Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 管理學院
  3. 商學組
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/97879
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor劉念琪zh_TW
dc.contributor.advisorNien-Chi Liuen
dc.contributor.author方彥欽zh_TW
dc.contributor.authorYen-Chin Fangen
dc.date.accessioned2025-07-21T16:06:43Z-
dc.date.available2025-07-22-
dc.date.copyright2025-07-21-
dc.date.issued2025-
dc.date.submitted2025-06-11-
dc.identifier.citation1.Agrawal, A., Gans, J. S., & Goldfarb, A. (2019). Artificial intelligence: The ambiguous labor market impact of automating prediction. Journal of Economic Perspectives, 33(2), 31–50.
2.Amershi, S., Weld, D., Vorvoreanu, M., Fourney, A., Nushi, B., Collisson, P., ... & Horvitz, E. (2019). Guidelines for human-AI interaction. In Proceedings of the 2019 CHI Conference on Human Factors in Computing Systems (pp. 1–13). ACM.
3.Autor, D., Chin, C., Salomons, A., & Seegmiller, B. (2022). New frontiers: The origins and content of new work, 1940–2018. The Quarterly Journal of Economics.
4.Beck, K., Beedle, M., van Bennekum, A., Cockburn, A., Cunningham, W., Fowler, M., ... & Thomas, D. (2001). Manifesto for Agile Software Development.
5.Binns, R. (2021). On the apparent conflict between individual and group fairness. In Proceedings of the 2021 ACM Conference on Fairness, Accountability, and Transparency (pp. 514–524).
6.Bommasani, R., Hudson, D. A., Adeli, E., Altman, R., Arora, S., von Arx, S., ... & Liang, P. (2021). On the opportunities and risks of foundation models (Stanford CRFM Report). Stanford University.
7.Brynjolfsson, E., Li, D., & Raymond, L. (2023). Generative AI at work (No. w31161). National Bureau of Economic Research.
8.Dwivedi, Y. K., Kshetri, N., Hughes, L., Baabdullah, A. M., Koohang, A., Raghavan, V., Al-Debei, M. M., & Wade, M. R. (2023). Generative artificial intelligence in business: Opportunities, challenges, and the future. International Journal of Information Management, 102642.
9.Ebert, C., & Louridas, P. (2023). Generative AI in Software Engineering. IEEE Software, 40(2), 10–15.
10.Gmyrek, P., Berg, J., & Bescond, D. (2023). Generative AI and jobs: A global analysis of potential effects on job quantity and quality (ILO Working Paper No. 96). International Labour Office.
11.Gozalo-Brizuela, R., & Garrido-Merchan, E. C. (2023). ChatGPT is not all you need: A state-of-the-art review of large generative AI models. arXiv preprint arXiv:2301.04655.
12.Highsmith, J. (2002). Agile software development ecosystems. Addison-Wesley.
13.Joblin, M., Apel, S., Hunsen, C., & Mauerer, W. (2017). Classifying developers into core and peripheral: An empirical study on count and network metrics. In 2017 IEEE/ACM 39th International Conference on Software Engineering (ICSE) (pp. 164–174). IEEE.
14.Kim, S., Wang, Y., & Boon, C. (2021). Sixty years of research on technology and human resource management: Looking back and looking forward. Human Resource Management, 60(1), 229–247.
15.Liang, P., Denny, P., Basman, A., Xu, A., Kalliamvakou, E., & Head, A. (2021). How AI-powered autocomplete affects developers: A study of GitHub Copilot. In CHI Conference on Human Factors in Computing Systems (pp. 1–12). ACM.
16.Lincoln, Y. S., & Guba, E. G. (1985). Naturalistic inquiry. SAGE Publications.
17.Merriam, S. B., & Tisdell, E. J. (2015). Qualitative research: A guide to design and implementation (4th ed.). Jossey-Bass.
18.Microsoft. (2025). 2025 Work Trend Index Annual Report: The year the frontier firm is born. Microsoft WorkLab.
19.Myers, M. D. (2013). Qualitative research in business and management (2nd ed.). SAGE Publications.
20.OpenAI. (2023). GPT-4 Technical Report.
21.Peng, S., Kalliamvakou, E., Cihon, P., & Demirer, M. (2023). The impact of AI on developer productivity: Evidence from GitHub Copilot (arXiv:2302.06590). arXiv.
22.Raisch, S., & Krakowski, S. (2021). Artificial intelligence and management: The automation–augmentation paradox. Academy of Management Review, 46(1), 192–210.
23.Santhosh, A., Unnikrishnan, R., Shibu, S., Meenakshi, K., & Joseph, G. (2023). AI impact on job automation. International Journal of Engineering Technology and Management Sciences, 7(4), 5.
24.Shneiderman, B. (2022). Human-centered AI. Oxford University Press.
25.Storey, M.-A., Zimmermann, T., Bird, C., Czerwonka, J., Murphy, B., & Kalliamvakou, E. (2019). Towards a theory of software developer job satisfaction and perceived productivity. IEEE Transactions on Software Engineering, 47(10), 2125–2142.
26.The Register. (2025, February 27). Salesforce won't hire more engineers in 2025 due to AI tools. The Register.
27.White, J., Hays, S., Fu, Q., Spencer-Smith, J., & Schmidt, D. C. (2023). ChatGPT prompt patterns for improving code quality, refactoring, requirements elicitation, and software design. arXiv preprint arXiv:2303.07839.
28.Willard, J., & Hutson, J.(2024)。Beyond Automation: AI as a Catalyst for New Job Creation in Software Development. International Journal of Engineering Research and Development, 20(8), 419-424.
29.Ziegler, A., Kalliamvakou, E., Li, X. A., et al. (2022). Productivity assessment of neural code completion. In Proceedings of the 6th ACM SIGPLAN International Symposium on Machine Programming.
30.Zhou, Q., Xu, C., & Wang, Z. (2023). Code generation and developer productivity: A field study with Copilot. Proceedings of the ACM Symposium on Software Development.
31.Zuboff, S. (2019). The age of surveillance capitalism: The fight for a human future at the new frontier of power. PublicAffairs.
32.劉念琪(2024)。技術、任務與人力資本:探索工作演化的動態互補。國科會TSSCI期刊,26(4)。
33.劉念琪(2024)。數位轉型對職能需求之影響與因應。台灣勞工季刊,77,23–31。
34.黃郁琛(2024)。生成式AI應用於人力資源管理之探討。國立高雄科技大學人力資源發展系碩士論文。
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/97879-
dc.description.abstract在生成式人工智慧(Generative AI)迅速發展並廣泛應用於軟體開發領域的背景下,軟體工程師的工作內容、角色定位與職能需求正經歷明顯的變化。本研究以質性研究方法為主軸,透過訪談八位不同資深程度的後端工程師與主管,運用工作分析觀點探討生成式AI導入後對軟體工程師日常工作流程、專案管理、人機協作與職能演化所帶來的實質影響。

本研究發現,初階工程師在生成式AI輔助下得以快速進行程式碼撰寫與除錯,然而也面臨過度依賴工具、缺乏基礎邏輯訓練的風險;資深工程師則展現出整合AI輸出並優化程式品質的能力,成為團隊中介者角色;技術領導與技術主管則更多投入於架構設計、流程優化與團隊知識管理,並善於引導AI作為知識延伸與決策輔助的工具。

此外,本研究亦發現AI工具的導入不僅重塑了個別工程師的工作內容,也促使團隊內部的專案協作邏輯產生轉變。例如:任務分配從「角色導向」轉向「能力導向」;工作流程從「線性分工」轉向「模組化交互」;人機協作型態由「工具式操作」演進為「共創式搭配」。

根據研究結果,本文整理出工程師職能演化動態地圖,揭示工程師於生成式AI環境下的角色重構與能力發展路徑,補足既有文獻中對軟體工程職場動態演變的描述不足,並對未來組織在人才招募、培育、專案管理與AI導入策略提供實務建議。
zh_TW
dc.description.abstractWith the rapid development and adoption of generative artificial intelligence (Generative AI) in software development, the job content, role positioning, and competency requirements of software engineers are undergoing significant transformation. This study adopts a qualitative approach, conducting in-depth interviews with eight backend engineers at varying levels of seniority. Using a job analysis perspective, the research explores the impacts of Generative AI on engineers’ workflows, project management, human-AI collaboration, and competency evolution.

Findings show that junior engineers can accelerate coding and debugging with AI assistance, but risk over-reliance and lack foundational logical training. Senior engineers integrate AI outputs and improve code quality, often acting as team mediators. Technical leads and managers focus on system architecture, process optimization, and team knowledge management, leveraging AI for knowledge extension and decision support.

Moreover, AI tool adoption reshapes individual tasks and transforms team collaboration logic. For example, task allocation is shifting from role-based to competency-based models; workflows are evolving from linear to modular structures; and human-AI interactions are progressing from tool-based operation to co-creative collaboration.

Based on these findings, the study constructs a dynamic map of engineering competency evolution, illustrating how roles and skills are being redefined in AI-integrated environments. It also addresses gaps in current literature and provides recommendations for talent development, project management, and AI implementation.
en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2025-07-21T16:06:43Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2025-07-21T16:06:43Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontents口試委員審定書 i
誌謝 ii
中文摘要 iii
英文摘要 iv
目次 v
表次 vi
第一章 緒論 1
第一節 研究背景與研究動機 1
第二節 研究目的 3
第二章 文獻探討 4
第一節 生成式 AI 技術與應用發展 4
第二節 工作角色與職能的演化理論基礎 6
第三節 軟體開發流程與專案管理中的角色與分工 8
第四節 生成式 AI 工具對工程師職能與成效的影響 10
第五節 文獻整合與研究缺口 12
第三章 研究方法 13
第一節 個案公司及個案工作背景 13
第二節 質性研究方法 15
第三節 訪談樣本 17
第四章 研究發現 18
第一節 AI 工具對不同階層工程師的工作內容的影響 18
第二節 AI 對不同階層工程師工作職能與技能需求的影響 22
第三節 AI 工具導入後對專案管理與團隊協作的改變 26
第四節 AI 工具對不同階層工程師職涯發展的趨勢 30
第五章 結論與建議 34
第一節 研究結果 34
第二節 管理意涵 40
第三節 未來研究建議 45
第四節 研究限制 46
參考文獻 47
-
dc.language.isozh_TW-
dc.subject工作分析zh_TW
dc.subject角色重塑zh_TW
dc.subject軟體工程師zh_TW
dc.subject人機協作zh_TW
dc.subject職能演化zh_TW
dc.subject工作分析zh_TW
dc.subject生成式人工智慧zh_TW
dc.subject角色重塑zh_TW
dc.subject軟體工程師zh_TW
dc.subject人機協作zh_TW
dc.subject職能演化zh_TW
dc.subject生成式人工智慧zh_TW
dc.subjectRole Reshapingen
dc.subjectGenerative AIen
dc.subjectJob Analysisen
dc.subjectCompetency Evolutionen
dc.subjectHuman-AI Collaborationen
dc.subjectSoftware Engineersen
dc.subjectRole Reshapingen
dc.subjectGenerative AIen
dc.subjectJob Analysisen
dc.subjectCompetency Evolutionen
dc.subjectHuman-AI Collaborationen
dc.subjectSoftware Engineersen
dc.title生成式AI導入下軟體開發專案管理與工程師職能重塑:某軟體公司個案研究zh_TW
dc.titleReshaping Software Project Management and Engineer Competencies through Generative AI: A Case Study of a Software Companyen
dc.typeThesis-
dc.date.schoolyear113-2-
dc.description.degree碩士-
dc.contributor.oralexamcommittee魏志平;陳寶蓮zh_TW
dc.contributor.oralexamcommitteeChih-Ping Wei;Pao-Lien Chenen
dc.subject.keyword生成式人工智慧,工作分析,職能演化,人機協作,軟體工程師,角色重塑,zh_TW
dc.subject.keywordGenerative AI,Job Analysis,Competency Evolution,Human-AI Collaboration,Software Engineers,Role Reshaping,en
dc.relation.page49-
dc.identifier.doi10.6342/NTU202501096-
dc.rights.note同意授權(全球公開)-
dc.date.accepted2025-06-11-
dc.contributor.author-college管理學院-
dc.contributor.author-dept碩士在職專班商學組-
dc.date.embargo-lift2025-07-22-
顯示於系所單位:商學組

文件中的檔案:
檔案 大小格式 
ntu-113-2.pdf760.75 kBAdobe PDF檢視/開啟
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved