請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/97875完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 韓仁毓 | zh_TW |
| dc.contributor.advisor | Jen-Yu Han | en |
| dc.contributor.author | 洪瑞妤 | zh_TW |
| dc.contributor.author | Ruei-Yu Hong | en |
| dc.date.accessioned | 2025-07-21T16:05:47Z | - |
| dc.date.available | 2025-07-22 | - |
| dc.date.copyright | 2025-07-21 | - |
| dc.date.issued | 2025 | - |
| dc.date.submitted | 2025-07-11 | - |
| dc.identifier.citation | Agbulut, U., Gürel, A. E., and Biçen, Y. (2021). Prediction of daily global solar radiation using different machine learning algorithms: Evaluation and comparison. Renewable Sustainable Energy Reviews, 135.
Al-Dahidi, S., Alrbai, M., Alahmer, H., Rinchi, B., and Alahmer, A. (2024). Enhancing solar photovoltaic energy production prediction using diverse machine learning models tuned with the chimp optimization algorithm. Scientific Reports, 14(1):18583. Ayaz, A., Ahmad, F., Irfan, M. A. A., Rehman, Z., Rajski, K., and Danielewicz, J. (2022). Comparison of ground-based global horizontal irradiance and direct normal irradiance with satellite-based suny model. Energies, 15(7):2528. Bre, F., e Silva Machado, R. M., Lawrie, L. K., Crawley, D. B., and Lamberts, R. (2021). Assessment of solar radiation data quality in typical meteorological years and its influence on the building performance simulation. Energy and Buildings, 250:111251. Breiman, L. (2001). Random forests. Machine Learning, 45:5–32. Cano, D., Monget, J. M., Albuisson, M., Guillard, H., Regas, N., and Wald, L. (1986). A method for the determination of the global solar radiation from meteorological satellite data. Solar Energy, 37(1):31–39. Chakraborty, D., Mondal, J., Barua, H. B., and Bhattacharjee, A. (2023). Computational solar energy–ensemble learning methods for prediction of solar power generation based on meteorological parameters in eastern India. Renewable Energy Focus, 44:277–294. Chang, T. P. (2009). Performance evaluation for solar collectors in Taiwan. Energy, 34(1):32–40. Chen, T. and Guestrin, C. (2016). Xgboost: A scalable tree boosting system. In Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, KDD ’16, page 785–794, New York, NY, USA. Association for Computing Machinery. Chen, X., Mao, H., Cheng, N., Ma, L., Tian, Z., Luo, Y., Zhou, C., Li, H., Wang, Q., Kong, W., and Fan, J. (2024). Climate change impacts on global photovoltaic variability. Applied Energy, 374:124087. Chodakowska, E., Nazarko, J., Nazarko, Ł., Rabayah, H. S., Abendeh, R. M., and Alawneh, R. (2023). Arima models in solar radiation forecasting in different geographic locations. Energies, 16(13):5029. Coleman, R. W., Thompson, D. R., Brodrick, P. G., Dor, E. B., Cox, E., Pérez García-Pando, C., Hoefen, T., Kokaly, R. F., Meyer, J. M., Ochoa, F., Okin, G. S., Pearlshtien, D. H., Swayze, G., and Green, R. O. (2024). An accuracy assessment of the surface reflectance product from the emit imaging spectrometer. Remote Sensing of Environment, 315:114450. Cressie, N. (1990). The origins of kriging. Mathematical Geology, 22:239–252. Daniel-Durandt, F. M. and Rix, A. J. (2024). New decomposition models for hourly direct normal irradiance estimations for southern africa. Solar, 4(2):269–306. Dong, J., Olama, M. M., Kuruganti, T., Melin, A. M., Djouadi, S. M., Zhang, Y., and Xue, Y. (2020). Novel stochastic methods to predict short-term solar radiation and photovoltaic power. Renewable Energy, 145:333–346. El-Amarty, N., Marzouq, M., El Fadili, H., Bennani, S. D., and Ruano, A. (2023). A comprehensive review of solar irradiation estimation and forecasting using artificial neural networks: data, models and trends. Environmental Science and Pollution Research, 30(3):5407–5439. Geurts, P., Ernst, D., and Wehenkel, L. (2006). Extremely randomized trees. Machine Learning, 63:3–42. Guermoui, M., Melgani, F., Gairaa, K., and Mekhalfi, M. L. (2020). A comprehensive review of hybrid models for solar radiation forecasting. Journal of Cleaner Production, 258:120357. Gupta, R., Yadav, A. K., Jha, S., and Pathak, P. K. (2023). Long term estimation of global horizontal irradiance using machine learning algorithms. Optik, 283:170873. Han, J.-Y. and Vohnicky, P. (2022). An optimized approach for mapping solar irradiance in a mid-low latitude region based on a site-adaptation technique using himawari-8 satellite imageries. Renewable Energy, 187:603–617. Hategan, S. M., Stefu, N., and Paulescu, M. (2023). Calibration of gfs solar irradiation forecasts: A case study in romania. Energies, 16(11). Hsieh, T.-E. and Chang, K.-C. (2024). Mapping solar global radiation and beam radiation in taiwan. Energies, 17(23). Hsieh, T.-E., Fraincas, B., and Chang, K.-C. (2023). Generation of a typical meteorological year for global solar radiation in taiwan. Energies, 16(7). Huld, T., Paietta, E., Zangheri, P., and Pinedo Pascua, I. (2018). Assembling typical meteorological year data sets for building energy performance using reanalysis and satellitebased data. Atmosphere, 9(2):53. Ibrahim, I. A. and Khatib, T. (2017). A novel hybrid model for hourly global solar radiation prediction using random forests technique and firefly algorithm. Energy Conversion and Management, 138:413–425. IEA (2024). Renewables 2023. Report. IPCC (2023). Ar6 synthesis report: Climate change 2023. Report. Jebli, I., Belouadha, F.-Z., Kabbaj, M. I., and Tilioua, A. (2021). Prediction of solar energy guided by pearson correlation using machine learning. Energy, 224:120109. Jiao, X., Li, X., Lin, D., and Xiao, W. (2021). A graph neural network based deep learning predictor for spatio-temporal group solar irradiance forecasting. IEEE Transactions on Industrial Informatics, 18(9):6142–6149. Kakou, P.-C. K., Laouali, D., Aka, B., Osei, J. A., Ette, N. F. K., and Frey, G. (2025). Multi-timescale validation of satellite-derived global horizontal irradiance in côte d'ivoire. Remote Sensing, 17(6):998. Kettner, C. and Kletzan-Slamanig, D. (2020). Is there climate policy integration in european union energy efficiency and renewable energy policies? yes, no, maybe. Environmental Policy and Governance, 30(3):141–150. Khan, M. U. and Jama, M. A. (2024). Evaluation and correction of solar irradiance in somaliland using ground measurements and global reanalysis products. Heliyon, 10(16):e35256. Kumari, P. and Toshniwal, D. (2021). Long short term memory-convolutional neural network based deep hybrid approach for solar irradiance forecasting. Applied Energy, 295. Kumari, Pratima Toshniwal, Durga Kumari, Pratima/0000-0003-3370-500X 1872-9118. Laguarda, A., Giacosa, G., Alonso-Suárez, R., and Abal, G. (2020). Performance of the site-adapted cams database and locally adjusted cloud index models for estimating global solar horizontal irradiation over the pampa húmeda. Solar Energy, 199:295–307. Lavell, A., Oppenheimer, M., Diop, C., Hess, J., Lempert, R., Li, J., and Myeong, S. (2012). Managing the risks of extreme events and disasters to advance climate change adaptation. A special report of working groups I and II of the intergovernmental panel on climate change (IPCC), 3:25–64. Lin, P. H. (2003). Calibration and error analysis of the global solar radiation observed by central weather bureau in taiwan. Technical Report MOTC-CWB-92-2M05, Central Weather Bureau, Taipei, Taiwan. In Chinese. Lorenzo, A. T., Morzfeld, M., Holmgren, W. F., and Cronin, A. D. (2017). Optimal interpolation of satellite and ground data for irradiance nowcasting at city scales. Solar Energy, 144:466–474. Lundberg, S. M. and Lee, S.-I. (2017). A unified approach to interpreting model predictions. Advances in Neural Information Processing Systems, 30. Masters, G. M. (2013). Renewable and Efficient Electric Power Systems. John Wiley Sons. Mfetoum, I. M., Ngoh, S. K., Molu, R. J. J., Nde Kenfack, B. F., Onguene, R., Naoussi, S. R. D., Tamba, J. G., Bajaj, M., and Berhanu, M. (2024). A multilayer perceptron neural network approach for optimizing solar irradiance forecasting in central africa with meteorological insights. Scientific Reports, 14(1):3572. Murata, H. (2015). Vis and ir bands of himawari-8/ahi compatible with those of mtsat-2/ imager, meteorological satellite center technical note. Japan Meteorological Agency, 60:1. Musiolková, M., Huszár, P., Navrátil, M., and Špunda, V. (2021). Impact of season, cloud cover, and air pollution on different spectral regions of ultraviolet and visible incident solar radiation at the surface. Quarterly Journal of the Royal Meteorological Society, 147(738):2834–2849. Müller, R. and Pfeifroth, U. (2022). Remote sensing of solar surface radiation–a reflection of concepts, applications and input data based on experience with the effective cloud albedo. Atmospheric Measurement Techniques, 15(5):1537–1561. Published in AMT. Nawab, F., Abd Hamid, A. S., Ibrahim, A., Sopian, K., Fazlizan, A., and Fauzan, M. F. (2023). Solar irradiation prediction using empirical and artificial intelligence methods: A comparative review. Heliyon, 9(6). Neher, I., Crewell, S., Meilinger, S., Pfeifroth, U., and Trentmann, J. (2020). Photovoltaic power potential in west africa using long-term satellite data. Atmospheric Chemistry and Physics, 20(21):12871–12888. O’Neill, B. C., Tebaldi, C., Van Vuuren, D. P., Eyring, V., Friedlingstein, P., Hurtt, G., Knutti, R., Kriegler, E., Lamarque, J.-F., Lowe, J., et al. (2016). The scenario model intercomparison project (scenariomip) for cmip6. Geoscientific Model Development, 9(9):3461–3482. Parker, D. S., Panchabikesan, K., Crawley, D. B., and Lawrie, L. K. (2024). Impact of newer climate data for technical analysis of residential building energy use in the united states. Energy and Buildings, 323:114828. Ramírez-Rivera, F. A. and Guerrero-Rodríguez, N. F. (2024). Ensemble learning algorithms for solar radiation prediction in santo domingo: Measurements and evaluation. Sustainability, 16(18):8015. Reda, I. and Andreas, A. (2004). Solar position algorithm for solar radiation applications. Solar Energy, 76(5):577–589. Rigollier, C., Lefèvre, M., and Wald, L. (2004). The method heliosat-2 for deriving shortwave solar radiation from satellite images. Solar Energy, 77(2):159–169. Rumelhart, D. E., Hinton, G. E., and Williams, R. J. (1986). Learning representations by back-propagating errors. Nature, 323(6088):533–536. Sakib, S., Mahadi, M. K., Abir, S. R., Moon, A.-M., Shafiullah, A., Ali, S., Faisal, F., and Nishat, M. M. (2024). Attention-based models for multivariate time series forecasting: Multi-step solar irradiation prediction. Heliyon, 10(6). doi: 10.1016/j.heliyon.2024.e27795. Sawaqed, N. M., Zurigat, Y. H., and Al-Hinai, H. (2005). A step-by-step application of sandia method in developing typical meteorological years for different locations in oman. International Journal of Energy Research, 29(8):723–737. Sproull, R. F. (1991). Refinements to nearest-neighbor searching ink-dimensional trees. Algorithmica, 6(1-6):579–589. Su, G., Zhang, S., Hu, M., Yao, W., Li, Z., and Xi, Y. (2022). The modified layer-by-layer weakening solar radiation models based on relative humidity and air quality index. Energy, 239:122488. Tan, Y., Wang, Q., and Zhang, Z. (2023). Near-real-time estimation of global horizontal irradiance from himawari-8 satellite data. Renewable Energy, 215:118994. Tanu, M., Amponsah, W., Yahaya, B., Bessah, E., Ansah, S. O., Wemegah, C. S., and Agyare, W. A. (2021). Evaluation of global solar radiation, cloudiness index and sky view factor as potential indicators of ghana’s solar energy resource. Scientific African, 14:e01061. Thompson, S. (2023). Strategic analysis of the renewable electricity transition: Power to the world without carbon emissions? Energies, 16(17). Thompson, Shirley Thompson, Shirley/ABI-6725-2020 Thompson, Shirley/0000-0002-3774-1377 1996-1073. Trenberth, K. E. and Fasullo, J. T. (2009). Global warming due to increasing absorbed solar radiation. Geophysical Research Letters, 36(7). UNFCCC (2015). Paris agreement. Report. United Nations General Assembly (2015). Transforming our world: The 2030 agenda for sustainable development (A/RES/70/1). Available at: https://www.refworld.org/legal/resolution/unga/2015/en/111816. Accessed July 4, 2025. Webb, N. (2014). Spn1 technical fact sheet v1. 2d. Wei, C.-C. (2017). Predictions of surface solar radiation on tilted solar panels using machine learning models: A case study of tainan city, taiwan. Energies, 10(10):1660. Wilcox, S. and Marion, W. (2008). Users manual for tmy3 data sets. Zhang, X., Zhang, M., Cui, Y., and He, Y. (2022). Estimation of daily ground-received global solar radiation using air pollutant data. Frontiers in Public Health, 10:860107. Zhou, L., Sun, L., Luo, Y., Xia, X., Huang, L., Liao, Z., and Yan, X. (2023). Air pollutant concentration trends in china: correlations between solar radiation, pm2.5, and o3. Air Quality, Atmosphere & Health, 16(8):1721–1735. Zhou, Y., Liu, Y., Wang, D., Liu, X., and Wang, Y. (2021). A review on global solar radiation prediction with machine learning models in a comprehensive perspective. Energy Conversion and Management, 235:113960. 何明錦, 黃國倉, and 建築工程(2013). 臺灣建築能源模擬解析用逐時標準氣象資料TMY3 之建置與研究. 內政部建築研究所. 經濟部能源局(2024). 我國再生能源發電統計彙編(至2023 年底). 行政院國家發展委員會(2022). 臺灣2050 淨零排放路徑與策略總說明. | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/97875 | - |
| dc.description.abstract | 本研究旨在建立高解析度的全天空日射量(Global Horizontal Irradiance, GHI)預測模型,以支援再生能源發展規劃與氣候變遷調適策略。在面對日益嚴峻的氣候變遷及能源需求挑戰下,精確且可靠的太陽能潛力評估已成為重要的研究課題。研究整合2012至2021年間之Himawari-8及MTSAT-2衛星觀測資料,透過模型進行日射量反演建構空間解析度為2公里之標準氣象年(Typical Meteorological Year, TMY)GHI資料集。透過臺北市與臺南市對比分析,研究指出兩地區之氣候特徵與日射量差異,顯示臺北市地區之GHI年際變異較大且季節波動明顯,而臺南市則具備較為穩定且豐富之太陽輻射資源。在方法上,研究納入日曆、氣象與空氣污染等四類共20項變數,並建構堆疊集成機器學習模型,以提升預測精度與解釋能力。結果顯示,Stacking模型相較單一模型在臺北市與臺南市的決定係數分別達0.95與0.97,誤差顯著降低。特徵重要性分析結果指出,臺北市之預測模型主要受如最大氣溫與降水量等動態氣象因子主導,其總貢獻度達77.6%;相較之下,臺南市氣象因子之貢獻度相對較低,而日曆因子之重要性則有所提升,此反映該地區更為規律之氣候模式。此外,透過極端氣候事件分析以凱米颱風為例,驗證TMY GHI作為穩定氣候參考因子價值,其能有效提高模型在極端情境下預測準確性。最後,本研究以CMIP6資料預測不同氣候情境下未來GHI變化,在低排放情境(SSP126)下,臺北市與臺南市日射量均呈增長趨勢;中排放情境(SSP245)中期出現區域差異,臺北市減少0.45%、臺南市增加0.14%,長期則趨於一致;高排放情境下,兩地日射量皆明顯下降,且臺北市減幅較早出現。本研究結合標準氣象年之衛星資料與多源因子以建構堆疊集成學習模型,有效提升日射量預測精確性與可解釋性,並驗證標準氣象年在極端氣候下的參考價值,以及不同氣候情境下之預測亦揭示區域差異,突顯因地制宜能源規劃的重要性,望可作為再生能源發展與氣候韌性社會建構之科學基礎。 | zh_TW |
| dc.description.abstract | This study develops a high-resolution Global Horizontal Irradiance (GHI) prediction model to support renewable energy planning and climate adaptation. By integrating Himawari-8 and MTSAT-2 satellite data (2012–2021), a 2 km Typical Meteorological Year (TMY) GHI dataset was constructed. A comparison between Taipei and Tainan revealed distinct regional solar patterns—Taipei showed higher interannual variability, while Tainan had more stable irradiance. The model incorporates 20 features across calendar, meteorological, and air pollution categories, using a stacking ensemble approach to enhance accuracy and interpretability. Results show R² values of 0.95 (Taipei) and 0.97 (Tainan), with significantly reduced RMSE and MAE. Feature importance analysis indicated Taipei's predictions were affected by dynamic weather factors, while Tainan relied more on calendar-based variables. Typhoon Gaemi analysis further validated the TMY GHI's role in improving model robustness under extreme events. Climate scenario projections based on CMIP6 suggest rising GHI under SSP126, regional divergence under SSP245, and declines under SSP585, with Taipei affected earlier. This study highlights the importance of integrating high-resolution data and machine learning for reliable solar potential forecasting and supports the development of climate-resilient energy strategies. | en |
| dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2025-07-21T16:05:47Z No. of bitstreams: 0 | en |
| dc.description.provenance | Made available in DSpace on 2025-07-21T16:05:47Z (GMT). No. of bitstreams: 0 | en |
| dc.description.tableofcontents | 致謝 ii
摘要 iii Abstract iv 目次 v 圖次 vii 表次 ix 第一章緒論 1 1.1 研究背景 1 1.2 研究動機與目的 3 1.3 研究流程 4 1.4 論文架構 4 第二章文獻回顧 6 2.1 全球能源轉型與韌性挑戰 6 2.2 太陽輻射測量與獲取之方法 8 2.3 全天空日射量時空變異與環境因子影響分析 10 2.4 太陽輻射潛能預測方法之演進與發展 13 2.5 標準氣象年資料於太陽輻射分析之應用現況與挑戰 15 2.6 小結 16 第三章研究方法 18 3.1 資料收集與前處理 20 3.1.1 標準氣象年所建構之全天空日射量 20 3.1.2 日曆時間特徵與週期性函數轉換 24 3.1.3 氣象因子數據整合與空間一致性處理 25 3.1.4 空氣污染因子時空數據處理與品質控制 27 3.2 太陽輻射潛能預測模型 31 3.2.1 第一層基礎模型:四種機器學習演算法構建 32 3.2.2 第二層融合模型:堆疊架構下的權重學習與整合策略 34 3.3 模型性能評估與SHAP 特徵重要性分析 35 3.3.1 預測精度評估與模型性能量化指標 36 3.3.2 SHAP 特徵重要性分析 37 3.4 氣候變遷情境下太陽輻射潛能變異性評估 38 3.5 小結 40 第四章實驗結果與分析42 4.1 研究區域 42 4.2 標準氣象年之全天空日射量建構方法與特性評估 43 4.2.1 代表月份選取與代表性驗證 44 4.2.2 累積分布函數之比較分析 45 4.2.3 全年尺度標準氣象年GHI 之統計分析 47 4.3 太陽輻射潛能預測模型之建構與評估 49 4.3.1 模型綜合性能之比較與分析 49 4.3.2 SHAP 特徵重要性分析 53 4.3.3 TMYGHI 在極端氣候條件下提升模型穩健性之效益評估 56 4.4 氣候變遷情境下太陽輻射潛能變異性之分析評估 58 4.4.1 不同排放情境下GHI 之未來變化趨勢分析 58 4.4.2 氣候變遷驅動因子與GHI 變化之物理機制分析 60 4.4.3 太陽輻射潛能區域異質性分析與氣候適應策略 66 第五章結論與建議 68 5.1 結論 68 5.2 建議與未來工作 72 參考文獻 73 | - |
| dc.language.iso | zh_TW | - |
| dc.subject | 多源異質數據 | zh_TW |
| dc.subject | 標準氣象年 | zh_TW |
| dc.subject | 全天空日射量 | zh_TW |
| dc.subject | 集成學習 | zh_TW |
| dc.subject | 標準氣象年 | zh_TW |
| dc.subject | 全天空日射量 | zh_TW |
| dc.subject | 集成學習 | zh_TW |
| dc.subject | 多源異質數據 | zh_TW |
| dc.subject | Ensemble Learning | en |
| dc.subject | Multi-Source Heterogeneous Data | en |
| dc.subject | Global Horizontal Irradiance | en |
| dc.subject | Typical Meteorological Year | en |
| dc.subject | Multi-Source Heterogeneous Data | en |
| dc.subject | Ensemble Learning | en |
| dc.subject | Global Horizontal Irradiance | en |
| dc.subject | Typical Meteorological Year | en |
| dc.title | 整合標準氣象年資料與多模型融合技術於太陽輻射潛能預測 | zh_TW |
| dc.title | Integration of Typical Meteorological Year Data and Multi-Model Fusion Techniques for Forecasting Solar Irradiance Potential | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 113-2 | - |
| dc.description.degree | 碩士 | - |
| dc.contributor.oralexamcommittee | 葉大綱;楊明德 | zh_TW |
| dc.contributor.oralexamcommittee | Ta-Kang Yeh;Ming-Der Yang | en |
| dc.subject.keyword | 標準氣象年,全天空日射量,集成學習,多源異質數據, | zh_TW |
| dc.subject.keyword | Typical Meteorological Year,Global Horizontal Irradiance,Ensemble Learning,Multi-Source Heterogeneous Data, | en |
| dc.relation.page | 79 | - |
| dc.identifier.doi | 10.6342/NTU202500940 | - |
| dc.rights.note | 同意授權(限校園內公開) | - |
| dc.date.accepted | 2025-07-14 | - |
| dc.contributor.author-college | 工學院 | - |
| dc.contributor.author-dept | 土木工程學系 | - |
| dc.date.embargo-lift | 2030-07-11 | - |
| 顯示於系所單位: | 土木工程學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-113-2.pdf 未授權公開取用 | 16.55 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
