Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 理學院
  3. 化學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/97907
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor周必泰zh_TW
dc.contributor.advisorPi-Tai Chouen
dc.contributor.author池家任zh_TW
dc.contributor.authorChia-Jen Chihen
dc.date.accessioned2025-07-22T16:09:30Z-
dc.date.available2025-07-23-
dc.date.copyright2025-07-22-
dc.date.issued2025-
dc.date.submitted2025-07-15-
dc.identifier.citation(1) Matthews, H. D.; Gillett, N. P.; Stott, P. A.; Zickfeld, K. The proportionality of global warming to cumulative carbon emissions. Nature 2009, 459 (7248), 829–832.
(2) CarbonBrief. Global electricity generation by source. CarbonBrief 2024.
(3) NREL. Best Research-Cell Efficiency Chart. NREL 2025.
(4) Kan, C.; Hang, P.; Wang, S.; Li, B.; Yu, X.; Yang, X.; Yao, Y.; Shi, W.; De Wolf, S.; Yin, J. Efficient and stable perovskite-silicon tandem solar cells with copper thiocyanate-embedded perovskite on textured silicon. Nature Photonics 2025, 19 (1), 63–70.
(5) Kojima, A.; Teshima, K.; Shirai, Y.; Miyasaka, T. Organometal halide perovskites as visible-light sensitizers for photovoltaic cells. Journal of the American Chemical Society 2009, 131 (17), 6050–6051.
(6) Wang, D.; Liu, Z.; Qiao, Y.; Jiang, Z.; Zhu, P.; Zeng, J.; Peng, W.; Lian, Q.; Qu, G.; Xu, Y. Rigid molecules anchoring on NiOx enable> 26% efficiency perovskite solar cells. Joule 2025.
(7) Li, Z.; Yang, M.; Park, J.-S.; Wei, S.-H.; Berry, J. J.; Zhu, K. Stabilizing perovskite structures by tuning tolerance factor: formation of formamidinium and cesium lead iodide solid-state alloys. Chemistry of Materials 2016, 28 (1), 284–292.
(8) Konstantakou, M.; Stergiopoulos, T. A critical review on tin halide perovskite solar cells. Journal of Materials Chemistry A 2017, 5 (23), 11518–11549.
(9) Peng, X.; Yuan, J.; Shen, S.; Gao, M.; Chesman, A. S.; Yin, H.; Cheng, J.; Zhang, Q.; Angmo, D. Perovskite and organic solar cells fabricated by inkjet printing: progress and prospects. Advanced Functional Materials 2017, 27 (41), 1703704.
(10) Madeeha Aslam, T. M., Abdul Naeem. Organic Inorganic Perovskites: A Low-Cost-Efficient Photovoltaic Material. Perovskite and Piezoelectric Materials 2021.
(11) Savenije, T. J.; Ponseca Jr, C. S.; Kunneman, L.; Abdellah, M.; Zheng, K.; Tian, Y.; Zhu, Q.; Canton, S. E.; Scheblykin, I. G.; Pullerits, T. Thermally activated exciton dissociation and recombination control the carrier dynamics in organometal halide perovskite. The journal of physical chemistry letters 2014, 5 (13), 2189–2194.
(12) Hagfeldt, A.; Boschloo, G.; Sun, L.; Kloo, L.; Pettersson, H. Dye-sensitized solar cells. Chemical reviews 2010, 110 (11), 6595–6663.
(13) Li, L.; Xu, J.; Fang, L.; Feng, Z.; Huang, H.; Wang, Y.; Guo, Y.; Kang, S.; Wang, H.; Han, Y. Active Passivation Charge Transport in n‐i‐p Perovskite Solar Cells Approaching 26% Efficiency. Advanced Materials 2025, 2503903.
(14) Yang, Y.; Chen, H.; Liu, C.; Xu, J.; Huang, C.; Malliakas, C. D.; Wan, H.; Bati, A. S.; Wang, Z.; Reynolds, R. P. Amidination of ligands for chemical and field-effect passivation stabilizes perovskite solar cells. Science 2024, 386 (6724), 898–902.
(15) Stefanelli, M.; Vesce, L.; Di Carlo, A. Upscaling of carbon-based perovskite solar module. Nanomaterials 2023, 13 (2), 313.
(16) Lu, H.; Krishna, A.; Zakeeruddin, S. M.; Grätzel, M.; Hagfeldt, A. Compositional and interface engineering of organic-inorganic lead halide perovskite solar cells. Iscience 2020, 23 (8).
(17) Prasanna, R.; Gold-Parker, A.; Leijtens, T.; Conings, B.; Babayigit, A.; Boyen, H.-G.; Toney, M. F.; McGehee, M. D. Band gap tuning via lattice contraction and octahedral tilting in perovskite materials for photovoltaics. Journal of the American Chemical Society 2017, 139 (32), 11117–11124.
(18) Karim, M. A.; Matsuishi, K.; Kayesh, M. E.; He, Y.; Islam, A. Inhibition of Sn2+ oxidation in FASnI3 perovskite precursor solution and enhanced stability of perovskite solar cells by reductive additive. ACS Applied Materials & Interfaces 2023, 15 (39), 45823–45833.
(19) Mahmood, K.; Sarwar, S.; Mehran, M. T. Current status of electron transport layers in perovskite solar cells: materials and properties. Rsc Advances 2017, 7 (28), 17044–17062.
(20) Chavan, R. D.; Bończak, B.; Kruszyńska, J.; Mahapatra, A.; Ans, M.; Nawrocki, J.; Nikiforow, K.; Yadav, P.; Paczesny, J.; Sadegh, F. Molecular engineering of azahomofullerene-based electron transporting materials for efficient and stable perovskite solar cells. Chemistry of Materials 2023, 35 (19), 8309–8320.
(21) Jung, S. K.; Lee, D. S.; Ann, M. H.; Im, S. H.; Kim, J. H.; Kwon, O. P. Non‐Fullerene Organic Electron‐Transporting Materials for Perovskite Solar Cells. ChemSusChem 2018, 11 (22), 3882–3892.
(22) Jeng, J. Y.; Chiang, Y. F.; Lee, M. H.; Peng, S. R.; Guo, T. F.; Chen, P.; Wen, T. C. CH3NH3PbI3 perovskite/fullerene planar‐heterojunction hybrid solar cells. Advanced materials 2013, 25 (27), 3727–3732.
(23) Li, D.; Kong, W.; Zhang, H.; Wang, D.; Li, W.; Liu, C.; Chen, H.; Song, W.; Gao, F.; Amini, A. Bifunctional ultrathin PCBM enables passivated trap states and cascaded energy level toward efficient inverted perovskite solar cells. ACS applied materials & interfaces 2020, 12 (17), 20103–20109.
(24) Stolterfoht, M.; Caprioglio, P.; Wolff, C. M.; Márquez, J. A.; Nordmann, J.; Zhang, S.; Rothhardt, D.; Hörmann, U.; Redinger, A.; Kegelmann, L. The perovskite/transport layer interfaces dominate non-radiative recombination in efficient perovskite solar cells. arXiv preprint arXiv:1810.01333 2018.
(25) Zhao, G.; He, Y.; Xu, Z.; Hou, J.; Zhang, M.; Min, J.; Chen, H. Y.; Ye, M.; Hong, Z.; Yang, Y. Effect of carbon chain length in the substituent of PCBM‐like molecules on their photovoltaic properties. Advanced Functional Materials 2010, 20 (9), 1480–1487.
(26) Cheng, P.; Li, G.; Zhan, X.; Yang, Y. Next-generation organic photovoltaics based on non-fullerene acceptors. Nature Photonics 2018, 12 (3), 131–142.
(27) Hou, J.; Inganäs, O.; Friend, R. H.; Gao, F. Organic solar cells based on non-fullerene acceptors. Nature materials 2018, 17 (2), 119–128.
(28) Liu, X.; Xie, B.; Duan, C.; Wang, Z.; Fan, B.; Zhang, K.; Lin, B.; Colberts, F. J.; Ma, W.; Janssen, R. A. A high dielectric constant non-fullerene acceptor for efficient bulk-heterojunction organic solar cells. Journal of Materials Chemistry A 2018, 6 (2), 395–403.
(29) Yuan, J.; Zhang, Y.; Zhou, L.; Zhang, G.; Yip, H.-L.; Lau, T.-K.; Lu, X.; Zhu, C.; Peng, H.; Johnson, P. A. Single-junction organic solar cell with over 15% efficiency using fused-ring acceptor with electron-deficient core. Joule 2019, 3 (4), 1140–1151.
(30) Xue, Y.-J.; Lai, Z.-Y.; Lu, H.-C.; Hong, J.-C.; Tsai, C.-L.; Huang, C.-L.; Huang, K.-H.; Lu, C.-F.; Lai, Y.-Y.; Hsu, C.-S. Unraveling the structure–property–performance relationships of fused-ring nonfullerene acceptors: toward a C-shaped ortho-benzodipyrrole-based acceptor for highly efficient organic photovoltaics. Journal of the American Chemical Society 2023, 146 (1), 833–848.
(31) Hu, Q.; Chen, W.; Yang, W.; Li, Y.; Zhou, Y.; Larson, B. W.; Johnson, J. C.; Lu, Y.-H.; Zhong, W.; Xu, J. Improving efficiency and stability of perovskite solar cells enabled by a near-infrared-absorbing moisture barrier. Joule 2020, 4 (7), 1575–1593.
(32) Wu, S.; Li, Z.; Zhang, J.; Wu, X.; Deng, X.; Liu, Y.; Zhou, J.; Zhi, C.; Yu, X.; Choy, W. C. Low‐bandgap organic bulk‐heterojunction enabled efficient and flexible perovskite solar cells. Advanced Materials 2021, 33 (51), 2105539.
(33) Shi, Z.; Zhou, D.; Zhuang, X.; Xu, W.; Liu, S.; Liao, Y.; Jia, P.; Pan, G.; Liu, W.; Zhu, J. Full‐Spectral Response Perovskite Solar Cells Through Integration of MXene Modified Near‐Infrared Organic Heterojunction and Waveguide‐Structure Quantum‐Cutting Down‐Converter. Advanced Energy Materials 2024, 14 (15), 2303735.
(34) Firdaus, Y.; Le Corre, V. M.; Karuthedath, S.; Liu, W.; Markina, A.; Huang, W.; Chattopadhyay, S.; Nahid, M. M.; Nugraha, M. I.; Lin, Y. Long-range exciton diffusion in molecular non-fullerene acceptors. Nature Communications 2020, 11 (1), 5220.
(35) Hedley, G. J.; Ward, A. J.; Alekseev, A.; Howells, C. T.; Martins, E. R.; Serrano, L. A.; Cooke, G.; Ruseckas, A.; Samuel, I. D. Determining the optimum morphology in high-performance polymer-fullerene organic photovoltaic cells. Nature Communications 2013, 4 (1), 2867.
(36) Nielsen, C. B.; Holliday, S.; Chen, H.-Y.; Cryer, S. J.; McCulloch, I. Non-fullerene electron acceptors for use in organic solar cells. Accounts of chemical research 2015, 48 (11), 2803–2812.
(37) Gao, W.; Ma, R.; Zhu, L.; Li, L.; Lin, F. R.; Dela Peña, T. A.; Wu, J.; Li, M.; Zhong, W.; Wu, X. 3D crystal framework regulation enables se‐functionalized small molecule acceptors achieve over 19% efficiency. Advanced Energy Materials 2024, 14 (19), 2304477.
(38) Kim, S.-K.; Kim, J.-H.; Yang, H.-S.; Kim, Y.-S. P‐112: A Study on the Effect of Electrical Characteristics of HTL on Electrical Properties of QLED and its Efficiency. In SID Symposium Digest of Technical Papers, 2018; Wiley Online Library: Vol. 49, pp 1632–1635.
(39) Laschuk, N. O.; Easton, E. B.; Zenkina, O. V. Reducing the resistance for the use of electrochemical impedance spectroscopy analysis in materials chemistry. RSC advances 2021, 11 (45), 27925–27936.
(40) Van de Lagemaat, J.; Park, N.-G.; Frank, A. Influence of electrical potential distribution, charge transport, and recombination on the photopotential and photocurrent conversion efficiency of dye-sensitized nanocrystalline TiO2 solar cells: a study by electrical impedance and optical modulation techniques. The Journal of Physical Chemistry B 2000, 104 (9), 2044–2052.
(41) Clarke, W.; Richardson, G.; Cameron, P. Understanding the full zoo of perovskite solar cell impedance spectra with the standard drift‐diffusion model. Advanced Energy Materials 2024, 14 (32), 2400955.
(42) Qin, M.; Chan, P. F.; Lu, X. A systematic review of metal halide perovskite crystallization and film formation mechanism unveiled by in situ GIWAXS. Advanced Materials 2021, 33 (51), 2105290.
(43) NIST. Scanning Probe Microscopy for Advanced Materials and Processes. NIST 2025.
(44) Said, A. A.; Xie, J.; Zhang, Q. Recent progress in organic electron transport materials in inverted perovskite solar cells. Small 2019, 15 (27), 1900854.
(45) Pajula, K.; Taskinen, M.; Lehto, V.-P.; Ketolainen, J.; Korhonen, O. Predicting the formation and stability of amorphous small molecule binary mixtures from computationally determined Flory− Huggins interaction parameter and phase diagram. Molecular pharmaceutics 2010, 7 (3), 795–804.
(46) Cao, F.-Y.; Lin, F.-Y.; Tseng, C.-C.; Hung, K.-E.; Hsu, J.-Y.; Su, Y.-C.; Cheng, Y.-J. Naphthobisthiadiazole-Based Selenophene-Incorporated Quarterchalcogenophene Copolymers for Field-Effect Transistors and Polymer Solar Cells. ACS Applied Materials & Interfaces 2019, 11 (12), 11674–11683.
(47) Hung, C.-M.; Lin, J.-T.; Yang, Y.-H.; Liu, Y.-C.; Gu, M.-W.; Chou, T.-C.; Wang, S.-F.; Chen, Z.-Q.; Wu, C.-C.; Chen, L.-C. Modulation of Perovskite Grain Boundaries by Electron Donor–Acceptor Zwitterions R, R-Diphenylamino-phenyl-pyridinium-(CH2) n-sulfonates: All-Round Improvement on the Solar Cell Performance. JACS Au 2022, 2 (5), 1189–1199.
(48) Wu, L.; Mu, X.; Liu, D.; Li, W.; Li, D.; Zhang, J.; Liu, C.; Feng, T.; Wu, Y.; Li, J. Regional Functionalization Molecular Design Strategy: A Key to Enhancing the Efficiency of Multi‐Resonance OLEDs. Angewandte Chemie International Edition 2024, 63 (38), e202409580.
(49) Huang, K. H.; Tseng, C. C.; Tsai, C. L.; Xue, Y. J.; Lu, H. C.; Lu, C. F.; Chang, Y. Y.; Huang, C. L.; Hsu, I. J.; Lai, Y. Y. Highly Crystalline Selenium‐Substituted C‐Shaped Ortho‐Benzodipyrrole‐Based A‐D‐A‐Type Nonfullerene Acceptor Enabling Solution‐Processed Single‐Crystal‐Like Thin Films for Air‐Stable, High‐Mobility N‐Type Transistors. Advanced Functional Materials 2025, 35 (15), 2419176.
(50) Hung, C.-M.; Wu, C.-C.; Tsao, P.-H.; Lung, C.-D.; Wang, C.-H.; Ni, I.-C.; Chu, C.-C.; Cheng, C.-H.; Kuang, W.-Y.; Wu, C.-I. Functionalization of Donor–π–Acceptor Hole Transport Materials Enhances Crystallization and Defect Passivation in Inverted Perovskite Solar Cells: Achieving Power Conversion Efficiency> 21%(Area: 1.96 cm2) and Impressive Stability. Advanced Energy and Sustainability Research 2023, 4 (10), 2300042.
(51) Chen, T.; Zheng, X.; Wang, D.; Zhu, Y.; Ouyang, Y.; Xue, J.; Wang, M.; Wang, S.; Ma, W.; Zhang, C. Delayed Crystallization Kinetics Allowing High‐Efficiency All‐Polymer Photovoltaics with Superior Upscaled Manufacturing. Advanced Materials 2024, 36 (3), 2308061.
(52) Dai, Z.; You, S.; Chakraborty, D.; Li, S.; Zhang, Y.; Ranka, A.; Barlow, S.; Berry, J. J.; Marder, S. R.; Guo, P. Connecting interfacial mechanical adhesion, efficiency, and operational stability in high performance inverted perovskite solar cells. ACS Energy Letters 2024, 9 (4), 1880–1887.
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/97907-
dc.description.abstract將近紅外有機染料整合於鈣鈦礦太陽能電池中,仍面臨分子相容性、元件穩定性及有效電荷傳輸等方面的挑戰。本研究開發了一種含硒取代的鄰苯二吡咯近紅外染料(CB-2Se),以克服上述限制。CB-2Se具備較低的能隙(約1.35 eV),顯著增強了對傳統鈣鈦礦材料吸收範圍以外的近紅外區域光子捕獲能力。
為改善非富勒烯受體(NFAs)常見的自聚集問題,本研究透過移除傳統受體如Y6-16中的噻二唑(Tz)單元來結構優化CB-2Se,有效提升其與PCBM的相容性與分散性,並成功形成均勻且有效的塊材異質接面(bulk-heterojunction, BHJ)層。以PCBM:CB-2Se混摻結構作為電子傳輸層的元件,其光電轉換效率達25.18%,開路電壓為1.164 V,短路電流密度為25.71 mA/cm²,填充因子高達84.15%。
此外,利用飛秒瞬態吸收光譜技術,本研究觀察到在CB-2Se與PCBM界面發生了超快的激子解離過程(小於200飛秒),並首次揭示了電洞由CB-2Se回傳至鈣鈦礦層的新穎載子轉移現象,為界面電荷轉移機制提供了重要見解。
zh_TW
dc.description.abstractIntegrating near-infrared (NIR) organic dyes into perovskite solar cells (PSCs) remains challenging due to molecular compatibility, device stability, and efficient charge transport. This study introduces CB-2Se, a selenium-substituted ortho-benzodipyrrole-based NIR dye, specifically designed to overcome these limitations. CB-2Se exhibits a reduced bandgap (~1.35 eV), significantly enhancing photon harvesting in the NIR region, which is typically inaccessible to conventional perovskite absorbers.
To deal with self-aggregation issues with non-fullerene acceptors, CB-2Se was structurally optimized by removing the thiadiazole (Tz) unit present in traditional acceptors such as Y6-16. This modification markedly improved compatibility and dispersion within PCBM, leading to a homogeneous and effective bulk-heterojunction (BHJ) layer. Photovoltaic devices utilizing the optimized PCBM:CB-2Se blend demonstrated notable performance enhancements, achieving a power conversion efficiency (PCE) of 25.18%, with VOC of 1.164 V, JSC of 25.71 mA/cm², and an impressive fill factor of 84.15%.
Additionally, femtosecond transient absorption spectroscopy revealed ultrafast exciton dissociation (<200 fs) at the CB-2Se:PCBM interface and identified a novel hole back-transfer process from CB-2Se to the perovskite, while offering valuable insights into interfacial charge transfer processes.
en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2025-07-22T16:09:30Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2025-07-22T16:09:30Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontents口試委員會審定書 i
致謝 ii
中文摘要 iii
Abstract iv
Content v
List of Figures vii
List of Tables x
Chapter 1 Introduction 1
1.1 Solar Cell Development 2
1.2 Development of Perovskite Solar Cell (PSCs) 4
1.3 Operating principle of PSCs 6
1.4 Device structure of PSCs 8
1.5 Perovskite defect and passivation 10
1.6 Limitations of Lead‑Based PSCs 12
1.7 Electron Transporting Materials (ETMs) 12
1.8 Bulk‑Heterojunction ETMs (BHJ ETMs) 15
1.9 Molecular Design Principle of CB and Y‑Series NFAs 17
1.10 Motivation 20
Chapter 2 Experiment part 21
2.1 Experimental Chemicals 21
2.2 Device fabrication 22
2.2.1 Perovskite Thin-Film Fabrication 22
2.2.2 Electron Transporting Layer Deposition 22
2.2.3 Device Fabrication of Inverted Perovskite Solar Cells 22
2.3 Analyzing instruments 24
2.3.1 Solar cell device measurement 24
2.3.2 Perovskite Thin Film Analysis 29
Chapter 3 Result and Discussion 34
3.1 Electron Transporting Materials 34
3.1.1 Synthesis of non-fullerene acceptors 34
3.1.2 Molecular structure 35
3.1.3 Molecule properties 37
3.1.4 Optical properties 40
3.1.5 Miscibility of BHJ ETMs 41
3.2 Perovskite solar cell device analysis and performance 47
3.2.1 Electron transport layer on perovskite 47
3.2.2 Photovoltage performance 50
3.2.3 Device physics analysis 53
3.2.4 Spectral dynamics of perovskite and ETL 61
3.2.5 Device Stability 74
Chapter 4 Conclusion 76
Chapter 5 Reference 77
-
dc.language.isoen-
dc.subject界面電荷傳輸zh_TW
dc.subject鈣鈦礦太陽能電池zh_TW
dc.subject非富勒烯受體zh_TW
dc.subject塊材異質接面電子傳輸材料zh_TW
dc.subject鈣鈦礦太陽能電池zh_TW
dc.subject非富勒烯受體zh_TW
dc.subject塊材異質接面電子傳輸材料zh_TW
dc.subject界面電荷傳輸zh_TW
dc.subjectBulk‑Heterojunction electron transporting materialsen
dc.subjectInterfacial charge transferen
dc.subjectNon-fullerene acceptorsen
dc.subjectPerovskite solar cellen
dc.subjectInterfacial charge transferen
dc.subjectBulk‑Heterojunction electron transporting materialsen
dc.subjectNon-fullerene acceptorsen
dc.subjectPerovskite solar cellen
dc.title高效能鈣鈦礦耦合近紅外光有機染料太陽能電池: 機制性探討之全貌分析zh_TW
dc.titleHigh Efficiency Perovskite Coupled NIR Organic Hybrid Solar Cells: A Comprehensive Mechanistic Explorationen
dc.typeThesis-
dc.date.schoolyear113-2-
dc.description.degree碩士-
dc.contributor.oralexamcommittee洪文誼;陳協志zh_TW
dc.contributor.oralexamcommitteeWen-Yi Hung;Hsieh-Chih Chenen
dc.subject.keyword鈣鈦礦太陽能電池,非富勒烯受體,塊材異質接面電子傳輸材料,界面電荷傳輸,zh_TW
dc.subject.keywordPerovskite solar cell,Non-fullerene acceptors,Bulk‑Heterojunction electron transporting materials,Interfacial charge transfer,en
dc.relation.page80-
dc.identifier.doi10.6342/NTU202501794-
dc.rights.note同意授權(限校園內公開)-
dc.date.accepted2025-07-16-
dc.contributor.author-college理學院-
dc.contributor.author-dept化學系-
dc.date.embargo-lift2025-07-23-
顯示於系所單位:化學系

文件中的檔案:
檔案 大小格式 
ntu-113-2.pdf
授權僅限NTU校內IP使用(校園外請利用VPN校外連線服務)
4.83 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved