Please use this identifier to cite or link to this item:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/97901Full metadata record
| ???org.dspace.app.webui.jsptag.ItemTag.dcfield??? | Value | Language |
|---|---|---|
| dc.contributor.advisor | 馬鴻文 | zh_TW |
| dc.contributor.advisor | Hwong-Wen Ma | en |
| dc.contributor.author | 葉紀均 | zh_TW |
| dc.contributor.author | Chi-Chun Yeh | en |
| dc.date.accessioned | 2025-07-22T16:08:11Z | - |
| dc.date.available | 2025-07-23 | - |
| dc.date.copyright | 2025-07-22 | - |
| dc.date.issued | 2024 | - |
| dc.date.submitted | 2025-07-17 | - |
| dc.identifier.citation | Abdelbaky, M., Peeters, J. R., & Dewulf, W. (2021). On the influence of second use, future battery technologies, and battery lifetime on the maximum recycled content of future electric vehicle batteries in Europe. Waste Management, 125, 1-9. https://doi.org/10.1016/j.wasman.2021.02.032
Baazouzi, S., Feistel, N., Wanner, J., Landwehr, I., Fill, A., & Birke, K. P. (2023). Design, Properties, and Manufacturing of Cylindrical Li-Ion Battery Cells—A Generic Overview. Batteries, 9(6), 309. https://doi.org/10.3390/batteries9060309 Baumann, M., Peters, J. F., Weil, M., & Grunwald, A. (2017). CO<sub>2</sub> Footprint and Life‐Cycle Costs of Electrochemical Energy Storage for Stationary Grid Applications. Energy Technology, 5(7), 1071-1083. https://doi.org/10.1002/ente.201600622 Bobba, S., Mathieux, F., Ardente, F., Blengini, G. A., Cusenza, M. A., Podias, A., & Pfrang, A. (2018). Life Cycle Assessment of repurposed electric vehicle batteries: an adapted method based on modelling energy flows. Journal of Energy Storage, 19, 213-225. https://doi.org/https://doi.org/10.1016/j.est.2018.07.008 Bobba, S., Mathieux, F., & Blengini, G. A. (2019). How will second-use of batteries affect stocks and flows in the EU? A model for traction Li-ion batteries. Resources, Conservation and Recycling, 145, 279-291. https://doi.org/https://doi.org/10.1016/j.resconrec.2019.02.022 Börner, M. F., Frieges, M. H., Späth, B., Spütz, K., Heimes, H. H., Sauer, D. U., & Li, W. (2022). Challenges of second-life concepts for retired electric vehicle batteries. Cell Reports Physical Science, 3(10), 101095. https://doi.org/10.1016/j.xcrp.2022.101095 Canals Casals, L., Amante García, B., & González Benítez, M. M. (2016). A Cost Analysis of Electric Vehicle Batteries Second Life Businesses. In (pp. 129-141). Springer International Publishing. https://doi.org/10.1007/978-3-319-26459-2_10 Canals Casals, L., Barbero, M., & Corchero, C. (2019). Reused second life batteries for aggregated demand response services. Journal of Cleaner Production, 212, 99-108. https://doi.org/https://doi.org/10.1016/j.jclepro.2018.12.005 Chen, M., Ma, X., Chen, B., Arsenault, R., Karlson, P., Simon, N., & Wang, Y. (2019). Recycling End-of-Life Electric Vehicle Lithium-Ion Batteries. Joule, 3(11), 2622-2646. https://doi.org/10.1016/j.joule.2019.09.014 Company, M. (2023). Battery recycling takes the driver’s seat. DANINO-PERRAUD, R. (2018). Face au défi des métaux critiques, une approche stratégique du recyclage s’impose. Éditoriaux de l'Ifri(Energie). https://www.ifri.org/fr/publications/editoriaux-de-lifri/edito-energie/face-defi-metaux-critiques-une-approche-strategique De Marchi, L., Pretti, C., Gabriel, B., Marques, P. A. A. P., Freitas, R., & Neto, V. (2018). An overview of graphene materials: Properties, applications and toxicity on aquatic environments. Science of The Total Environment, 631-632, 1440-1456. https://doi.org/https://doi.org/10.1016/j.scitotenv.2018.03.132 DeRousseau, M., Gully, B., Taylor, C., Apelian, D., & Wang, Y. (2017). Repurposing Used Electric Car Batteries: A Review of Options [Review]. JOM, 69(9), 1575-1582. https://doi.org/10.1007/s11837-017-2368-9 Design, b. (2019). Key Pack Metrics. Battery Design from chemistry to pack. https://www.batterydesign.net/key-pack-metrics/ Dewulf, J., Van der Vorst, G., Denturck, K., Van Langenhove, H., Ghyoot, W., Tytgat, J., & Vandeputte, K. (2010). Recycling rechargeable lithium ion batteries: Critical analysis of natural resource savings. Resources, Conservation and Recycling, 54(4), 229-234. https://doi.org/https://doi.org/10.1016/j.resconrec.2009.08.004 Djoudi, N., Le Page Mostefa, M., & Muhr, H. (2021). Hydrometallurgical Process to Recover Cobalt from Spent Li-Ion Batteries. Resources, 10(6), 58. https://doi.org/10.3390/resources10060058 Dunn, J., Ritter, K., Velázquez, J. M., & Kendall, A. (2023). Should high‐cobalt EV batteries be repurposed? Using LCA to assess the impact of technological innovation on the waste hierarchy. Journal of Industrial Ecology, 27(5), 1277-1290. https://doi.org/10.1111/jiec.13414 Ellingsen, L. A. W., Majeau‐Bettez, G., Singh, B., Srivastava, A. K., Valøen, L. O., & Strømman, A. H. (2014). Life Cycle Assessment of a Lithium‐Ion Battery Vehicle Pack. Journal of Industrial Ecology, 18(1), 113-124. https://doi.org/10.1111/jiec.12072 EU. (2020). Proposal for a Regulation of the European Parliament and of the Council concerning batteries and waste batteries, repealing Directive 2006/66/EC and amending Regulation (EU). Retrieved from https://eur-lex.europa.eu/legal-content/EN/TXT/HTML/?uri=CELEX:52020PC0798 EUCAR. (2019). Battery requirements for future automotive applications. https://eucar.be/wp-content/uploads/2019/08/20190710-EG-BEV-FCEV-Battery-requirements-FINAL.pdf Fontana, A., Barni, A., Leone, D., Spirito, M., Tringale, A., Ferraris, M., Reis, J., & Goncalves, G. (2021). Circular Economy Strategies for Equipment Lifetime Extension: A Systematic Review. Sustainability, 13(3), 1117. https://doi.org/10.3390/su13031117 Greenpeace. (2023, 18 September). 世界無車日:擺脫行人地獄,打造低碳、行人友善的城市 https://www.greenpeace.org/taiwan/update/37730/%E4%B8%96%E7%95%8C%E7%84%A1%E8%BB%8A%E6%97%A5%EF%BC%9A%E6%93%BA%E8%84%AB%E8%A1%8C%E4%BA%BA%E5%9C%B0%E7%8D%84%EF%BC%8C%E6%89%93%E9%80%A0%E8%A1%8C%E4%BA%BA%E5%8F%8B%E5%96%84%E7%9A%84%E5%9F%8E%E5%B8%82/ Guo, W., Feng, T., Li, W., Hua, L., Meng, Z., & Li, K. (2023). Comparative life cycle assessment of sodium-ion and lithium iron phosphate batteries in the context of carbon neutrality. Journal of Energy Storage, 72, 108589. https://doi.org/https://doi.org/10.1016/j.est.2023.108589 Guo, X., Song, Y., & Nan, J. (2018). Flow evaluation of the leaching hazardous materials from spent nickel-cadmium batteries discarded in different water surroundings. Environmental Science and Pollution Research, 25(6), 5514-5520. https://doi.org/10.1007/s11356-017-0923-0 Han, X., Li, Y., Nie, L., Huang, X., Deng, Y., Yan, J., Kourkoumpas, D.-S., & Karellas, S. (2023). Comparative life cycle greenhouse gas emissions assessment of battery energy storage technologies for grid applications. Journal of Cleaner Production, 392, 136251. https://doi.org/https://doi.org/10.1016/j.jclepro.2023.136251 Han, X., Liang, Y., Ai, Y., & Li, J. (2018). Economic evaluation of a PV combined energy storage charging station based on cost estimation of second-use batteries. Energy, 165, 326-339. https://doi.org/https://doi.org/10.1016/j.energy.2018.09.022 Haram, M. H. S. M., Lee, J. W., Ramasamy, G., Ngu, E. E., Thiagarajah, S. P., & Lee, Y. H. (2021). Feasibility of utilising second life EV batteries: Applications, lifespan, economics, environmental impact, assessment, and challenges. Alexandria Engineering Journal, 60(5), 4517-4536. https://doi.org/https://doi.org/10.1016/j.aej.2021.03.021 Hari, B. (2021). Are fuel cell electric cars better than battery electric cars? [Battery Systems Engineer]( Energy storage solutions - automotive, Issue. PRESCOUTER. https://www.prescouter.com/inquiry/are-fuel-cell-electric-cars-better-than-battery-electric-cars/ Hiremath, M., Derendorf, K., & Vogt, T. (2015). Comparative Life Cycle Assessment of Battery Storage Systems for Stationary Applications. Environmental Science & Technology, 49(8), 4825-4833. https://doi.org/10.1021/es504572q Hua, Y., Liu, X., Zhou, S., Huang, Y., Ling, H., & Yang, S. (2021). Toward Sustainable Reuse of Retired Lithium-ion Batteries from Electric Vehicles. Resources, Conservation and Recycling, 168, 105249. https://doi.org/https://doi.org/10.1016/j.resconrec.2020.105249 Hua, Y., Zhou, S., Huang, Y., Liu, X., Ling, H., Zhou, X., Zhang, C., & Yang, S. (2020). Sustainable value chain of retired lithium-ion batteries for electric vehicles. Journal of Power Sources, 478, 228753. https://doi.org/10.1016/j.jpowsour.2020.228753 IEA. (2023). Global EV Outlook. IEA. (2024a). 2024 Global EV Outlook. https://www.iea.org/reports/global-ev-outlook-2024 IEA. (2024b). Batteries and Secure Energy Transitions. https://www.iea.org/reports/batteries-and-secure-energy-transitions IEC. (2024). IEC 61960-4. In (pp. 32). IEC(International Electrotechnical Commission). Jorabchi, H. (2023). NMC Composition. Battery Design from chemistry to pack. Retrieved November 15 from https://www.batterydesign.net/nmc-composition/ Karen Fisher, E. W., Pieter Paul, Laenen, Michael Collins. (2006). Battery Waste Management Life Cycle Assessment - Final Report for Publication. Environmental Resources Management. http://www.relec.es/RECICLADO_ELECTRONICO/Baterias/Battery%20Waste%20Management.pdf Kastanaki, E., & Giannis, A. (2023). Dynamic estimation of end-of-life electric vehicle batteries in the EU-27 considering reuse, remanufacturing and recycling options. Journal of Cleaner Production, 393, 136349. https://doi.org/https://doi.org/10.1016/j.jclepro.2023.136349 Koroma, M. S., Costa, D., Cardellini, G., & Messagie, M. (2021). Life Cycle Assessment of Lithium-ion Battery Pack: Implications of Second-life and Changes in Charging Electricity. Koroma, M. S., Costa, D., Cardellini, G., & Messagie, M. (2021, 2021). Life Cycle Assessment of Lithium-ion Battery Pack: Implications of Second-life and Changes in Charging Electricity. Le Varlet, T., Schmidt, O., Gambhir, A., Few, S., & Staffell, I. (2020). Comparative life cycle assessment of lithium-ion battery chemistries for residential storage. Journal of Energy Storage, 28, 101230. https://doi.org/https://doi.org/10.1016/j.est.2020.101230 Li, P., Xia, X., & Guo, J. (2022). A review of the life cycle carbon footprint of electric vehicle batteries. Separation and Purification Technology, 296, 121389. https://doi.org/https://doi.org/10.1016/j.seppur.2022.121389 Lluc Canals Casals, B. A. G., Lázaro V. Cremades. (2017). Electric vehicle battery reuse: Preparing for a second life. Journal of Industrial Engineering and Management. https://doi.org/https://doi.org/10.3926/jiem.2009 Lundaev, V., Solomon, A. A., Le, T., Lohrmann, A., & Breyer, C. (2023). Review of critical materials for the energy transition, an analysis of global resources and production databases and the state of material circularity. Minerals Engineering, 203, 108282. https://doi.org/https://doi.org/10.1016/j.mineng.2023.108282 Machinery, G. (2024). Guanma Machinery Lithium-ion Battery Recycling Equipment Extracts Valuables from Iron Can NCM & NCA Batterie. Guanma Machinery. Retrieved April 19 from https://www.guanmarecycle.com/guanma-machinery-lithium-ion-battery-recycling-equipment/ Marconi, M., Palmieri, G., Callegari, M., & Germani, M. (2018). Feasibility Study and Design of an Automatic System for Electronic Components Disassembly. Journal of Manufacturing Science and Engineering, 141(2). https://doi.org/10.1115/1.4042006 McManus, M. C. (2012). Environmental consequences of the use of batteries in low carbon systems: The impact of battery production. Applied Energy, 93, 288-295. https://doi.org/10.1016/j.apenergy.2011.12.062 Melchor-Martínez, E. M., Macias-Garbett, R., Malacara-Becerra, A., Iqbal, H. M. N., Sosa-Hernández, J. E., & Parra-Saldívar, R. (2021). Environmental impact of emerging contaminants from battery waste: A mini review. Case Studies in Chemical and Environmental Engineering, 3, 100104. https://doi.org/https://doi.org/10.1016/j.cscee.2021.100104 Melin, H. E., Rajaeifar, M. A., Ku, A. Y., Kendall, A., Harper, G., & Heidrich, O. (2021). Global implications of the EU battery regulation. Science, 373(6553), 384-387. https://doi.org/doi:10.1126/science.abh1416 Mohr, M., Peters, J. F., Baumann, M., & Weil, M. (2020). Toward a cell‐chemistry specific life cycle assessment of lithium‐ion battery recycling processes. Journal of Industrial Ecology, 24(6), 1310-1322. https://doi.org/10.1111/jiec.13021 Neumann, J., Petranikova, M., Meeus, M., Gamarra, J. D., Younesi, R., Winter, M., & Nowak, S. (2022). Recycling of Lithium‐Ion Batteries—Current State of the Art, Circular Economy, and Next Generation Recycling. Advanced Energy Materials, 12(17), 2102917. https://doi.org/10.1002/aenm.202102917 Nigel. (2022). Power versus Energy Cells. Battery Design from chemistry to pack. https://www.batterydesign.net/power-versus-energy-cells/ Nigel. (2023, April 2). Battery Pack Ragone Plot. Battery Design from chemistry to pack. https://www.batterydesign.net/battery-pack-ragone-plot/ Pagliaro, M., & Meneguzzo, F. (2019). Lithium battery reusing and recycling: A circular economy insight. Heliyon, 5(6), e01866. https://doi.org/10.1016/j.heliyon.2019.e01866 Pellow, M. A., Ambrose, H., Mulvaney, D., Betita, R., & Shaw, S. (2020). Research gaps in environmental life cycle assessments of lithium ion batteries for grid-scale stationary energy storage systems: End-of-life options and other issues. Sustainable Materials and Technologies, 23, e00120. https://doi.org/https://doi.org/10.1016/j.susmat.2019.e00120 Peters, J. F., Baumann, M., & Weil, M. (2019, 2019//). The Importance of Recyclability for the Environmental Performance of Battery Systems. Cascade Use in Technologies 2018, Berlin, Heidelberg. Petzl, M., & Danzer, M. A. (2014). Nondestructive detection, characterization, and quantification of lithium plating in commercial lithium-ion batteries. Journal of Power Sources, 254, 80-87. https://doi.org/https://doi.org/10.1016/j.jpowsour.2013.12.060 Pražanová, A., Knap, V., & Stroe, D.-I. (2022). Literature Review, Recycling of Lithium-Ion Batteries from Electric Vehicles, Part II: Environmental and Economic Perspective. Energies, 15(19), 7356. https://doi.org/10.3390/en15197356 PRESCOUTER. (2022a, 11 April). Fuel Cell Electric Vehicles & the Future of Sustainable Driving https://www.prescouter.com/press/fuel-cell-electric-vehicles-the-future-of-sustainable-driving/ PRESCOUTER. (2022b). State of Battery Recycling: Can we meet our LIB recycling obligations by 2030? (Market Report 2022, Issue. PRESCOUTER. https://www.prescouter.com/report/state-of-battery-recycling-can-we-meet-our-lib-recycling-obligations-by-2030/ Qi, L., Wang, Y., Kong, L., Yi, M., Song, J., Hao, D., Zhou, X., Zhang, Z., & Yan, J. (2023). Manufacturing processes and recycling technology of automotive lithium-ion battery: A review. Journal of Energy Storage, 67, 107533. https://doi.org/https://doi.org/10.1016/j.est.2023.107533 Richa, K., Babbitt, C. W., Nenadic, N. G., & Gaustad, G. (2017). Environmental trade-offs across cascading lithium-ion battery life cycles. The International Journal of Life Cycle Assessment, 22(1), 66-81. https://doi.org/10.1007/s11367-015-0942-3 Richter, S., Rehme, M., Temmler, A., & Götze, U. (2016). Second-Life Battery Applications - Market potentials and contribution to the cost effectiveness of electric vehicles. https://doi.org/10.13140/RG.2.2.35238.93760 Ritchie, H. (2024). Tracking global data on electric vehicles https://ourworldindata.org/electric-car-sales Ryan, N. A., Lin, Y., Mitchell-Ward, N., Mathieu, J. L., & Johnson, J. X. (2018). Use-Phase Drives Lithium-Ion Battery Life Cycle Environmental Impacts When Used for Frequency Regulation. Environmental Science & Technology, 52(17), 10163-10174. https://doi.org/10.1021/acs.est.8b02171 Rydh, C. J., & Sandén, B. A. (2005). Energy analysis of batteries in photovoltaic systems. Part I: Performance and energy requirements. Energy Conversion and Management, 46(11), 1957-1979. https://doi.org/https://doi.org/10.1016/j.enconman.2004.10.003 Sambamurthy, S., Raghuvanshi, S., & Sangwan, K. S. (2021). Environmental impact of recycling spent lithium-ion batteries. Procedia CIRP, 98, 631-636. https://doi.org/https://doi.org/10.1016/j.procir.2021.01.166 Schneider, E. L., Kindlein, W., Souza, S., & Malfatti, C. F. (2009). Assessment and reuse of secondary batteries cells. Journal of Power Sources, 189(2), 1264-1269. https://doi.org/https://doi.org/10.1016/j.jpowsour.2008.12.154 Schöberl, J., Ank, M., Schreiber, M., Wassiliadis, N., & Lienkamp, M. (2024). Thermal runaway propagation in automotive lithium-ion batteries with NMC-811 and LFP cathodes: Safety requirements and impact on system integration. eTransportation, 19, 100305. https://doi.org/https://doi.org/10.1016/j.etran.2023.100305 Shafique, M., Rafiq, M., Azam, A., & Luo, X. (2022). Material flow analysis for end-of-life lithium-ion batteries from battery electric vehicles in the USA and China. Resources, Conservation and Recycling, 178, 106061. https://doi.org/https://doi.org/10.1016/j.resconrec.2021.106061 Shu, X., Guo, Y., Yang, W., Wei, K., & Zhu, G. (2021). Life-cycle assessment of the environmental impact of the batteries used in pure electric passenger cars. Energy Reports, 7, 2302-2315. https://doi.org/https://doi.org/10.1016/j.egyr.2021.04.038 SolarEdge. (2024a). https://energystorage.solaredge.com/ SolarEdge. (2024b). ESS 電池解決方案. https://www.billionwatts.com.tw/solaredge-ess-solutions Swain, B. (2017). Recovery and recycling of lithium: A review. Separation and Purification Technology, 172, 388-403. https://doi.org/https://doi.org/10.1016/j.seppur.2016.08.031 Tanim, T. R., Dufek, E. J., Evans, M., Dickerson, C., Jansen, A. N., Polzin, B. J., Dunlop, A. R., Trask, S. E., Jackman, R., Bloom, I., Yang, Z., & Lee, E. (2019). Extreme Fast Charge Challenges for Lithium-Ion Battery: Variability and Positive Electrode Issues. Journal of The Electrochemical Society, 166(10), A1926-A1938. https://doi.org/10.1149/2.0731910jes Tesla. (2023). Impact Report 2023. https://www.tesla.com/impact UNIVERSITY, B. (2022). When Was the Battery Invented? BATTERY UNIVERSITY. https://batteryuniversity.com/article/bu-101-when-was-the-battery-invented Vandepaer, L., Cloutier, J., Bauer, C., & Amor, B. (2019). Integrating Batteries in the Future Swiss Electricity Supply System: A Consequential Environmental Assessment. Journal of Industrial Ecology, 23(3), 709-725. https://doi.org/10.1111/jiec.12774 Walz, P. N. (2021). A circular economy in electric vehicle batteries : a european perspective. http://hdl.handle.net/10400.14/37969 Wewer, A., Bilge, P., & Dietrich, F. (2021). Advances of 2nd Life Applications for Lithium Ion Batteries from Electric Vehicles Based on Energy Demand. Sustainability, 13(10), 5726. https://doi.org/10.3390/su13105726 Wilson, N., Meiklejohn, E., Overton, B., Robinson, F., Farjana, S. H., Li, W., & Staines, J. (2021). A physical allocation method for comparative life cycle assessment: A case study of repurposing Australian electric vehicle batteries. Resources, Conservation and Recycling, 174, 105759. https://doi.org/https://doi.org/10.1016/j.resconrec.2021.105759 Xiao, J., Gao, J., Anwer, N., & Eynard, B. (2023). Multi-Agent Reinforcement Learning Method for Disassembly Sequential Task Optimization Based on Human–Robot Collaborative Disassembly in Electric Vehicle Battery Recycling. Journal of Manufacturing Science and Engineering, 145(12), 1-36. https://doi.org/10.1115/1.4062235 Yang, Y., Okonkwo, E. G., Huang, G., Xu, S., Sun, W., & He, Y. (2021). On the sustainability of lithium ion battery industry – A review and perspective. Energy Storage Materials, 36, 186-212. https://doi.org/https://doi.org/10.1016/j.ensm.2020.12.019 Zhang, X., Li, L., Fan, E., Xue, Q., Bian, Y., Wu, F., & Chen, R. (2018). Toward sustainable and systematic recycling of spent rechargeable batteries [10.1039/C8CS00297E]. Chemical Society Reviews, 47(19), 7239-7302. https://doi.org/10.1039/C8CS00297E Zhu, J., Mathews, I., Ren, D., Li, W., Cogswell, D., Xing, B., Sedlatschek, T., Kantareddy, S. N. R., Yi, M., Gao, T., Xia, Y., Zhou, Q., Wierzbicki, T., & Bazant, M. Z. (2021). End-of-life or second-life options for retired electric vehicle batteries. Cell Reports Physical Science, 2(8), 100537. https://doi.org/10.1016/j.xcrp.2021.100537 交通部. (2023). 台灣2050淨零轉型「運具電動化及無碳化」關鍵戰略行動計劃. 交通部公路局. (2024). 機動車輛新車領牌數 https://stat.thb.gov.tw/hb01/webMain.aspx?sys=100&funid=11200 台塑新智能. (2023). 儲能解決方案—型錄總覽 ENERGY STORAGE SYSTEM SERIES. https://www.fset.com.tw/ https://www.fset.com.tw/pdf/%E3%80%90Formosa_Smart_Energy%E3%80%91Energy_storage_solution_series_DM.pdf 台灣電池協會. (2024). Li Battery Industry Supply Chain in Taiwan. 吳溪煌. (2020). 充電電流對鋰離子二次電池老化行為之影響分析 Effects of Charging Current on the Aging Behavior of Lithium Ion Battery [材料科技]. https://www.grb.gov.tw/search/planDetail?id=13529375 新能源電池回收利用專業委員會. (2024). 2024年電池材料及回收價格 http://www.nebrpc.com/a/1242.html 林俊旭. (2023). 112年度補助應回收廢棄物回收處理創新及研究發展計畫- 汰役電池再利用可行性評估」 (EPA-112-XB14 ). 政府資訊系統GRB. https://www.grb.gov.tw/search/planDetail?id=15902705 林偉凱. (2012). 認識新一代電池材料:鋰金屬. https://www.mirdc.org.tw/FileDownLoad/IndustryNews/20144109541941.pdf 林欣蓉, 吳笙卉, 方家振, 闕銘宏, 王依仁, & 謝少棟. (2023). 發展廢鋰電池高值循環技術與打造國內自主循環產業鏈體系(第一年) - 112AB016. https://www.grb.gov.tw/search/planDetail?id=15926637 游坤明. (2020). 鋰電池產線資料整合與智慧化系統建置計畫 (RW11108-0008). https://www.grb.gov.tw/search/planDetail?id=13609923 王正健;, 高銘汶;, 尹照錦;, 謝育錚;, & 陳信志. (2023). 智慧電動車輛產業輔導推動計畫 (RM11302-0111 ). https://www.grb.gov.tw/search/planDetail?id=758126072 盛齊綠能股份有限公司. (2024). 盛齊綠能ESS置換安全MW級儲能系統. 經濟部. (2023). 臺灣 2050 淨零轉型「電力系統與儲能」關鍵戰略行動計畫. 行政院. (2021). 110六大核心戰略產業推動方案. https://www.ndc.gov.tw/Content_List.aspx?n=9614A7C859796FFA 行政院. (2023). 「資源循環零廢棄」關鍵戰略行動計畫. 謝登存. (2019, 5 September ). 長壽命儲能鋰電池. 工業材料雜誌393期. https://www.materialsnet.com.tw/DocView.aspx?id=40282 鄭冠淳. (2024). 淨零先鋒:臺灣電動車市場的崛起與未來. https://www.artc.org.tw/tw/knowledge/articles/13739 陳偉聖. (2016). 廢車用鋰電池之有價金屬資源再生技術 Waste Hybrid Electric Vehicle(Hev) Lithium-Ion Battery Resource Recycling Technology. https://www.grb.gov.tw/search/planDetail?id=11879329 | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/97901 | - |
| dc.description.abstract | 隨著全球能源轉型與電動車市場的快速成長,鋰電池需求顯著增加。然而,台灣未來將逐漸面臨電動車鋰電池汰役潮,如何妥善管理這些廢棄電池,成為現今關鍵課題。此外,為配合我國政府計畫至2030年累計完成5,500 MW的儲能系統裝置容量,發展電動車汰役電池降階利用於儲能系統並搭配金屬冶煉回收貴金屬,對於降低環境衝擊與強化台灣關鍵原物料自主性具有重要意義。
本研究首先推估台灣在2025年至2050年間逐年汰役的電動車鋰電池數量,並建立金屬冶煉(Recycling)與降階利用(Repurposing)兩種循環經濟策略,透過生命週期評估方法,量化這兩種策略對台灣的環境衝擊差異。本研究設定兩個功能單位:一為處理2025至2050年間台灣所有電動車汰役鋰電池(個),另一為滿足此25年間每年新增儲能裝置容量的需求(MW/年)。 研究結果顯示,2025至2050年間,台灣累計將有約6.76百萬輛電動小客車投入市場,並產生1,058.4 kt與496.3 kt 的NMC與LFP汰役電芯。透過降階利用策略將汰役電池應用於儲能系統,可直接取代152.1 kt的新儲能電池生產,並在2039年後完全滿足台灣的儲能裝置需求,且2037年起,再生材料的產出可抵換原生材料的開採,顯示降階利用策略的資源抵換潛力。 根據生命週期評估結果,兩策略皆在淡水生態毒性、海洋生態毒性與人體致癌毒性具有顯著的環境衝擊。而降階利用策略對環境的影響均低於金屬冶煉策略,可有效減少約2.53百萬噸的CO2e排放、降低約52萬噸的化石燃料使用與節省3.63萬噸的水資源消耗。 整體而言,本研究驗證了電動車汰役電池降階利用於儲能系統的環境效益與資源抵換潛力。未來台灣政策應進一步完善電動車汰役電池降階利用的機制,以降低台灣對進口原物料的依賴,並促進電池產業鏈的永續發展。 | zh_TW |
| dc.description.abstract | With the global energy transition and the rapid growth of the electric vehicle (EV) market, the demand for lithium batteries has significantly increased. However, Taiwan will gradually face a wave of EV lithium battery retirements in the future, making the proper management of these retired batteries a critical issue today. Additionally, to align with the government's plan to achieve a cumulative installed capacity of 5,500 MW for energy storage systems by 2030, developing a strategy for repurposing retired EV batteries for energy storage systems, coupled with recycling for precious metal recovery, is crucial for reducing environmental impact and enhancing Taiwan's autonomy in key raw materials.
This study first estimates the annual number of retired EV lithium batteries in Taiwan from 2025 to 2050 and establishes two Circular Economy strategies: Recycling and Repurposing. Using Life Cycle Assessment (LCA) methods, the study quantifies the environmental impact differences between these two strategies. Two functional units are defined: one for processing all retired EV lithium batteries in Taiwan from 2025 to 2050, and another for meeting the annual demand for new energy storage capacity over this 25-year period. The results indicate that approximately 6.76 million EV will be put on the market in Taiwan between 2025 and 2050, generating 1,058.4 kt and 496.3 kt of retired NMC and LFP battery cells, respectively. By applying the repurposing strategy for energy storage systems, it can directly replace the production of 152.1 kt of new energy storage batteries and completely meet Taiwan's energy storage capacity needs after 2039. Moreover, starting in 2037, the output of recycled materials can offset the extraction of virgin materials, highlighting the resource substitution potential of the repurposing strategy. According to the Life Cycle Assessment (LCA) results, both strategies exhibit significant environmental impacts in terms of freshwater ecotoxicity, marine ecotoxicity, and human carcinogenic toxicity. The repurposing strategy shows a lower environmental impact compared to the recycling strategy, effectively reducing CO2e emissions by approximately 2.53 million tons, decreasing fossil fuel usage by about 520,000 tons, and saving 36,300 tons of water resources. Overall, this study validates the environmental benefits and resource substitution potential of repurposing retired EV batteries for energy storage systems. Future policies in Taiwan should further improve the mechanisms for repurposing retired EV batteries to reduce reliance on imported raw materials and promote the sustainable development of the battery industry. | en |
| dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2025-07-22T16:08:11Z No. of bitstreams: 0 | en |
| dc.description.provenance | Made available in DSpace on 2025-07-22T16:08:11Z (GMT). No. of bitstreams: 0 | en |
| dc.description.tableofcontents | 口試委員審定書 II
謝詞 III 中文摘要 IV ABSTRACT V 目次 VII 圖次 X 表次 XII 第一章 緒論 1 1.1研究背景 1 1.2 研究動機 4 1.3 研究目的 5 1.4 研究架構 6 第二章 文獻回顧 8 2.1 鋰電池之概述、應用與產業 8 2.1.1 鋰電池之基本概述 8 2.1.2 鋰電池應用:電動車動力電池與儲能電池 13 2.1.3 全球鋰電池供應鏈 17 2.1.4 台灣鋰電池相關產業鏈 21 2.2 汰役鋰電池之處理現況與問題 23 2.2.1 鋰電池鑑定、汰役與拆解方法 23 2.2.2 電動車鋰電池汰役後之環境問題與抵換潛力 28 2.2.3 全球汰役鋰電池回收現況 29 2.2.4 台灣汰役鋰電池回收現況 30 2.3 循環經濟下電動車汰役鋰電池的處理方式 32 2.3.1 鋰電池的循環經濟策略 32 2.3.2 電動車汰役鋰電池降階利用(Repurposing)於儲能系統 34 2.3.3 電動車汰役電池金屬冶煉(Recycling)成為再生金屬材料 36 2.4 鋰電池的生命週期評估 39 2.4.1 功能單位、系統邊界與量化方法之選擇 39 2.4.2 電芯種類之比較 40 2.4.2 回收方法之比較 40 2.4.3 汰役電動車電池之處理 41 第三章、研究方法 43 3.1 情境分析與計算流程 43 3.1.1 研究情境與假設條件 43 3.1.2 研究執行流程與描述 44 3.2 生命週期評估 55 3.2.1 目標與範疇界定 55 3.2.2 生命週期盤查分析 60 3.2.3 生命週期衝擊評估 66 3.2.4 結果闡釋 70 第四章、結果與討論 71 4.1 電池的推估 71 4.1.1 未來電動小客車車輛數之預估結果 71 4.1.2 台灣2025年至2050年的汰役動力鋰電池量之推估 73 4.1.3 台灣2025年至2050年的儲能電池建置量之推估 75 4.1.4 循環經濟策略下的產品型態數量與流布 77 4.2 循環經濟策略下之情境解析與比較 81 4.2.1 情境一:金屬冶煉電池(Recycling)之環境分析 81 4.2.2 情境二:降階利用電池(Repurposing)之環境分析 84 4.2.3 情境比較 87 4.3 電池製程行為的生命週期評估 88 4.3.1 儲能電池「製造階段」之LCA 90 4.3.2 汰役電池「金屬冶煉階段」之LCA 92 4.3.3 汰役電池「拆解階段」之LCA 94 4.4 抵換潛力 95 第五章、結論與建議 98 5.1 結論 98 5.2 建議 100 參考文獻 102 附錄 112 | - |
| dc.language.iso | zh_TW | - |
| dc.subject | 電動車汰役鋰電池 | zh_TW |
| dc.subject | 生命週期評估 | zh_TW |
| dc.subject | 金屬冶煉 | zh_TW |
| dc.subject | 降階利用 | zh_TW |
| dc.subject | 循環經濟 | zh_TW |
| dc.subject | 電動車汰役鋰電池 | zh_TW |
| dc.subject | 生命週期評估 | zh_TW |
| dc.subject | 金屬冶煉 | zh_TW |
| dc.subject | 降階利用 | zh_TW |
| dc.subject | 循環經濟 | zh_TW |
| dc.subject | Retired Electric Vehicle Lithium Batteries | en |
| dc.subject | Life Cycle Assessment | en |
| dc.subject | Retired Electric Vehicle Lithium Batteries | en |
| dc.subject | Circular Economy | en |
| dc.subject | Repurposing | en |
| dc.subject | Recycling | en |
| dc.subject | Life Cycle Assessment | en |
| dc.subject | Recycling | en |
| dc.subject | Repurposing | en |
| dc.subject | Circular Economy | en |
| dc.title | 電動車汰役鋰電池於循環經濟策略下的環境衝擊與抵換潛力 | zh_TW |
| dc.title | Assessing the Environmental Impact and Offset Potential of Applying Circular Economy Strategies to Retired Lithium-ion Batteries in Electric Vehicles | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 113-2 | - |
| dc.description.degree | 碩士 | - |
| dc.contributor.oralexamcommittee | 胡憲倫;闕蓓德 | zh_TW |
| dc.contributor.oralexamcommittee | Allen H. H;Pei-Te Chiueh | en |
| dc.subject.keyword | 電動車汰役鋰電池,循環經濟,降階利用,金屬冶煉,生命週期評估, | zh_TW |
| dc.subject.keyword | Retired Electric Vehicle Lithium Batteries,Circular Economy,Repurposing,Recycling,Life Cycle Assessment, | en |
| dc.relation.page | 114 | - |
| dc.identifier.doi | 10.6342/NTU202501069 | - |
| dc.rights.note | 同意授權(全球公開) | - |
| dc.date.accepted | 2025-07-18 | - |
| dc.contributor.author-college | 工學院 | - |
| dc.contributor.author-dept | 環境工程學研究所 | - |
| dc.date.embargo-lift | 2025-07-23 | - |
| Appears in Collections: | 環境工程學研究所 | |
Files in This Item:
| File | Size | Format | |
|---|---|---|---|
| ntu-113-2.pdf | 4.68 MB | Adobe PDF | View/Open |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.
