Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 電機資訊學院
  3. 光電工程學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/97849
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor曾雪峰zh_TW
dc.contributor.advisorSnow H. Tsengen
dc.contributor.author余詩辰zh_TW
dc.contributor.authorShih-Chen Yuen
dc.date.accessioned2025-07-18T16:09:32Z-
dc.date.available2025-07-19-
dc.date.copyright2025-07-18-
dc.date.issued2025-
dc.date.submitted2025-07-07-
dc.identifier.citation[1] J. D. Jackson, Classical Electrodynamics, 3rd ed., Wiley, New York, 1998.
[2] K. S. Yee, “Numerical solution of initial boundary value problems involving Maxwell’s equations in isotropic media,” IEEE Transactions on Antennas and Propagation, vol. 14, no. 3, pp. 302-307, May 1966.
[3] A. Taflove and S. C. Hagness, Computational Electrodynamics: The Finite-Difference Time-Domain Method, 3 ed., Artech House Publishers, 2005.
[4] A. Taflove, V. Backman, and S. C. Hagness, “Integration of vector potentials into FDTD methods,” IEEE Antennas and Propagation Magazine, vol. 50, no. 5, pp. 45-52, Oct. 2008.
[5] W. C. Chew and J. M. Jin, “Efficient evaluation of electromagnetic fields using geometric averaging in FDTD,” IEEE Transactions on Antennas and Propagation, vol. 42, no. 10, pp. 1236-1243, Oct. 1994.
[6] K. R. Umashankar, A. Taflove, and S. M. Rao, “Electromagnetic scattering by arbitrary shaped three-dimensional homogeneous lossy dielectric objects,” IEEE Transactions on Electromagnetic Compatibility, vol. 24, no. 4, pp. 397-405, Nov. 1982.
[7] J. F. Remacle and C. Geuzaine, “Interpolation of fields for mesh adaptation in computational electromagnetics,” Journal of Computational Physics, vol. 185, no. 1, pp. 283-309, Feb. 2003.
[8] X. Chen, Z. Lin, and M. Li, “Qualitative study of interpolation errors in NTFF transforms,” Progress in Electromagnetics Research, vol. 103, pp. 123-135, 2010.
[9] J. H. Mathews and K. D. Fink, Numerical Methods Using MATLAB, 4th ed., Pearson Education, 2004.
[10] D. K. Cheng, Field and Wave Electromagnetics, 2nd ed., Addison-Wesley, 1989.
[11] A. Taflove, “Application of the finite-difference time-domain method to sinusoidal steady-state electromagnetic-penetration problems,” IEEE Transactions on Electromagnetic Compatibility, vol. 22, no. 3, pp. 191-202, Aug. 1980.
[12] A. Taflove, “Review of the formulation and applications of the finite-difference time-domain method for numerical modeling of electromagnetic wave interactions with arbitrary structures,” Wave Motion, vol. 10, no. 6, pp. 547-582, 1988.
[13] R. Courant, K. Friedrichs, and H. Lewy, “On the Partial Difference Equations of Mathematical Physics,” IBM Journal of Research and Development, vol. 11, no. 2, pp. 215-234, 1967.
[14] J. P. Bérenger, “A perfectly matched layer for the absorption of electromagnetic waves,” Journal of Computational Physics, vol. 114, no. 2, pp. 185-200, Oct. 1994.
[15] R. F. Harrington, Field Computation by Moment Methods, Macmillan, New York, 1968.
[16] N. A. Roberds and D. A. McGregor, “A transient near to far field transformation method and verification benchmarking procedure,” Journal of Electromagnetic Waves and Applications, pp. 1–16, 2025.
[17] J. L. Volakis, A. Chatterjee, and L. C. Kempel, Finite Element Method for Electromagnetics: Antennas, Microwave Circuits, and Scattering Applications, IEEE Press, 1998.
[18] R. Mittra and S. W. Lee, Analytical Techniques in the Theory of Guided Waves, Macmillan, 1971.
[19] R. F. Harrington, Time-Harmonic Electromagnetic Fields, Wiley-IEEE Press, New York, 2001.
[20] C. A. Balanis, Antenna Theory: Analysis and Design, 4th ed., Wiley, 2016.
[21] B. Farhang-Boroujeny, Adaptive Filters: Theory and Applications, Wiley, 2013.
[22] G. Yuan, Y. Liu, S. Li, and J. Liang, “A novel method of medium effect for loading incident wave in hybrid ray-tracing/FDTD algorithm,” Electromagnetics, vol. 42, no. 2, pp. 140–156, 2022.
[23] M. D. Sinclair, “Collocation errors in the FDTD near-to-far-field transformation,” Microwave and Optical Technology Letters, vol. 32, no. 4, pp. 279-283, 2002.
[24] N. A. Roberds and D. A. O. McGregor, “A transient near to far field transformation method and verification benchmarking procedure,” Journal of Electromagnetic Waves and Applications, pp. 1–16, 2025.
[25] X. Gao, W. Hong, and Z. Q. Kuai, “An improved NTFF transformation with sub-cell sampling in FDTD,” IEEE Antennas and Wireless Propagation Letters, vol. 9, pp. 791-794, 2010.
[26] R. C. Bollimuntha, B. S. M. R. Guntur, and S. D. Gedney, “Near-to-far field transformation in FDTD: A comparative study of different interpolation approaches,” Applied Computational Electromagnetics Society Journal, vol. 36, no. 5, pp. 496–504, 2021.
[27] J. Lu and K. Sarabandi, “Accurate modeling of collocated near-field probes in FDTD-based NTFF transformation,” IEEE Transactions on Antennas and Propagation, vol. 67, no. 5, pp. 3176-3185, 2019.
[28] Jake W. Liu and Snow H. Tseng, "Near-to-far-field transformation scheme utilizing a modified sinc interpolation method for PSTD simulations," Optics Express, vol. 32, pp. 47225-47235, 2024.
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/97849-
dc.description.abstract本研究使用時域有限差分法(Finite-Difference Time-Domain, FDTD)探討近遠場轉換(Near-to-Far-Field, NTFF)中電磁場之共點與非共點排列方式對模擬準確度之影響,並透過向量勢推導二維近遠場轉換公式,再搭配空間幾何平均與時間插值法建立場值共點排列策略,以有效解決電場與磁場錯位所造成的積分誤差問題。研究設計兩種模擬架構進行交叉驗證,結果顯示未經共點處理之模擬,於主瓣以外的高角度區域產生明顯誤差。而透過本研究提出之場值共點處理方法,模擬誤差在所有角度範圍內皆顯著下降,最大誤差值可從3.4 dB左右降低至0.0357 dB,並具備邊界條件獨立性與模擬重現性。本研究提出之方法已成功驗證可有效提升近遠場轉換之模擬準確度與穩定性。zh_TW
dc.description.abstractThis study examines how collocated and non-collocated electromagnetic field sampling methods affect the accuracy of near-to-far-field (NTFF) transformations in finite-difference time-domain (FDTD) simulations. A two-dimensional NTFF formulation based on vector potentials was developed, along with a field-collocation strategy that employs spatial geometric averaging and temporal interpolation to minimize numerical integration errors caused by spatial and temporal misalignments between electric and magnetic fields. Two independent simulation frameworks were implemented for cross-validation. The results show that the non-collocated approach introduces significant errors, especially at high-angle regions outside the main lobe, while the proposed collocated method reduces the maximum error dramatically—from approximately 3.4 dB to just 0.0357 dB. Additionally, the collocated method maintains consistent accuracy regardless of boundary dimensions and demonstrates strong reproducibility across different simulation setups. The numerical approach presented in this study not only improves the precision and stability of NTFF simulations but also offers reliable applicability for practical electromagnetic analysis.en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2025-07-18T16:09:32Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2025-07-18T16:09:32Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontents口試委員會審定書 #
誌謝 i
摘要 ii
ABSTRACT iii
目次 iv
圖次 vi
表次 viii
第一章 緒論 1
1.1 前言 1
1.2 本文內容 2
1.3 文獻回顧 3
1.4 研究動機及目的 5
第二章 時域有限差分法(Finite-Difference Time-Domain) 7
2.1 中央有限差分法(Central Difference Scheme) 7
2.2 馬克士威方程式 8
2.3 The Yee Algorithm 10
2.4 Courant Limit 14
2.5 吸收邊界條件:Perfectly Matched Layer 16
2.6 全場/散射場(Total-Field/Scattered-Field) 22
第三章 近遠場轉換(Near-to-Far-Field Transformation) 24
3.1 近場與遠場 24
3.2 等效原理(Equivalence Principle) 26
3.3 向量勢(Vector Potentials) 28
3.4 二維近遠場轉換 32
3.5 電磁場之共點排列 35
第四章 模擬結果與分析 37
4.1 模擬架構與參數 37
4.1.1 架構一 37
4.1.2 架構二 38
4.2 近遠場轉換結果展示與分析 41
4.2.1 架構一 42
4.2.2 架構二 48
第五章 結論與未來展望 55
5.1 結論 55
5.2 未來展望 56
REFERENCE 58
-
dc.language.isozh_TW-
dc.subject時域有限差分法zh_TW
dc.subject近遠場轉換zh_TW
dc.subject近遠場轉換zh_TW
dc.subject數值模擬zh_TW
dc.subject數值模擬zh_TW
dc.subject時域有限差分法zh_TW
dc.subjectNumerical simulationen
dc.subjectFDTDen
dc.subjectNTFFen
dc.subjectNumerical simulationen
dc.subjectFDTDen
dc.subjectNTFFen
dc.title以時域有限差分法分析近遠場轉換之電磁場共點與非共點排列zh_TW
dc.titleFDTD Analysis of Collocating and Non-Collocating on Near-to-Far-Field Transformationen
dc.typeThesis-
dc.date.schoolyear113-2-
dc.description.degree碩士-
dc.contributor.oralexamcommittee林晃巖;劉建豪zh_TW
dc.contributor.oralexamcommitteeHoang Yan Lin ;Chien-Hao Liuen
dc.subject.keyword時域有限差分法,近遠場轉換,數值模擬,zh_TW
dc.subject.keywordFDTD,NTFF,Numerical simulation,en
dc.relation.page60-
dc.identifier.doi10.6342/NTU202501529-
dc.rights.note未授權-
dc.date.accepted2025-07-07-
dc.contributor.author-college電機資訊學院-
dc.contributor.author-dept光電工程學研究所-
dc.date.embargo-liftN/A-
顯示於系所單位:光電工程學研究所

文件中的檔案:
檔案 大小格式 
ntu-113-2.pdf
  未授權公開取用
4.01 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved