/j.jalz.2015.04.005 WHO. (2025). Dementia. World Health Organization. https://www.who.int/news-room/fact-sheets/detail/dementia#:~:text=In%202019%2C%20dementia%20cost%20economies,care%20and%20supervision%20per%20day. Wyman, B. T., Harvey, D. J., Crawford, K., Bernstein, M. A., Carmichael, O., Cole, P. E., Crane, P. K., DeCarli, C., Fox, N. C., Gunter, J. L., Hill, D., Killiany, R. J., Pachai, C., Schwarz, A. J., Schuff, N., Senjem, M. L., Suhy, J., Thompson, P. M., Weiner, M., … Alzheimer’s Disease Neuroimaging Initiative. (2013). Standardization of analysis sets for reporting results from ADNI MRI data. Alzheimer’s & Dementia, 9(3), 332–337. https://doi.org/10.1016/j.jalz.2012.06.004 Yagis, E., Atnafu, S. W., García Seco De Herrera, A., Marzi, C., Scheda, R., Giannelli, M., Tessa, C., Citi, L., & Diciotti, S. (2021). Effect of data leakage in brain MRI classification using 2D convolutional neural networks. Scientific Reports, 11(1). https://doi.org/10.1038/s41598-021-01681-w | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/97929 | - |
| dc.description.abstract | 阿茲海默症 (Alzheimer’s Disease, AD) 是老年人最常見的神經退化性疾病之一,影響全世界約 65 歲以上人口的 4%。在臨床診斷過程中,遺傳因子與腦部醫學影像皆為關鍵參考依據。本研究提出一個結合遺傳資訊與大腦的結構性磁振造影 (structural MRI, sMR) 的雙階段多模態分類模型,分別利用卷積神經網路(Convolutional Neural Network, CNN) 對大腦影像進行特徵萃取,並採用eXtreme Gradient Boosting (XGBoost) 進行分類。
本研究使用Alzheimer’s Disease Neuroimaging Initiative Phase 1 (ADNI 1) 資料,共納入 421 位受試者 (其中 AD 病患 192 位,認知正常對照組 229 位)。分析資料包括 620,901 個單核苷酸多型性 (Single Nucleotide Polymorphism, SNP) 標記、1,450 張標準化的 1.5 T 腦部 MRI 影像,以及人口統計變項 (年齡、性別與家族病史)。模型效能的評估是基於5-fold cross validation和以受試者為依據的資料切分 (Subject-level data split),並以 AUROC作為主要評估指標。實驗的結果顯示,整合遺傳與腦影像特徵的模型達到最佳 AUROC 為 0.91,優於僅使用遺傳資訊 (AUROC = 0.86) 或僅使用影像特徵 (AUROC = 0.88) 之模型。 此外,我們分別以多基因風險分數 (Polygenic Risk Score, PRS) 與整合風險分數 (Integrated Risk Score, IRS) 進行高風險子群的識別,成功辨識AD高風險之子族群。最後,針對資料洩漏問題的分析顯示,當洩漏程度增加時模型效能亦會被高估,顯示在醫學影像相關研究中防止資料洩漏的重要性。 本研究的結果顯示,結合基因體與腦部影像資料進行整合式分析,對於阿茲海默症之高風險族群之識別與精準健康之推動具有高度應用潛力。 | zh_TW |
| dc.description.abstract | Alzheimer’s Disease (AD) affects approximately 4% of the population above 65 years old. Both genetic factors and medical images play a major role in providing information during the diagnosis process for the patient. In this study, we propose a two-stage multimodal classification model based on the genetics and structural MRI data using the Convolutional Neural Network (CNN) and eXtreme Gradient Boosting (XGBoost) models. The study was conducted based on 421 subjects (192 AD cases and 229 non-AD controls) from the Alzheimer’s Disease Neuroimaging Initiative Phase 1 (ADNI 1). Our analysis included 620,901 single nucleotide polymorphism (SNP) markers from the Illumina Human610-Quad BeadChip genotyping platform, 1,450 1.5T brain structure magnetic resonance imaging (MRI) from ADNI 1 Standardized MRI Collections, and demographic variables, including age, sex, and AD family history. The performance was evaluated using AUROC (Area Under the Receiver Operating Characteristic Curve) on a 5-fold cross-validation with a subject-level data split. The result showed that the model integrating genetics and brain MRI features achieved a best AUROC of 0.91, outperforming the models considering only genetics (AUROC = 0.81) or brain MRI features (AUROC = 0.88). Furthermore, the high-risk subgroup was identified using the Polygenic Risk Score (PRS) and the Integrated Risk Score (IRS) calculated from SNP data and MRI-extracted features. Last, the analysis of the data leakage problem reveals an inflation of model performance as the severity of leakage increases, highlighting the importance of data leakage prevention in medical image-related studies. The integrative analysis of genomics and brain MRI has great potential to facilitate the identification of high-risk populations and accelerate the advancement of precision health in AD. | en |
| dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2025-07-23T16:08:29Z No. of bitstreams: 0 | en |
| dc.description.provenance | Made available in DSpace on 2025-07-23T16:08:29Z (GMT). No. of bitstreams: 0 | en |
| dc.description.tableofcontents | English Abstract I
Chinese Abstract III Acknowledgements V Table of Contents VI List of Figures VII List of Tables IX Chapter 1 Introduction 1 Chapter 2 Data and Methods 4 2.1 Data 4 2.2 Methods 7 Chapter 3 Results 18 3.1 Demographic-Based Analysis 18 3.2 Genetic-Based Analysis 21 3.3 Image-Based Analysis 29 3.4 Genetic-Image Integration Analysis 36 3.5 Data leakage 42 Chapter 4 Discussion 43 Chapter 5 Conclusion 48 Reference 49 | - |
| dc.language.iso | en | - |
| dc.subject | 阿茲海默症 | zh_TW |
| dc.subject | 磁振造影 | zh_TW |
| dc.subject | 多基因風險分數 | zh_TW |
| dc.subject | 單一核苷酸多型性 | zh_TW |
| dc.subject | 深度學習 | zh_TW |
| dc.subject | 卷積神經網路 | zh_TW |
| dc.subject | 極限梯度提升 | zh_TW |
| dc.subject | 整合風險分數 | zh_TW |
| dc.subject | XGBoost | en |
| dc.subject | Alzheimer’s Disease | en |
| dc.subject | Single Nucleotide Polymorphism | en |
| dc.subject | Magnetic Resonance Imaging | en |
| dc.subject | Polygenic Risk Score | en |
| dc.subject | Integrated Risk Score | en |
| dc.subject | Deep Learning | en |
| dc.subject | Convolution Neural Network | en |
| dc.title | 整合基因多型性和大腦磁振造影進行阿茲海默症的分類和高風險族群的識別 | zh_TW |
| dc.title | Integration of Genetic Polymorphisms and Brain MRI in Alzheimer’s Disease Classification and High-Risk Subgroups Identification | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 113-2 | - |
| dc.description.degree | 碩士 | - |
| dc.contributor.coadvisor | 王偉仲 | zh_TW |
| dc.contributor.coadvisor | Wei-Chung Wang | en |
| dc.contributor.oralexamcommittee | 陳君厚;陳素雲;李易儒 | zh_TW |
| dc.contributor.oralexamcommittee | Chun-Houh Chen;Su-Yun Huang;Yi-Ju Lee | en |
| dc.subject.keyword | 阿茲海默症,單一核苷酸多型性,磁振造影,多基因風險分數,整合風險分數,深度學習,卷積神經網路,極限梯度提升, | zh_TW |
| dc.subject.keyword | Alzheimer’s Disease,Single Nucleotide Polymorphism,Magnetic Resonance Imaging,Polygenic Risk Score,Integrated Risk Score,Deep Learning,Convolution Neural Network,XGBoost, | en |
| dc.relation.page | 56 | - |
| dc.identifier.doi | 10.6342/NTU202501302 | - |
| dc.rights.note | 同意授權(全球公開) | - |
| dc.date.accepted | 2025-06-27 | - |
| dc.contributor.author-college | 電機資訊學院 | - |
| dc.contributor.author-dept | 資料科學學位學程 | - |
| dc.date.embargo-lift | 2027-07-01 | - |
| 顯示於系所單位: | 資料科學學位學程 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-113-2.pdf 此日期後於網路公開 2027-07-01 | 4.95 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
