請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/97914完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 謝昇峯 | zh_TW |
| dc.contributor.advisor | Sheng-Feng Hsieh | en |
| dc.contributor.author | 陳姿羽 | zh_TW |
| dc.contributor.author | Tzu-Yu Chen | en |
| dc.date.accessioned | 2025-07-23T16:05:05Z | - |
| dc.date.available | 2025-07-24 | - |
| dc.date.copyright | 2025-07-23 | - |
| dc.date.issued | 2025 | - |
| dc.date.submitted | 2025-07-17 | - |
| dc.identifier.citation | Abbott, L. J., Parker, S., Peters, G. F., & Raghunandan, K. (2003). The association between audit committee characteristics and audit fees. Auditing: A Journal of Practice & Theory, 22(2), 17-32.
Arens, A. A., Elder, R. J., & Beasley, M. S. (2012). Auditing and Assurance Services: An Integrated Approach. Prentice Hall. Ashraf, M. (2024). Does automation improve financial reporting? Evidence from internal controls. Review of Accounting Studies, 1-44. Ashton, R. H., Graul, P. R., & Newton, J. D. (1989). Audit delay and the timeliness of corporate reporting. Contemporary Accounting Research, 5(2), 657-673. Ashton, R. H., Willingham, J. J., & Elliott, R. K. (1987). An empirical analysis of audit delay. Journal of Accounting Research, 275-292. Awad, K. A., & Ali, W. A. M. (2024). Utilizing Robotic Process Automation and Artificial Intelligence in Auditing to Mitigate Audit Risks. Technium Social Sciences Journal, 66, 1-14. Bamber, E. M., Bamber, L. S., & Schoderbek, M. P. (1993). Audit structure and other determinants of audit report lag: An empirical analysis. Auditing: A Journal of Practice & Theory, 12(1). Bedard, J. C., & Johnstone, K. M. (2004). Earnings manipulation risk, corporate governance risk, and auditors' planning and pricing decisions. The Accounting Review, 79(2), 277-304. Bhatt, G. D., & Grover, V. (2005). Types of information technology capabilities and their role in competitive advantage: An empirical study. Journal of Management Information Systems, 22(2), 253-277. Blankley, A. I., Hurtt, D. N., & MacGregor, J. E. (2014). The relationship between audit report lags and future restatements. Auditing: A Journal of Practice & Theory, 33(2), 27-57. Carcello, J. V., & Neal, T. L. (2000). Audit committee composition and auditor reporting. The Accounting Review, 75(4), 453-467. Chen, Y., Smith, A. L., Cao, J., & Xia, W. (2014). Information technology capability, internal control effectiveness, and audit fees and delays. Journal of Information Systems, 28(2), 149-180. Choi, J.-H., Kim, C., Kim, J.-B., & Zang, Y. (2010). Audit office size, audit quality, and audit pricing. Auditing: A Journal of Practice & Theory, 29(1), 73-97. Cooper, L. A., Holderness Jr, D. K., Sorensen, T. L., & Wood, D. A. (2022). Perceptions of robotic process automation in Big 4 public accounting firms: Do firm leaders and lower-level employees agree? Journal of Emerging Technologies in Accounting, 19(1), 33-51. Craswell, A. T., & Francis, J. R. (1999). Pricing initial audit engagements: A test of competing theories. The Accounting Review, 74(2), 201-216. Czarnitzki, D., Fernández, G. P., & Rammer, C. (2023). Artificial intelligence and firm-level productivity. Journal of Economic Behavior & Organization, 211, 188-205. Dahiyat, A. (2022). Robotic process automation and audit quality. Corporate Governance and Organizational Behavior Review, 6(1), 160-167. DeAngelo, L. E. (1981). Auditor independence,‘low balling’, and disclosure regulation. Journal of Accounting and Economics, 3(2), 113-127. DeFond, M., & Zhang, J. (2014). A review of archival auditing research. Journal of Accounting and Economics, 58(2-3), 275-326. Deloitte. (2020). Financial reporting RPA risks and controls. Available at: https://www2.deloitte.com/us/en/pages/audit/articles/financial-reporting-rpa-risks-and-controls.html Devarajan, Y. (2018). A study of robotic process automation use cases today for tomorrow’s business. International Journal of Computer Techniques, 5(6), 12-18. Ettredge, M. L., Li, C., & Sun, L. (2006). The impact of SOX Section 404 internal control quality assessment on audit delay in the SOX era. Auditing: A Journal of Practice & Theory, 25(2), 1-23. Eulerich, M., Pawlowski, J., Waddoups, N. J., & Wood, D. A. (2022). A framework for using robotic process automation for audit tasks. Contemporary Accounting Research, 39(1), 691-720. Eulerich, M., Summers, S. L., & Wood, D. A. (2025). Artificial Intelligence, Audit Risk, and Regulatory Uncertainty: A Refined Analytical Model of Auditor and Client Decisions Under PCAOB Scrutiny. Audit Risk, and Regulatory Uncertainty: A Refined Analytical Model of Auditor and Client Decisions Under PCAOB Scrutiny (May 07, 2025). Eulerich, M., Waddoups, N., Wagener, M., & Wood, D. A. (2024a). The dark side of robotic process automation (RPA): Understanding risks and challenges with RPA. Accounting Horizons, 38(2), 143-152. Eulerich, M., Waddoups, N., Wagener, M., & Wood, D. A. (2024b). Development of a framework of key internal control and governance principles for robotic process automation (RPA). Journal of Information Systems, 38(2), 29-49. EY. (2025). How responsible AI can unlock your competitive edge. Available at: https://www.ey.com/en_uk/insights/ai/how-responsible-ai-can-unlock-your-competitive-edge Fedyk, A., Hodson, J., Khimich, N., & Fedyk, T. (2022). Is artificial intelligence improving the audit process? Review of Accounting Studies, 27(3), 938-985. Ferguson, A., Francis, J. R., & Stokes, D. J. (2003). The effects of firm‐wide and office‐level industry expertise on audit pricing. The Accounting Review, 78(2), 429-448. Francis, J. R. (1984). The effect of audit firm size on audit prices: A study of the Australian market. Journal of Accounting and Economics, 6(2), 133-151. Gotthardt, M., Koivulaakso, D., Paksoy, O., Saramo, C., Martikainen, M., & Lehner, O. (2020). Current state and challenges in the implementation of smart robotic process automation in accounting and auditing. ACRN Journal of Finance and Risk Perspectives. Habib, A., & Bhuiyan, M. B. U. (2011). Audit firm industry specialization and the audit report lag. Journal of International Accounting, Auditing and Taxation, 20(1), 32-44. Habib, A., Bhuiyan, M. B. U., Huang, H. J., & Miah, M. S. (2019). Determinants of audit report lag: A meta‐analysis. International Journal of Auditing, 23(1), 20-44. Hackenbrack, K., & Knechel, W. R. (1997). Resource allocation decisions in audit engagements. Contemporary Accounting Research, 14(3), 481-499. Han, S., Rezaee, Z., Xue, L., & Zhang, J. H. (2016). The association between information technology investments and audit risk. Journal of Information Systems, 30(1), 93-116. Hay, D. C., Knechel, W. R., & Wong, N. (2006). Audit fees: A meta‐analysis of the effect of supply and demand attributes. Contemporary Accounting Research, 23(1), 141-191. Hoffman, B. W., Sellers, R. D., & Skomra, J. (2018). The impact of client information technology capability on audit pricing. International Journal of Accounting Information Systems, 29, 59-75. https://doi.org/https://doi.org/10.1016/j.accinf.2018.03.002 Hogan, C. E., & Wilkins, M. S. (2008). Evidence on the audit risk model: Do auditors increase audit fees in the presence of internal control deficiencies? Contemporary Accounting Research, 25(1), 219-242. Huang, F., & Vasarhelyi, M. A. (2019). Applying robotic process automation (RPA) in auditing: A framework. International Journal of Accounting Information Systems, 35, 100433. Hunton, J. E., Wright, A. M., & Wright, S. (2004). Are financial auditors overconfident in their ability to assess risks associated with enterprise resource planning systems?(Retracted). Journal of Information Systems, 18(2), 7-28. International Auditing and Assurance Standards Board. (2021). ISA 200: Overall objectives of the independent auditor and the conduct of an audit in accordance with International Standards on Auditing. International Federation of Accountants. Issa, H., Sun, T., & Vasarhelyi, M. A. (2016). Research ideas for artificial intelligence in auditing: The formalization of audit and workforce supplementation. Journal of Emerging Technologies in Accounting, 13(2), 1-20. Janvrin, D., Bierstaker, J., & Lowe, D. J. (2009). An investigation of factors influencing the use of computer‐related audit procedures. Journal of Information Systems, 23(1), 97-118. Kanellou, A., & Spathis, C. (2011). Auditing in enterprise system environment: a synthesis. Journal of Enterprise Information Management, 24(6), 494-519. Kaya, C. T., Türkyılmaz, M., & Birol, B. (2019). Impact of RPA technologies on accounting systems. Muhasebe ve Finansman Dergisi(82). Kim, J., Nicolaou, A. I., & Vasarhelyi, M. A. (2013). The impact of enterprise resource planning (ERP) systems on the audit report lag. Journal of Emerging Technologies in Accounting, 10(1), 63-88. Knechel, W. R., & Payne, J. L. (2001). Additional evidence on audit report lag. Auditing: A Journal of Practice & Theory, 20(1), 137-146. Kokina, J., Blanchette, S., Davenport, T. H., & Pachamanova, D. (2025). Challenges and opportunities for artificial intelligence in auditing: Evidence from the field. International Journal of Accounting Information Systems, 56, 100734. Kokina, J., & Davenport, T. H. (2017). The emergence of artificial intelligence: How automation is changing auditing. Journal of Emerging Technologies in Accounting, 14(1), 115-122. KPMG. (2018). Managing risks of the growing RPA jungle. Available at: https://assets.kpmg.com/content/dam/kpmg/in/pdf/2018/12/Managing-risks-the-growing-RPA-jungle.pdf KPMG. (2024). AI in financial reporting and audit: Navigating the new era. Available at: https://kpmg.com/xx/en/our-insights/ai-and-technology/ai-in-financial-reporting-and-audit.html Lai, H.-K., & Hsieh, S.-F. (2025). Evaluating the Impact of Robotic Process Automation on Earnings Management. Journal of Information Systems, 39(1), 103-133. Liao, H., Wang, C., & Chi, W. (2012). What does the complete disclosure of audit fee information tell us in Taiwan. Taiwan Accounting Review, 8(1), 49-88. Lu, L. Y., Wu, H., & Yu, Y. (2017). Investment-related pressure and audit risk. Auditing: A Journal of Practice & Theory, 36(3), 137-157. Mande, V., & Son, M. (2011). Do audit delays affect client retention? Managerial Auditing Journal, 26(1), 32-50. Masli, A., Peters, G. F., Richardson, V. J., & Sanchez, J. M. (2010). Examining the potential benefits of internal control monitoring technology. The Accounting Review, 85(3), 1001-1034. Messier Jr, W. F., & Austen, L. A. (2000). Inherent risk and control risk assessments: Evidence on the effect of pervasive and specific risk factors. Auditing: A Journal of Practice & Theory, 19(2), 119-131. Moffitt, K. C., Rozario, A. M., & Vasarhelyi, M. A. (2018). Robotic process automation for auditing. Journal of Emerging Technologies in Accounting, 15(1), 1-10. Morris, J. J., & Laksmana, I. (2010). Measuring the impact of enterprise resource planning (ERP) systems on earnings management. Journal of Emerging Technologies in Accounting, 7(1), 47-71. Public Company Accounting Oversight Board (PCAOB). (2010). Auditing Standard 1101: Audit Risk. PCAOB Release No. 2010-004. PwC. (2017). Robotic process automation: A primer for internal audit professionals. Available at: https://www.pwc.com/us/en/risk-assurance/publications/assets/pwc-robotics-process-automation-a-primer-for-internal-audit-professionals-october-2017.pdf PwC. (2020). An introduction to implementing AI in manufacturing. Available at: https://www.pwc.com/gx/en/industries/industrial-manufacturing/publications/introduction-implementing-ai-manufacturing.html PwC. (2024). PwC’s 2024 US Responsible AI Survey. Available at: https://www.pwc.com/us/en/tech-effect/ai-analytics/responsible-ai-survey.html Raghunandan, K., & Rama, D. V. (2006). SOX Section 404 material weakness disclosures and audit fees. Auditing: A Journal of Practice & Theory, 25(1), 99-114. Rahman, M. J., Zhu, H., & Yue, L. (2024). Does the adoption of artificial intelligence by audit firms and their clients affect audit quality and efficiency? Evidence from China. Managerial Auditing Journal, 39(6), 668-699. Rahman, M. J., & Ziru, A. (2022). Clients’ digitalization, audit firms’ digital expertise, and audit quality: evidence from China. International Journal of Accounting & Information Management, 31(2), 221-246. Sankaraguruswamy, S., & Whisenant, S. (2009). Pricing initial audit engagements: Empirical evidence following public disclosure of audit fees. SSRN eLibrary. Simunic, D. A. (1980). The pricing of audit services: Theory and evidence. Journal of Accounting Research, 161-190. Stoel, D., Havelka, D., & Merhout, J. W. (2012). An analysis of attributes that impact information technology audit quality: A study of IT and financial audit practitioners. International Journal of Accounting Information Systems, 13(1), 60-79. Tan, J., Chang, S., Zheng, Y., & Chan, K. C. (2025). Effects of artificial intelligence in the modern business: Client artificial intelligence application and audit quality. International Review of Financial Analysis, 104271. Tucker, I. (2017). Are you ready for your robots? Strategic Finance, 99(5), 48-53. Whisenant, S., Sankaraguruswamy, S., & Raghunandan, K. (2003). Evidence on the joint determination of audit and non‐audit fees. Journal of Accounting Research, 41(4), 721-744. Wright, S., & Wright, A. M. (2002). Information system assurance for enterprise resource planning systems: Unique risk considerations. Journal of Information Systems, 16(s-1), 99-113. Zerni, M. (2012). Audit partner specialization and audit fees: Some evidence from Sweden. Contemporary Accounting Research, 29(1), 312-340. Zhang, C., Thomas, C., & Vasarhelyi, M. A. (2022). Attended process automation in audit: A framework and a demonstration. Journal of Information Systems, 36(2), 101-124. Zhang, J. H. (2018). Accounting comparability, audit effort, and audit outcomes. Contemporary Accounting Research, 35(1), 245-276. | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/97914 | - |
| dc.description.abstract | 本研究藉由分別採用機器人流程自動化(RPA)和人工智慧(AI)的台灣上市櫃公司與尚未使用該數位工具的對照組公司進行分析,探討RPA和AI對審計風險的影響。本文以審計公費和審計延遲作為審計風險的代理變數。實證結果顯示出公司導入RPA後,審計延遲有顯著減少,代表公司導入RPA可能會降低審計風險。公司導入RPA時,如果沒有採取適當的內部控制措施將會面臨風險。因此,如果公司導入RPA搭配完善的內控制度,有可能會降低內控風險。另外,結果指出公司導入AI後,審計延遲有顯著減少,代表公司使用AI可能會降低審計風險。因為有採用人工智慧的公司時,通常擁有更可靠的營運系統,且內部控制品質相對較高,從而降低審計風險。 | zh_TW |
| dc.description.abstract | This study explores the impact of robotic process automation (RPA) and artificial intelligence (AI) on audit risk by analyzing Taiwanese listed companies that use RPA and AI, compared with the control group. This paper uses audit fees and audit delay as proxy variables for audit risk. The empirical results show that after the company introduces RPA, the audit delay is significantly reduced, which means that the company's use of RPA may reduce audit risk. When a company introduces RPA, it will face risks if it does not take appropriate internal control measures. Therefore, if a company introduces RPA with a sound internal control system, it may reduce internal control risks. In addition, the results also indicate that after the company introduces AI, audit delay is significantly reduced, which means that the company's use of AI may reduce audit risk. This is because companies that adopt AI usually have more reliable operating systems and relatively higher internal control quality, thereby reducing audit risk. | en |
| dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2025-07-23T16:05:05Z No. of bitstreams: 0 | en |
| dc.description.provenance | Made available in DSpace on 2025-07-23T16:05:05Z (GMT). No. of bitstreams: 0 | en |
| dc.description.tableofcontents | 中文摘要 i
Abstract ii Table of Contents iii List of Tables iv 1. Introduction 1 2. Literature Review and Hypothesis Development 4 2.1. Audit Risk 4 2.2. Audit Fees 7 2.3. Audit Delay 8 2.4. The Impact of IT on Audit Risk 9 2.5. The Impact of RPA on Audit Risk 11 2.6. The Impact of AI on Audit Risk 13 3. Sample Selection and Research Design 15 3.1. RPA and AI Adoption Indicators 15 3.2. Sample 17 3.3. Proxy for Audit Risk 19 3.4. Empirical Model 20 3.5. Control Variables 22 4. Results 24 4.1. Descriptive Statistics and Correlation Matrix 24 4.2. Mean Comparisons 27 4.3. Main Results 30 5. Additional Analysis 44 5.1. Considering Deep Learning in RPA’s Impact on Audit Risk 44 5.2. Instrumental Variable 47 6. Conclusion 48 References 51 Appendix 58 | - |
| dc.language.iso | en | - |
| dc.subject | 機器人流程自動化 | zh_TW |
| dc.subject | 審計延遲 | zh_TW |
| dc.subject | 審計公費 | zh_TW |
| dc.subject | 審計風險 | zh_TW |
| dc.subject | 機器人流程自動化 | zh_TW |
| dc.subject | 人工智慧 | zh_TW |
| dc.subject | 審計延遲 | zh_TW |
| dc.subject | 審計公費 | zh_TW |
| dc.subject | 審計風險 | zh_TW |
| dc.subject | 人工智慧 | zh_TW |
| dc.subject | audit delay | en |
| dc.subject | Robotic Process Automation | en |
| dc.subject | RPA | en |
| dc.subject | Artificial Intelligence | en |
| dc.subject | AI | en |
| dc.subject | audit risk | en |
| dc.subject | audit fees | en |
| dc.subject | audit delay | en |
| dc.subject | Robotic Process Automation | en |
| dc.subject | RPA | en |
| dc.subject | Artificial Intelligence | en |
| dc.subject | AI | en |
| dc.subject | audit risk | en |
| dc.subject | audit fees | en |
| dc.title | 衡量人工智慧和機器人流程自動化對審計風險的影響 | zh_TW |
| dc.title | Evaluating the Impact of Artificial Intelligence and Robotic Process Automation on Audit Risk | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 113-2 | - |
| dc.description.degree | 碩士 | - |
| dc.contributor.oralexamcommittee | 陳坤志;顏如君 | zh_TW |
| dc.contributor.oralexamcommittee | Kun-Chih Chen;Ju-Chun Yen | en |
| dc.subject.keyword | 人工智慧,機器人流程自動化,審計風險,審計公費,審計延遲, | zh_TW |
| dc.subject.keyword | Robotic Process Automation,RPA,Artificial Intelligence,AI,audit risk,audit fees,audit delay, | en |
| dc.relation.page | 59 | - |
| dc.identifier.doi | 10.6342/NTU202501764 | - |
| dc.rights.note | 同意授權(限校園內公開) | - |
| dc.date.accepted | 2025-07-18 | - |
| dc.contributor.author-college | 管理學院 | - |
| dc.contributor.author-dept | 會計學系 | - |
| dc.date.embargo-lift | 2026-08-31 | - |
| 顯示於系所單位: | 會計學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-113-2.pdf 未授權公開取用 | 928.45 kB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
