Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 電機資訊學院
  3. 電機工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/97906
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor許源浴zh_TW
dc.contributor.advisorYuan-Yih Hsuen
dc.contributor.author黃宥勝zh_TW
dc.contributor.authorYu-Sheng Huangen
dc.date.accessioned2025-07-22T16:09:15Z-
dc.date.available2025-07-23-
dc.date.copyright2025-07-22-
dc.date.issued2025-
dc.date.submitted2025-07-10-
dc.identifier.citation[1] Global Wind Energy Council (GWEC), “Global Wind Report 2018,” April, 2019, http://gwec.net/
[2] IEA: ‘Net Zero Roadmap: A Global Pathway to Keep the 1.5 °C Goal in Reach’, International Energy Agency, Paris, 2023. https://www.iea.org/reports/net-zero-roadmap-a-global-pathway-to-keep-the-15-0c-goal-in-reach
[3] L. Fan, R. Kavasseri, Z. L. Miao and C. Zhu, "Modeling of DFIG-Based Wind Farms for SSR Analysis," in IEEE Transactions on Power Delivery, vol. 25, no. 4, pp. 2073-2082, Oct. 2010.
[4] L. Fan, C. Zhu, Z. Miao and M. Hu, "Modal Analysis of a DFIG-Based Wind Farm Interfaced With a Series Compensated Network," in IEEE Transactions on Energy Conversion, vol. 26, no. 4, pp. 1010-1020, Dec. 2011.
[5] A. Ostadi, A. Yazdani and R. K. Varma, "Modeling and Stability Analysis of a DFIG-Based Wind-Power Generator Interfaced With a Series-Compensated Line," in IEEE Transactions on Power Delivery, vol. 24, no. 3, pp. 1504-1514, July 2009.
[6] P. -H. Huang, M. S. El Moursi, W. Xiao and J. L. Kirtley, "Subsynchronous Resonance Mitigation for Series-Compensated DFIG-Based Wind Farm by Using Two-Degree-of-Freedom Control Strategy," in IEEE Transactions on Power Systems, vol. 30, no. 3, pp. 1442-1454, May 2015.
[7] L. Fan and Z. Miao, "Mitigating SSR Using DFIG-Based Wind Generation," in IEEE Transactions on Sustainable Energy, vol. 3, no. 3, pp. 349-358, July 2012.
[8] A. E. Leon and J. A. Solsona, "Sub-Synchronous Interaction Damping Control for DFIG Wind Turbines," in IEEE Transactions on Power Systems, vol. 30, no. 1, pp. 419-428, Jan. 2015.
[9] U. Karaagac, S. O. Faried, J. Mahseredjian and A. -A. Edris, "Coordinated Control of Wind Energy Conversion Systems for Mitigating Subsynchronous Interaction in DFIG-Based Wind Farms," in IEEE Transactions on Smart Grid, vol. 5, no. 5, pp. 2440-2449, Sept. 2014.
[10] Y. Li, L. Fan and Z. Miao, "Replicating Real-World Wind Farm SSR Events," in IEEE Transactions on Power Delivery, vol. 35, no. 1, pp. 339-348, Feb. 2020.
[11] G. Mandic, A. Nasiri, E. Muljadi and F. Oyague, "Active Torque Control for Gearbox Load Reduction in a Variable-Speed Wind Turbine," in IEEE Transactions on Industry Applications, vol. 48, no. 6, pp. 2424-2432, Nov.-Dec. 2012.
[12] 李奎諺, “應用類神經網路設計改善雙饋式感應風力發電機傳動系統轉軸振盪之電池儲能系統阻尼器,” 臺灣大學電機所碩士論文, 2024.
[13] M. Hwang, E. Muljadi, et al., “Dynamic Droop–Based Inertial Control of a Doubly-Fed Induction Generator,” IEEE Transactions on Sustainable Energy, vol. 7, no. 3, pp. 924-933, July 2016.
[14] J. Lee, G. Jang, E. Muljadi, et al., “Stable Short-Term Frequency Support Using Adaptive Gains for a DFIG-Based Wind Power Plant,” IEEE Transactions on Energy Conversion, vol. 31, no. 3, pp. 1068-1079, Sept. 2016.
[15] MathWorks, "Battery," MATLAB & Simulink documentation. [Online]. Available: https://www.mathworks.com/help/sps/powersys/ref/battery.html
[16] P. Kundur, “Power system stability and control” McGraw-Hill, New York, 1994.
[17] 台電配電處, “再生能源發電系統併聯技術要點,” 中華民國112年8月。
[18] P. M. Anderson and A.A. Fouad, “Power Systems Control and Stability,” 2002.
[19] A. R. Bergen and V. Vittal, “Power Systems Analysis”, Pearson Prentice Hall, 2000.
[20] 台電電力調度處調度模擬組, “電力品質控制成果報告,” 中華民國106年1月。
[21] 陳翊瑋, “雙饋式感應風力發電機之粒子群優法自調式頻率控制器設計,” 臺灣大學電機所碩士論文, 2019.
[22] R. Pena, J. C. Clare, et al., “Doubly fed induction generator using back-to-back PWM converters and its application to variable-speed wind-energy generation,” IEE Proc.-Electric Power Appl., vol. 143, no. 3, pp. 231-241, 1996.
[23] 翁永財, “應用於雙饋式感應發電機之虛功率控制策略及轉子側電流控制器設計,” 臺灣大學電機所博士論文, 2015.
[24] Martin O.L. Hansen, “Aerodynamics of Wind Turbines,” Earthscn, Inc, 2007.
[25] C. Schauder and H. Mehta, “Vector analysis and control of advanced static VAR compensators,” IEE Proceedings-C, vol. 140, no. 4, pp. 299-306, 1993.
[26] 洪郁翔, “利用粒子群優法設計與電網併聯之風機有效與無效電力自調式控制器,” 臺灣大學電機所碩士論文, 2019.
[27] N. Mohan, T. M. Undeland, et al., “Power Electronics,” John Wiley and Sons, Inc, 2003.
[28] C.M. Ong, “Dynamic Simulation of Electric Machinery Using Matlab/Simulink,” Pearson Education Taiwan Ltd. 2005.
[29] 簡于翔, “雙饋式感應風力發電機轉子側電流調節器參數之設計,” 臺灣大學電機所碩士論文, 2016.
[30] 林柏年, “用於改善微電網頻率之雙饋式感應風力發電機模型預測控制器設計,” 臺灣大學電機所碩士論文, 2018.
[31] 楊智翔, “用於改善微電網頻率之雙饋式感應風力發電機粒子群優法自調式控制器, "臺灣大學電機所碩士論文, 2018.
[32] Y. Y. Hsu and C. L. Chen, “Identification of optimum location for stabilizer applications using participation factors,” IEE Proc., Pt. C, vol. 134, no. 3, pp. 238-244, 1987.
[33] G.F. Franklin, J.D. Powell, et al., “Feedback Control of Dynamic Systems,” Pearson Prentice Hall, 2015.
[34] I. J. Perez-arriaga, G. C. Verghese, et al., “Selective Modal Analysis with Applications to Electric Power Systems, PART I: Heuristic Introduction,” IEEE Transactions on Power Apparatus and Systems, vol. PAS-101, no. 9, pp. 3117-3125, Sept. 1982.
[35] 劉昌煥, “交流電機控制,” 東華書局, 2008.
[36] Z. Y. Dong, C. K. Pang, and P. Zhang, ”Power system sensitivity analysis for probabilistic small signal stability assessment in a deregulated environment,” Int. J. Control, Autom. Syst., vol. 3, no. 2, pp. 355-362, 2005.
[37] 蕭力銓, “應用粒子群優法進行需量反應及電池儲能系統協調控制於微電網頻率預防控制,” 臺灣大學電機所碩士論文, 2024.
[38] S. C. Chapra, “Applied Numerical Methods with MATLAB® for Engineers and Scientists,” New York: McGraw-Hill, 2012.
[39] 邱炳貴, “具有五質量傳動系統之雙饋式感應風力發電機模態分析與阻尼器設計應用於微電網,” 臺灣大學電機所碩士論文, 2022.
[40] 莊承翰, “雙饋式感應風力發電機於轉軸振盪時之模態分析及阻尼器設計,” 臺灣大學電機所碩士論文, 2022.
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/97906-
dc.description.abstract本論文旨在設計應用於雙饋式感應風力發電機與電池儲能系統併網之PID控制器,且此併網系統經由輸電線連接至電網,用以改善電網端所產生之次同步振盪現象。藉此避免系統因振盪影響,造成風機等相關架構損壞。
設計流程首先建構完整系統之電路模型與非線性數學模型,並將非線性模型線性化後進行小訊號穩定度頻域分析。接續透過參與率分析與靈敏度分析,釐清系統狀態變數、系統特徵值與雙饋式感應風力發電機控制器參數間之關聯性。隨後,利用閉迴路系統之靈敏度分析以及根軌跡分析,選定適當的PID控制器參數,以提升次同步振盪模式之阻尼比。最後,本論文亦比較不同輸入訊號對系統根軌跡特性之影響。
本論文藉由MATLAB®/Simulink軟體進行模擬,並以雙饋式感應風力發電機、電池儲能系統與輸電線所構成之併網架構為模型,驗證所提出之儲能系統控制器在抑制次同步振盪方面之有效性。
zh_TW
dc.description.abstractThe main objective of this thesis is to design a PID controller for the grid-connected system composed of multiple doubly-fed induction generator (DFIG)-based wind turbines and multiple battery energy storage systems (BESS), aimed at mitigating sub-synchronous oscillation (SSO) phenomena in the power grid. The grid connection is established via transmission lines, and the proposed control strategy seeks to prevent structural damage to wind turbines and related components caused by oscillation effects.
The design process begins with the development of a complete circuit model and a nonlinear mathematical model of the system. The nonlinear model is then linearized for small-signal stability analysis in the frequency domain. Subsequently, participation factor analysis and sensitivity analysis are conducted to identify the relationships among the system’s state variables, eigenvalues, and the control parameters of the DFIG-based wind turbine. Based on the sensitivity analysis and root locus analysis of the closed-loop system, appropriate PID controller parameters are selected to enhance the damping ratio of the SSO Mode. Additionally, the thesis investigates the effects of different input signals on the root locus characteristics of the system.
Simulation studies using MATLAB®/Simulink confirm the effectiveness of the proposed controller in suppressing SSO in the grid-connected DFIG-BESS system.
en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2025-07-22T16:09:15Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2025-07-22T16:09:15Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontents口試委員審定書 I
誌謝 II
摘要 III
Abstract IV
目次 V
圖次 VIII
表次 XI
符號索引 XII
第一章 緒論 1
1.1 研究背景 1
1.2 文獻回顧 5
1.3 研究目的與方法 7
1.4 論文內容概述 10
第二章 完整系統之數學模型及控制架構 11
2.1 前言 11
2.2 雙饋式感應風力發電機之數學模型與架構介紹 13
2.2.1 風力發電原理 13
2.2.2 系統側轉換器(Grid Side Converter, GSC)模型 20
2.2.3 轉子側轉換器(Rotor Side Converter, RSC)模型 31
2.2.4 雙質量傳動模型 46
2.2.5 風機側輸電線模型 49
2.3 儲能系統之數學模型與架構介紹 53
2.3.1 儲能電池之架構介紹 53
2.3.2 儲能系統轉換器模型 56
2.3.3 儲能系統側輸電線模型 65
2.4 電力系統側輸電線模型與架構分析 68
2.4.1 輸電線模型之架構介紹 68
2.4.2 串聯電容補償之理論分析 73
2.4.3 電力系統側輸電線模型 75
2.4.4 輸電線模型之時頻域轉換分析 78
第三章 小訊號穩定度分析 80
3.1 前言 80
3.2 小訊號穩定度頻域分析 81
3.2.1 線性模型之數學推導 81
3.2.2 特徵值分析 102
3.2.3 參與率分析 104
3.2.4 靈敏度分析 118
3.2.5 根軌跡分析 122
3.3 時域模型分析與驗證 130
3.3.1 時域模型分析 130
第四章 儲能系統控制器架構之設計 132
4.1 前言 132
4.2 控制器架構之設計 133
4.2.1 基於電流輸入之電容電壓估測方法 133
4.2.2 帶通濾波器之設計 135
4.2.3 PID控制器與增益模組之設計 136
4.3 閉迴路系統之頻域分析 138
4.3.1 完整控制器之數學推導 138
4.3.2 閉迴路系統之參數設計 140
4.3.3 閉迴路系統之特徵值分析 148
4.3.4 不同輸入訊號之根軌跡特性分析 149
第五章 模擬結果與分析 151
5.1 前言 151
5.2 模擬架構 151
5.3 時域分析 152
5.3.1 電網端電壓變動之時域分析 152
5.3.2 補償比變動之時域分析 157
5.3.3 三相短路故障之時域分析 163
5.3.4 工作點改變之時域分析 168
第六章 結論與未來研究方向 186
6.1 結論 186
6.2 未來研究方向 187
附錄 189
參考文獻 196
-
dc.language.isozh_TW-
dc.subject雙饋式感應風力發電機zh_TW
dc.subject風力發電zh_TW
dc.subject電池儲能系統zh_TW
dc.subject輸電線zh_TW
dc.subjectPID控制器zh_TW
dc.subject小訊號分析zh_TW
dc.subject參與率分析zh_TW
dc.subject靈敏度分析zh_TW
dc.subject根軌跡分析zh_TW
dc.subject次同步振盪zh_TW
dc.subject風力發電zh_TW
dc.subject雙饋式感應風力發電機zh_TW
dc.subject電池儲能系統zh_TW
dc.subject輸電線zh_TW
dc.subjectPID控制器zh_TW
dc.subject小訊號分析zh_TW
dc.subject參與率分析zh_TW
dc.subject靈敏度分析zh_TW
dc.subject根軌跡分析zh_TW
dc.subject次同步振盪zh_TW
dc.subjectDoubly-Fed Induction Generatoren
dc.subjectBattery Energy Storage Systemen
dc.subjectTransmission Lineen
dc.subjectPID Controlleren
dc.subjectSmall-Signal Analysisen
dc.subjectParticipation Factor Analysisen
dc.subjectSensitivity Analysisen
dc.subjectRoot Locus Analysisen
dc.subjectSub-Synchronous Oscillationen
dc.subjectWind Power Generationen
dc.subjectDoubly-Fed Induction Generatoren
dc.subjectBattery Energy Storage Systemen
dc.subjectTransmission Lineen
dc.subjectPID Controlleren
dc.subjectSmall-Signal Analysisen
dc.subjectParticipation Factor Analysisen
dc.subjectSensitivity Analysisen
dc.subjectRoot Locus Analysisen
dc.subjectSub-Synchronous Oscillationen
dc.subjectWind Power Generationen
dc.title用於改善電網次同步振盪現象之風場電池儲能系統PID控制器設計zh_TW
dc.titleDesign of a PID Controller for Wind Farm Battery Energy Storage Systems to Mitigate Sub-Synchronous Oscillation in Power Griden
dc.typeThesis-
dc.date.schoolyear113-2-
dc.description.degree碩士-
dc.contributor.oralexamcommittee吳進忠;蒲冠志;柯佾寬zh_TW
dc.contributor.oralexamcommitteeChin-Chung Wu;Guan-Chih Pu;Yi-Kuan Keen
dc.subject.keyword風力發電,雙饋式感應風力發電機,電池儲能系統,輸電線,PID控制器,小訊號分析,參與率分析,靈敏度分析,根軌跡分析,次同步振盪,zh_TW
dc.subject.keywordWind Power Generation,Doubly-Fed Induction Generator,Battery Energy Storage System,Transmission Line,PID Controller,Small-Signal Analysis,Participation Factor Analysis,Sensitivity Analysis,Root Locus Analysis,Sub-Synchronous Oscillation,en
dc.relation.page199-
dc.identifier.doi10.6342/NTU202501496-
dc.rights.note同意授權(全球公開)-
dc.date.accepted2025-07-14-
dc.contributor.author-college電機資訊學院-
dc.contributor.author-dept電機工程學系-
dc.date.embargo-lift2025-07-23-
顯示於系所單位:電機工程學系

文件中的檔案:
檔案 大小格式 
ntu-113-2.pdf13.7 MBAdobe PDF檢視/開啟
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved