請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/97892完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 林浩雄 | zh_TW |
| dc.contributor.advisor | Hao-Hsiung Lin | en |
| dc.contributor.author | 許逸翔 | zh_TW |
| dc.contributor.author | Yi-Hsiang Hsu | en |
| dc.date.accessioned | 2025-07-22T16:06:08Z | - |
| dc.date.available | 2025-07-23 | - |
| dc.date.copyright | 2025-07-22 | - |
| dc.date.issued | 2025 | - |
| dc.date.submitted | 2025-07-18 | - |
| dc.identifier.citation | M. R. Black, P. L. Hagelstein, S. B. Cronin, Y. M. Lin, and M. S. Dresselhaus, “Optical absorption from an indirect transition in bismuth nanowires,” Phys. Rev. B, vol. 68, no. 23, p. 235417, Dec. 2003.
A. J. Levin, M. R. Black, and M. S. Dresselhaus, “Indirect L to T point optical transition in bismuth nanowires,” Phys. Rev. B, vol. 79, no. 16, p. 165117, Apr. 2009. L.-C. Hong, C. Chou, and H.-H. Lin, “Simulation on the electric field effect of Bi thin film,” Solid State Electron. Lett., vol. 2, pp. 28–34, 2020. C. A. Hoffman, J. R. Meyer, F. J. Bartoli, A. Di Venere, X. J. Yi, C. L. Hou, H. C. Wang, J. B. Ketterson, and G. K. Wong, “Semimetal-to-semiconductor transition in bismuth thin films,” Phys. Rev. B, vol. 48, no. 15, pp. 11431–11434, Oct. 1993. F. Gity, L. Ansari, M. Lanius, P. Schüffelgen, G. Mussler, D. Grützmacher, and J. C. Greer, “Reinventing solid state electronics: Harnessing quantum confinement in bismuth thin films,” Appl. Phys. Lett., vol. 110, no. 9, p. 093111, Mar. 2017. P.-C. Shen et al., “Ultralow contact resistance between semimetal and monolayer semiconductors,” Nature, vol. 593, no. 7858, pp. 211–217, May 2021. S. Matsumoto, T. Nishimura, T. Yajima, and A. Toriumi, “Nearly pinning-free ohmic contact at bismuth/n-silicon interface,” in Ext. Abstr. 2016 Int. Conf. Solid State Devices and Materials (SSDM), Tsukuba, Japan, 2016, pp. 635–636. W. Mönch, “Barrier heights of real Schottky contacts explained by metal-induced gap states and defects,” Rep. Prog. Phys., vol. 53, no. 3, pp. 221–278, Mar. 1990. T. Nishimura, X. Luo, S. Matsumoto, T. Yajima, and A. Toriumi, “Almost pinning-free bismuth/Ge and /Si interfaces,” AIP Adv., vol. 9, no. 9, p. 095013, Sep. 2019. R. Nakajima, T. Nishimura, K. Ueno, and K. Nagashio, “Work function modulation of Bi/Au bilayer system toward p-type WSe₂ FET,” ACS Applied Electronic Materials, vol. 6, no. 1, pp. 144–149, Jan. 2024. Ph. Hofmann, “The surfaces of bismuth: Structural and electronic properties,” Prog. Surf. Sci., vol. 81, pp. 191–245, 2006. E. A. Sedov, K.-P. Riikonen, and K. Y. Arutyunov, “Quantum size phenomena in single-crystalline bismuth nanostructures,” npj Quantum Mater., vol. 2, no. 18, Apr. 2017. C. F. Gallo, B. S. Chandrasekhar, and P. H. Sutter, “Transport properties of bismuth single crystals,” J. Appl. Phys., vol. 34, no. 1, pp. 144–152, Jan. 1963. Y.-M. Lin, X. Sun, and M. S. Dresselhaus, “Theoretical investigation of thermoelectric transport properties of cylindrical Bi nanowires,” Phys. Rev. B, vol. 62, no. 7, pp. 4610–4623, 2000. R. T. Isaacson and G. A. Williams, “Alfvén-wave propagation in solid-state plasmas. III. Quantum oscillations of the Fermi surface of bismuth,” Phys. Rev., vol. 185, no. 2, pp. 682–690, Sep. 1969. G. E. Smith, G. A. Baraff, and J. M. Rowell, “Effective g factor of electrons and holes in bismuth,” Phys. Rev., vol. 135, no. 4A, pp. A1118–A1124, Aug. 1964. M. P. Vecchi and M. S. Dresselhaus, “Temperature dependence of the band parameters of bismuth,” Phys. Rev. B, vol. 10, no. 2, pp. 771–777, Jul. 1974. H. Jupnik, “Photoelectric properties of bismuth,” Phys. Rev., vol. 60, pp. 882–887, Dec. 1941. L. Apker, E. Taft, and J. Dickey, “Some semimetallic characteristics of the photoelectric emission from As, Sb, and Bi,” Phys. Rev., vol. 76, no. 2, pp. 270–276, Jul. 1949. S. M. Sze and K. K. Ng, Physics of Semiconductor Devices, 3rd ed. Hoboken, NJ, USA: John Wiley & Sons, 2007. D. M. Riffe, “Temperature dependence of silicon carrier effective masses with application to femtosecond reflectivity measurements,” J. Opt. Soc. Am. B, vol. 19, no. 5, pp. 1092–1100, May 2002. R. Couderc, M. Amara, and M. Lemiti, “Reassessment of the intrinsic carrier density temperature dependence in crystalline silicon,” J. Appl. Phys., vol. 115, no. 9, p. 093705, Mar. 2014. P. Lautenschlager, P. B. Allen, and M. Cardona, "Temperature dependence of band gaps in Si and Ge," Phys. Rev. B, vol. 31, no. 4, pp. 2163–2171, Feb. 1985. F. Stern and W. E. Howard, “Properties of semiconductor surface inversion layers in the electric quantum limit,” Phys. Rev., vol. 163, no. 3, pp. 816–835, Nov. 1967. S. L. Chuang, Physics of Optoelectronic Devices, 1st ed., Hoboken, NJ, USA: Wiley, 1995, ch. 4. B. Lax, J. G. Mavroides, H. J. Zeiger, and R. J. Keyes, “Infrared magnetoreflection in bismuth. I. High fields,” Phys. Rev. Lett., vol. 5, no. 6, pp. 241–243, Sep. 1960. E. O. Kane, “Band structure of indium antimonide,” J. Phys. Chem. Solids, vol. 1, pp. 249–261, 1957. Hsin-Yu Wang. " Studies on Temperature-dependent I-V and C-V Characteristics of Au/Bi/p-Si Schottky Junction" Master Thesis. Mar. 2025. B. L. Smith and E. H. Rhoderick, “Schottky barriers on p-type silicon,” Solid-State Electron., vol. 14, no. 1, pp. 71–75, 1971. A. A. Abrikosov, “Dielectric constant of bismuth-type metals in the infrared region,” Sov. Phys. JETP, vol. 17, no. 6, pp. 1396–1403, Dec. 1963. W. Mönch, “Mechanisms of barrier formation in Schottky contacts: Metal-induced surface and interface states,” Appl. Surf. Sci., vol. 41–42, pp. 128–138, 1990. G. A. M. Hurkx, D. B. M. Klaassen, and M. P. G. Knuvers, "A New Recombination Model for Device Simulation Including Tunneling," IEEE Transactions on Electron Devices, vol. 39, no. 2, pp. 331–338, Feb. 1992. E. H. Nicollian and J. R. Brews, MOS (Metal Oxide Semiconductor) Physics and Technology. New York: Wiley-Interscience, 1982. H. Bleichner, P. Jonsson, N. Keskitalo, and E. Nordlander, “Temperature and injection dependence of the Shockley–Read–Hall lifetime in electron irradiated n-type silicon,” J. Appl. Phys., vol. 79, no. 12, pp. 9142–9148, Jun. 1996. H. Bayhan and A. S. Kavasoğlu, “Tunnelling enhanced recombination in polycrystalline CdS/CdTe and CdS/Cu(In,Ga)Se₂ heterojunction solar cells,” Solid-State Electron., vol. 49, no. 6, pp. 991–996, Jun. 2005. | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/97892 | - |
