請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/97908完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 管希聖 | zh_TW |
| dc.contributor.advisor | Hsi-Sheng Goan | en |
| dc.contributor.author | 李君毅 | zh_TW |
| dc.contributor.author | Jiun-I Lee | en |
| dc.date.accessioned | 2025-07-22T16:09:44Z | - |
| dc.date.available | 2025-07-23 | - |
| dc.date.copyright | 2025-07-22 | - |
| dc.date.issued | 2025 | - |
| dc.date.submitted | 2025-07-15 | - |
| dc.identifier.citation | [1] Peter W. Shor. “Polynomial-Time Algorithms for Prime Factorization and Discrete Logarithms on a Quantum Computer”. In: SIAM Journal on Computing 26 (1997), p. 1484. DOI: 10.1137/S0097539795293172. URL: https://epubs.siam.org/doi/10.1137/S0097539795293172.
[2] Michael A. Nielsen and Isaac L. Chuang. Quantum Computation and Quantum Information. 10th Anniversary ed. Cambridge University Press, 2010. ISBN: 978-1-107-00217-3. URL: https://www.cambridge.org/9781107002173. [3] Alan Aspuru-Guzik et al. “Simulated Quantum Computation of Molecular Energies”. In: Science 309 (5741 2005), pp. 1704–1707. DOI: 10.1126/science.1113479. URL: https://www.science.org/doi/10.1126/science.1113479. [4] O. Astafiev et al. “Quantum Noise in the Josephson Charge Qubit”. In: Physical Review Letters 93 (26 2004), p. 267007. DOI: 10.1103/PhysRevLett.93.267007. URL: https://link.aps.org/doi/10.1103/PhysRevLett.93.267007. [5] Gregoire Ithier et al. “Decoherence in a superconducting quantum bit circuit”. In: Physical Review B 72 (13 2005), p. 134519. DOI: 10.1103/PhysRevB.72.134519. URL: https://link.aps.org/doi/10.1103/PhysRevB.72.134519. [6] H. Y. Carr and E. M. Purcell. “Effects of Diffusion on Free Precession in Nuclear Magnetic Resonance Experiments”. In: Physical Review 94 (3 1954), pp. 630–638. DOI: 10.1103/PhysRev.94.630. URL: https://link.aps.org/doi/10.1103/PhysRev.94.630.49 [7] Vinay Tripathi et al. “Benchmarking Quantum Gates and Circuits”. In: Chemical Reviews (2025). DOI: 10.1021/acs.chemrev.4c00870. URL: https://pubs. acs.org/doi/10.1021/acs.chemrev.4c00870. [8] Julian Kelly et al. “Optimal Quantum Control Using Randomized Benchmarking”. In: Physical Review Letters 112 (24 2014), p. 240504. DOI: 10 . 1103 / hysRevLett.112.240504. URL: https://link.aps.org/doi/10.1103/PhysRevLett.112.240504. [9] Navin Khaneja et al. “Optimal Control of Coupled Spin Dynamics: Design of NMR Pulse Sequences by Gradient Ascent Algorithms”. In: Journal of Magnetic Resonance 172 (2 2005), pp. 296–305. DOI: 10.1016/j.jmr.2004.11.004. URL: https://doi.org/10.1016/j.jmr.2004.11.004. [10] Patrick Doria, Tommaso Calarco, and Simone Montangero. “Optimal Control Technique for Many-Body Quantum Dynamics”. In: Physical Review Letters 106 (192011), p. 190501. DOI: 10 . 1103 / PhysRevLett . 106 . 190501. URL: https://link.aps.org/doi/10.1103/PhysRevLett.10.190501. [11] Shai Machnes et al. “Tunable, Flexible, and Efficient Optimization of Control Pulses for Practical Qubits”. In: Physical Review Letters 120 (15 2018), p. 150401. DOI: 10.1103/PhysRevLett.120.150401. URL: https://link.aps.org/doi/10.1103/PhysRevLett.120.150401. [12] Dong C. Liu and Jorge Nocedal. “On the Limited Memory BFGS Method for Large Scale Optimization”. In: Mathematical Programming 45 (1–3 1989), pp. 503–528. DOI: 10.1007/BF01589116. URL: https://link.springer.com/article/10.1007/BF01589116. [13] Daniel J. Egger and Frank K. Wilhelm. “Adaptive Hybrid Optimal Quantum Control for Imprecisely Characterized Systems”. In: Physical Review Letters 112 (242014), p. 240503. DOI: 10 . 1103 / PhysRevLett . 112 . 240503. URL: https://link.aps.org/doi/10.1103/PhysRevLett.112.240503.50 [14] Nicolas Wittler et al. “Integrated Tool Set for Control, Calibration, and Characterization of Quantum Devices Applied to Superconducting Qubits”. In: Physical Review Applied 15 (3 2021), p. 034080. DOI: 10.1103/PhysRevApplied.15.034080. URL: https://link.aps.org/doi/10.1103/PhysRevApplied.15.034080. [15] Benjamin Schumacher. “Quantum coding”. In: Physical Review A 51 (4 1995), pp. 2738–2747. DOI: 10.1103/PhysRevA.51.2738. URL: https://doi.org/10.1103/PhysRevA.51.2738. [16] Jens Koch et al. “Charge-insensitive qubit design derived from the Cooper pair box”. In: Physical Review A 76.4 (2007), p. 042319. DOI: 10.1103/PhysRevA.76.042319. [17] Antonio Barone and Gianfranco Paterno. ` Physics and Applications of the Josephson Effect. New York: John Wiley & Sons, 1982. ISBN: 9780471014690. URL:https://onlinelibrary.wiley.com/doi/book/10.1002/352760278X. [18] Michael Tinkham. Introduction to Superconductivity. 2nd ed. McGraw-Hill, 1996. ISBN: 9780070648766. [19] John M. Martinis et al. “Decoherence in Josephson qubits from dielectric loss”. In:Physical Review Letters 95.21 (2005), p. 210503. DOI: 10.1103/PhysRevLett.95.210503. URL: https://doi.org/10.1103/PhysRevLett.95.210503. [20] Gianluigi Catelani et al. “Relaxation and frequency shifts induced by quasiparticles in superconducting qubits”. In: Physical Review B 84.6 (2011), p. 064517. DOI: 10.1103/PhysRevB.84.064517. URL: https://doi.org/10.1103/PhysRevB.84.064517. [21] Fei Yan et al. “The flux qubit revisited to enhance coherence and reproducibility”. In: Nature Communications 7 (2016), p. 12964. DOI: 10 . 1038 / ncomms12964. URL: https://doi.org/10.1038/ncomms12964.51 [22] Christopher J. Wood and Jay M. Gambetta. “Quantification of leakage errors via randomized benchmarking”. In: Physical Review A 97.3 (2018), p. 032306. DOI:10.1103/PhysRevA.97.032306. URL: https://doi.org/10.1103/PhysRevA.97.032306. [23] Felix Motzoi et al. “Simple pulses for elimination of leakage in weakly nonlinear qubits”. In: Physical Review Letters 103.11 (2009), p. 110501. DOI: 10.1103/PhysRevLett.103.110501. URL: https://doi.org/10.1103/PhysRevLett.103.110501. [24] Alexandre Blais et al. “Circuit Quantum Electrodynamics”. In: Reviews of Modern Physics 93.2 (2021), p. 025005. DOI: 10.1103/RevModPhys.93.025005. URL:https://doi.org/10.1103/RevModPhys.93.025005. [25] M. B. Plenio and S. F. Huelga. “Dephasing-assisted transport: quantum networks and biomolecules”. In: New Journal of Physics 10.11 (2008), p. 113019. DOI: 10.1088/1367-2630/10/11/113019. URL: https://doi.org/10.1088/1367-2630/10/11/113019. [26] Ioan M. Pop et al. “Coherent suppression of electromagnetic dissipation due to superconducting quasiparticles”. In: Nature 508.7496 (2014), pp. 369–372. DOI:10.1038/nature13017. URL: https://doi.org/10.1038/nature13017. [27] Maxime Boissonneault, J. M. Gambetta, and Alexandre Blais. “Dispersive regime of circuit QED: Photon-dependent qubit dephasing and relaxation rates”. In: Physical Review A 79.1 (2009), p. 013819. DOI: 10.1103/PhysRevA.79.013819. URL:https://doi.org/10.1103/PhysRevA.79.013819. [28] Easwar Magesan, Jay M. Gambetta, and Joseph Emerson. “Scalable and Robust Randomized Benchmarking of Quantum Processes”. In: Physical Review Letters 106.18 (2011), p. 180504. DOI: 10.1103/PhysRevLett.106.180504. URL:https://doi.org/10.1103/PhysRevLett.106.180504. [29] Tahereh Abad et al. “Universal Fidelity Reduction of Quantum Operations from Weak Dissipation”. In: Physical Review Letters 129.15 (2022), p. 150504. DOI:5210.1103/PhysRevLett.129.150504. URL: https://doi.org/10.1103/PhysRevLett.129.150504. [30] Philip Krantz et al. “A Quantum Engineer’s Guide to Superconducting Qubits”. In: Applied Physics Reviews 6.2 (2019), p. 021318. DOI: 10.1063/1.5089550. URL:https://doi.org/10.1063/1.5089550. | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/97908 | - |
| dc.description.abstract | 本論文研究了超導量子位元 Transmon 的數學模型,並將其應用於數值模擬中,探討了不同激發態(excited state)數量下的模擬優化結果、不同波型條件下的優化效果,並進行了與確定性測試(Deterministic Benchmarking)的實驗比對,最後測試優化前後隨機性測試(Randomized Benchmarking)結果的變化。模擬結果顯示,隨著考慮的激發態數量增加,優化所需時間也隨之增長,模擬所得的閘保真度(fidelity)會逐漸偏離理論上的上限。而在使用不同波型進行優化的情況下,可以觀察到參數數量的增加雖然會導致更長的優化時間,但同時也能提升優化效果,讓結果更接近理論值。在確定性測試的實驗比對中,模擬所設定的 T1、T2 以及旋轉誤差(rotation error)與實驗結果有良好的符合程度;然而在相位誤差(phase error)方面,模擬與實驗結果有明顯差異。推測原因可能是實驗中 −X 與 X 操作在實際實現上存在細微差異,導致實驗中的衰減速度明顯快於模擬結果。此外,優化後相位誤差的平衡狀態亦未能與實驗一致,可能是因為模型中僅考慮了 T1 和 T2 的衰減機制,未將其他實驗上可能存在的雜訊來源(例如 1/f 誤差或準粒子雜訊)納入考量,導致模擬結果傾向維持在 |0⟩ 態,而實驗結果則趨近於無資訊的混合態。最後將模擬所得到的最佳參數應用於隨機性測試實驗,可以觀察到保真度有小幅提升;然而此結果亦可能受到其他因素影響,例如實驗時間長短、擬合誤差,或是隨機性測試量測次數不足等。因此,若欲進一步驗證模擬與優化方法的有效性,未來仍需透過更多次的實驗比對與數據收集來進行佐證。 | zh_TW |
| dc.description.abstract | This thesis investigates the mathematical modeling of the superconducting qubit transmon and its application in numerical simulations. Various optimization scenarios are explored, including different numbers of excited states and distinct pulse shapes. Deterministic Benchmarking (DB) is employed to validate the simulations against experimental data, and Randomized Benchmarking (RB) is used to evaluate fidelity before and after pulse optimization.
In the simulations, increasing the number of excited states results in longer optimization time and a greater deviation of the fidelity from its theoretical upper bound. For different pulse shapes, increasing the number of parameters similarly increases the optimization time, but can lead to improved performance that approaches the theoretical limit. In DB comparisons, simulated results for T1, T2, and rotation errors align well with experimental data. However, phase error shows a significant discrepancy: the experimental decay is faster than simulated results, likely due to subtle differences between the X and −X gates in practice. Furthermore, the steady-state behavior of the optimized phase error does not match experimental trends, possibly because the model accounts only for T1 and T2 decay and neglects other noise sources. As a result, the experimental data tend to converge to a fully mixed state, whereas simulations remain closer to the |0⟩ state. Finally, applying the optimized parameters in RB measurements reveals a modest improvement in gate fidelity. However, this enhancement may also arise from other factors, such as the total experiment duration, fitting inaccuracies, or insufficient measurement repetitions. Therefore, further verification would require a larger number of experimental trials to establish more conclusive comparisons. | en |
| dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2025-07-22T16:09:44Z No. of bitstreams: 0 | en |
| dc.description.provenance | Made available in DSpace on 2025-07-22T16:09:44Z (GMT). No. of bitstreams: 0 | en |
| dc.description.tableofcontents | 摘要 i
Abstract iii Preface v Contents vi List of Figures viii List of Tables x Chapter 1 Introduction 1 Chapter 2 Background of Superconducting Qubit 3 2.1 Concept of Qubit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 2.1.1 Bloch Sphere . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 2.1.2 Single Qubit Gates . . . . . . . . . . . . . . . . . . . . . . . . . 7 2.2 Transmon Qubit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 2.2.1 LC Circuit and Josephson Junction . . . . . . . . . . . . . . . . . 10 2.2.2 Drive . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 2.2.3 Noise . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 2.3 Qubit measurement and control . . . . . . . . . . . . . . . . . . . . . . . 15 2.3.1 Resonator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 2.3.2 IQ mixer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 2.3.3 Qubit characterization . . . . . . . . . . . . . . . . . . . . . . . 19 Chapter 3 Experiment Method 23 3.1 Simulation Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 3.2 Real-World Process . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 3.2.1 Dilution Refrigerator and Wiring . . . . . . . . . . . . . . . . . . 25 3.2.2 Calibration SOP . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 3.3 Pulse Optimization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 Chapter 4 Experiment Result 31 4.1 Simulation result . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 4.2 Comparison with DB . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 4.3 Fidelity improvement . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 Chapter 5 Conclusion 39 Bibliography 41 Appendix A: Transformation from SU(2) to SO(3) 47 Appendix B: Rotating Wave Approximation 49 | - |
| dc.language.iso | en | - |
| dc.subject | 超導量子位元 | zh_TW |
| dc.subject | 隨機性測試 | zh_TW |
| dc.subject | 單量子閘優化 | zh_TW |
| dc.subject | 量子操作優化 | zh_TW |
| dc.subject | 確定性測試 | zh_TW |
| dc.subject | 超導量子位元 | zh_TW |
| dc.subject | 隨機性測試 | zh_TW |
| dc.subject | 單量子閘優化 | zh_TW |
| dc.subject | 量子操作優化 | zh_TW |
| dc.subject | 確定性測試 | zh_TW |
| dc.subject | Superconducting qubit Transmon | en |
| dc.subject | Randomized benchmarking | en |
| dc.subject | Superconducting qubit Transmon | en |
| dc.subject | Deterministic benchmarking | en |
| dc.subject | Quantum process optimization | en |
| dc.subject | Single qubit gate optimization | en |
| dc.subject | Randomized benchmarking | en |
| dc.subject | Single qubit gate optimization | en |
| dc.subject | Quantum process optimization | en |
| dc.subject | Deterministic benchmarking | en |
| dc.title | 模擬導向設計於超導量子位元單量子閘控制脈衝之實現 | zh_TW |
| dc.title | Simulation-Guided Pulse Design for Realistic Control of Transmon Qubits | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 113-2 | - |
| dc.description.degree | 碩士 | - |
| dc.contributor.oralexamcommittee | 陳啟東;柯忠廷 | zh_TW |
| dc.contributor.oralexamcommittee | Chii-Dong Chen;Chung-Ting Ke | en |
| dc.subject.keyword | 超導量子位元,確定性測試,量子操作優化,單量子閘優化,隨機性測試, | zh_TW |
| dc.subject.keyword | Superconducting qubit Transmon,Deterministic benchmarking,Quantum process optimization,Single qubit gate optimization,Randomized benchmarking, | en |
| dc.relation.page | 52 | - |
| dc.identifier.doi | 10.6342/NTU202501727 | - |
| dc.rights.note | 未授權 | - |
| dc.date.accepted | 2025-07-16 | - |
| dc.contributor.author-college | 理學院 | - |
| dc.contributor.author-dept | 物理學系 | - |
| dc.date.embargo-lift | N/A | - |
| 顯示於系所單位: | 物理學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-113-2.pdf 未授權公開取用 | 1.94 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