| dc.description.abstract | 本研究旨在探討鉍(Bi)薄膜的量子侷限效應對Bi/p-Si蕭基接面電性行為之影響。透過Au/Bi/p-Si元件的變溫電容-電壓(C-V)與電流-電壓(I-V)量測,結合理論模擬分析,深入探討薄膜厚度與溫度變化對蕭基接面電性特性的影響機制。
在C-V量測部分,我們納入接面反轉層載子對電容響應的貢獻,並由1/C²-V圖擬合獲得蕭基能障(Schottky barrier height, SBH, ϕ_Bp)及矽基板之雜質濃度。結果顯示,當鉍薄膜厚度降至10 nm時,因量子侷限效應,費米能階上移並造成SBH提升。我們結合模擬發現當鉍塊材功函數設定為4.25 eV時,其模擬結果與實驗數據最為吻合,對應的Bi/p-Si接面SBH可達0.9 eV。值得注意的是,實驗所萃取之SBH分布明顯接近Schottky limit,顯示該接面具備近乎無Fermi Level Pinning (FLP)的特性,進一步驗證鉍為低態密度、低MIGS(Metal-Induced Gap States)材料。 I-V特性分析結果指出,元件在逆偏下展現電流隨偏壓顯著上升的行為;而順偏區則觀察到低溫條件下的電流斜率幾乎不隨溫度變化。為說明此行為,我們引入缺陷輔助穿隧模型,指出由於Bi/p-Si接面具有高SBH,熱離子發射(Thermionic Emission, TE)電流貢獻甚微,主導電流機制轉為包含缺陷輔助穿隧效應的復合電流。其中,逆偏區因強電場促使缺陷輔助穿隧路徑大幅增強,導致電流提升;而順偏區則受限於缺陷能級位置與空乏區內的載子濃度分布,進一步形成斜率隨偏壓變化的特徵性行為。 綜合而言,本研究揭示鉍功函數在量子侷限條件下可有效調變Bi/p-Si接面之能帶對齊與電性表現,展現Bi/p-Si理想蕭基接面的證據。 | zh_TW |
| dc.description.abstract | This study aims to investigate the impact of quantum confinement effects in bismuth (Bi) thin films on the electrical behavior of Bi/p-Si Schottky junctions. By performing temperature-dependent capacitance-voltage (C–V) and current-voltage (I–V) measurements on Au/Bi/p-Si devices, combined with theoretical simulations, we systematically explore the influence of Bi film thickness and temperature variation on the electrical characteristics of the junction.
In the C–V analysis, the contribution from inversion-layer carriers at the junction was considered. Through 1/C²–V fitting, the Schottky barrier height (SBH, ϕ_Bp) and the impurity concentration of the silicon substrate were extracted. Results indicate that when the Bi thickness is reduced to 10 nm, strong quantum confinement raises the Fermi level and subsequently increases the SBH. Simulations show that a bulk Bi work function of 4.25 eV yields the best match with experimental data, corresponding to an SBH of approximately 0.9 eV at the Bi/p-Si interface. Notably, the experimentally extracted SBH values are close to the Schottky limit, suggesting a nearly Fermi-level-pinning-free (FLP-free) interface, thereby validating bismuth as a low-density-of-states and low-MIGS (metal-induced gap states) material. I–V characteristics reveal a significant current increase under reverse bias, while the forward-bias region shows that current slope remains nearly invariant with temperature at low temperatures. To explain this behavior, a trap-assisted tunneling (TAT) model was introduced. Due to the high SBH of the Bi/p-Si junction, thermionic emission (TE) is negligible, and the dominant transport mechanism transitions to recombination current with significant contributions from TAT. In reverse bias, strong electric fields enhance the tunneling pathway via defect states, leading to increased current. In forward bias, the current behavior is governed by the trap level position and the spatial distribution of carrier concentrations within the depletion region, resulting in bias-dependent slope characteristics. In summary, this work demonstrates that the work function of Bi can be effectively modulated under quantum confinement conditions, thereby tuning the band alignment and electrical performance of Bi/p-Si junctions. Our findings provide clear evidence of Bi/p-Si forming a near-ideal Schottky interface. | en |
| dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2025-07-22T16:06:08Z No. of bitstreams: 0 | en |
| dc.description.provenance | Made available in DSpace on 2025-07-22T16:06:08Z (GMT). No. of bitstreams: 0 | en |
| dc.description.tableofcontents | 謝辭 I
中文摘要 II Abstract III 目次 V 圖次 VIII 表次 XII 第一章 序言 1 1-1 研究背景與方法 1 1-2 論文架構 3 第二章 鉍薄膜的能帶數值模擬計算 4 2-1 模擬鉍能帶基本之參數 4 2-1-1 鉍晶體結構 4 2-1-2 高溫鉍電子質量討論 6 2-1-3 模擬相關參數總表 8 2-2 鉍量子侷限效應與有效質量特性 10 2-2-1 一維侷限(Quantum confinement effect)之量子化能級 10 2-2-2 k∙p 微擾論與Lax 模型 12 2-3 鉍T-band、L-band能量-動量關係式 14 2-3-1 鉍T-band、L-band LAX model 修正 14 2-3-2 鉍導帶、價帶E-K公式整理及比較 15 2-4 鉍能帶費米能階討論 18 2-4-1 鉍能帶狀態密度對量子侷限效應討論 18 2-4-2 鉍費米能階與載子濃度討論 23 2-4-3 功函數調變鉍矽蕭基接面 27 第三章 實驗樣品參數與變溫C-V量測分析 30 3-1 Au/Bi/p-Si元件樣品參數與量測 30 3-2 Au/Bi/p-Si的C-V模擬比對結果 31 3-2-1 考慮反轉層載子之C-V 能障分析方法 31 3-2-2 C-V實驗分析與模擬之蕭基能障值 35 第四章 元件模擬及I-V擬合分析 40 4-1 I-V實驗結果分析及物理模型 40 4-1-1 Thermal Emision熱離子發射模型 40 4-1-2 Shockley-Read-Hall復合電流與Hurkx缺陷輔助穿隧模型 41 4-1-3 I-V實驗結果分析 44 4-2 I-V數值模擬計算 46 4-2-1 模擬架構 46 4-2-2 I-V模擬結果 48 4-2-3 逆偏I-V TAT電流討論 54 4-2-4 順偏區I-V討論 55 第五章 結論 65 參考文獻 67 附錄 70 Au/Bi/p-Si元件製備與量測 70 | - |
| dc.language.iso | zh_TW | - |
| dc.subject | 鉍薄膜 | zh_TW |
| dc.subject | 變溫電性模擬 | zh_TW |
| dc.subject | 缺陷輔助穿隧 | zh_TW |
| dc.subject | 蕭基接面 | zh_TW |
| dc.subject | 量子侷限效應 | zh_TW |
| dc.subject | 鉍薄膜 | zh_TW |
| dc.subject | 變溫電性模擬 | zh_TW |
| dc.subject | 缺陷輔助穿隧 | zh_TW |
| dc.subject | 蕭基接面 | zh_TW |
| dc.subject | 量子侷限效應 | zh_TW |
| dc.subject | Bismuth thin film | en |
| dc.subject | Temperature-dependent electrical simulation | en |
| dc.subject | Bismuth thin film | en |
| dc.subject | Quantum confinement effect | en |
| dc.subject | Schottky junction | en |
| dc.subject | Trap-assisted tunneling | en |
| dc.subject | Temperature-dependent electrical simulation | en |
| dc.subject | Trap-assisted tunneling | en |
| dc.subject | Schottky junction | en |
| dc.subject | Quantum confinement effect | en |
| dc.title | 量子侷限效應與溫度對 Bi/p-Si蕭基接面能障的調變研究 | zh_TW |
| dc.title | Investigation of Bi/p-Si Schottky Barrier Height Modulation Induced by Quantum Confinement and Temperature | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 113-2 | - |
| dc.description.degree | 碩士 | - |
| dc.contributor.oralexamcommittee | 陳奕君;陳建宏;王智祥 | zh_TW |
| dc.contributor.oralexamcommittee | I-Chun Cheng;Chien-hung Chen;Jyh-Shyang Wang | en |
| dc.subject.keyword | 鉍薄膜,量子侷限效應,蕭基接面,缺陷輔助穿隧,變溫電性模擬, | zh_TW |
| dc.subject.keyword | Bismuth thin film,Quantum confinement effect,Schottky junction,Trap-assisted tunneling,Temperature-dependent electrical simulation, | en |
| dc.relation.page | 71 | - |
| dc.identifier.doi | 10.6342/NTU202502017 | - |
| dc.rights.note | 同意授權(全球公開) | - |
| dc.date.accepted | 2025-07-21 | - |
| dc.contributor.author-college | 電機資訊學院 | - |
| dc.contributor.author-dept | 光電工程學研究所 | - |
| dc.date.embargo-lift | 2027-07-17 | - |
| 顯示於系所單位: | 光電工程學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-113-2.pdf 此日期後於網路公開 2027-07-17 | 4.28 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
