Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 工程科學及海洋工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/97837
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor蕭惠心zh_TW
dc.contributor.advisorHui-Hsin Hsiaoen
dc.contributor.author郭宸維zh_TW
dc.contributor.authorChen-Wei Kuoen
dc.date.accessioned2025-07-18T16:07:25Z-
dc.date.available2025-07-19-
dc.date.copyright2025-07-18-
dc.date.issued2025-
dc.date.submitted2025-07-15-
dc.identifier.citation[1] Livesey, G., Taylor, R., Livesey, H. F., Buyken, A. E., Jenkins, D. J., Augustin, L. S., ... & Brand-Miller, J. C. (2019). Dietary glycemic index and load and the risk of type 2 diabetes: a systematic review and updated meta-analyses of prospective cohort studies. Nutrients, 11(6), 1280.
[2] McCann, D., Barrett, A., Cooper, A., Crumpler, D., Dalen, L., Grimshaw, K., ... & Stevenson, J. (2007). Food additives and hyperactive behaviour in 3-year-old and 8/9-year-old children in the community: a randomised, double-blinded, placebo-controlled trial. The lancet, 370(9598), 1560-1567.
[3] Hong, E., Lee, S. Y., Jeong, J. Y., Park, J. M., Kim, B. H., Kwon, K., & Chun, H. S. (2017). Modern analytical methods for the detection of food fraud and adulteration by food category. Journal of the Science of Food and Agriculture, 97(12), 3877-3896.
[4] Ellis, D. I., & Goodacre, R. (2006). Metabolic fingerprinting in disease diagnosis: biomedical applications of infrared and Raman spectroscopy. Analyst, 131(8), 875-885.
[5] Rodriguez-Saona, L. E., & Allendorf, M. E. (2011). Use of FTIR for rapid authentication and detection of adulteration of food. Annual review of food science and technology, 2(1), 467-483.
[6] Meng, Z., Wu, Z., & Gray, J. (2018). Microwave sensor technologies for food evaluation and analysis: Methods, challenges and solutions. Transactions of the Institute of Measurement and Control, 40(12), 3433-3448.
[7] Han, C., Yao, Y., Wang, W., Qu, L., Bradley, L., Sun, S., & Zhao, Y. (2017). Rapid and sensitive detection of sodium saccharin in soft drinks by silver nanorod array SERS substrates. Sensors and Actuators B: Chemical, 251, 272-279.
[8] Taylor, V. F., March, R. E., Longerich, H. P., & Stadey, C. J. (2005). A mass spectrometric study of glucose, sucrose, and fructose using an inductively coupled plasma and electrospray ionization. International Journal of Mass Spectrometry, 243(1), 71-84.
[9] Al-Mhanna, N. M., Huebner, H., & Buchholz, R. (2018). Analysis of the sugar content in food products by using gas chromatography mass spectrometry and enzymatic methods. Foods, 7(11), 185.
[10] Nie, Qixing, and Shaoping Nie. "High-performance liquid chromatography for food quality evaluation." Evaluation technologies for food quality. Woodhead Publishing, 2019. 267-299.
[11] Crha, T., & Pazourek, J. (2020). Rapid HPLC method for determination of isomaltulose in the presence of glucose, sucrose, and maltodextrins in dietary supplements. Foods, 9(9), 1164.
[12] Sun, Y., Tang, H., Zou, X., Meng, G., & Wu, N. (2022). Raman spectroscopy for food quality assurance and safety monitoring: A review. Current Opinion in Food Science, 47, 100910.
[13] Qu, Q., Zeng, C., Peng, X., Qi, W., & Wang, M. (2023). Sensitive SERS detection of pesticide residues in beverages based on an extraction integrated plasmonic platform. Sensors and Actuators B: Chemical, 376, 133042.
[14] Zhang, Y., Xu, L., Chen, J., Bai, X., & Zhou, X. (2024). High sensitivity detection of ethanol solution based on waveguide resonant cavity combined with metamaterials. Measurement, 225, 114030.
[15] Zhang, X., Ruan, C., Haq, T. U., & Chen, K. (2019). High-sensitivity microwave sensor for liquid characterization using a complementary circular spiral resonator. Sensors, 19(4), 787.
[16] Chou, S. Y., Yu, C. C., Yen, Y. T., Lin, K. T., Chen, H. L., & Su, W. F. (2015). Romantic story or Raman scattering? Rose petals as ecofriendly, low-cost substrates for ultrasensitive surface-enhanced Raman scattering. Analytical chemistry, 87(12), 6017-6024.
[17] Shi, G. C., Wang, M. L., Zhu, Y. Y., Shen, L., Ma, W. L., Wang, Y. H., & Li, R. F. (2018). Dragonfly wing decorated by gold nanoislands as flexible and stable substrates for surface-enhanced Raman scattering (SERS). Scientific Reports, 8(1), 6916.
[18] Jiang, H., Li, J., Cao, C., Liu, X., Liu, M., Shen, Y., ... & Sun, B. (2019). Butterfly-wing hierarchical metallic glassy nanostructure for surface enhanced Raman scattering. Nano Research, 12, 2808-2814.
[19] Mu, Z., Zhao, X., Xie, Z., Zhao, Y., Zhong, Q., Bo, L., & Gu, Z. (2013). In situ synthesis of gold nanoparticles (AuNPs) in butterfly wings for surface enhanced Raman spectroscopy (SERS). Journal of Materials Chemistry B, 1(11), 1607-1613.
[20] Dellieu, L., Sarrazin, M., Simonis, P., Deparis, O., & Vigneron, J. P. (2014). A two-in-one superhydrophobic and anti-reflective nanodevice in the grey cicada Cicada orni (Hemiptera). Journal of Applied Physics, 116(2).
[21] Román‐Kustas, J., Hoffman, J. B., Reed, J. H., Gonsalves, A. E., Oh, J., Li, L., ... & Alleyne, M. (2020). Molecular and topographical organization: Influence on cicada wing wettability and bactericidal properties. Advanced Materials Interfaces, 7(10), 2000112.
[22] Tsutsumanova, G. G., Todorov, N. D., Russev, S. C., Abrashev, M. V., Ivanov, V. G., & Lukoyanov, A. V. (2021). Silver Flowerlike Structures for Surface-Enhanced Raman Spectroscopy. Nanomaterials, 11(12), 3184.
[23] Kang, L., Xu, P., Chen, D., Zhang, B., Du, Y., Han, X., ... & Wang, H. L. (2013). Amino acid-assisted synthesis of hierarchical silver microspheres for single particle surface-enhanced Raman spectroscopy. The Journal of Physical Chemistry C, 117(19), 10007-10012.
[24] Jinachandran, A., Kokulnathan, T., Wang, T. J., Kumar, K. M. A., Kumar, J., & Panneerselvam, R. (2024). Silver nanopopcorns decorated on flexible membrane for SERS detection of nitrofurazone. Microchimica Acta, 191(6), 347.
[25] Wiltshire, B., Mirshahidi, K., Golovin, K., & Zarifi, M. H. (2019). Robust and sensitive frost and ice detection via planar microwave resonator sensor. Sensors and actuators B: Chemical, 301, 126881.
[26] Zhao, P., ShafieiDarabi, M., Wang, X., Slowinski, S., Li, S., Abbasi, Z., ... & Ren, C. L. (2025). Detection of microplastics by microfluidic microwave sensing: An exploratory study. Sensors and Actuators A: Physical, 383, 116154.
[27] Seewattanapon, Somporn, et al. "Moisture content detection system by using microwave sensor." 2019 Research, Invention, and Innovation Congress (RI2C). IEEE, 2019.
[28] El Yassini, A., Hammoud, M., Ibnyaich, S., & Zeroual, A. (2024). Planar non-contact microwave sensor for the detection of aqueous organic and inorganic samples. Sensors and Actuators A: Physical, 372, 115371.
[29] Smith, E., & Dent, G. (2019). Modern Raman spectroscopy: a practical approach. John Wiley & Sons.
[30] Chandra, A., Kumar, V., Garnaik, U. C., Dada, R., Qamar, I., Goel, V. K., & Agarwal, S. (2024). Unveiling the Molecular Secrets: A Comprehensive Review of Raman Spectroscopy in Biological Research. ACS omega, 9(51), 50049-50063.
[31] Wang, X., Liu, G., Hu, R., Cao, M., Yan, S., Bao, Y., & Ren, B. (2022). Principles of surface-enhanced Raman spectroscopy. In Principles and clinical diagnostic applications of surface-enhanced raman spectroscopy (pp. 1-32). Elsevier.
[32] Seney, C. S., Gutzman, B. M., & Goddard, R. H. (2009). Correlation of size and surface-enhanced Raman scattering activity of optical and spectroscopic properties for silver nanoparticles. The Journal of Physical Chemistry C, 113(1), 74-80.
[33] Villa, J. E., Afonso, M. A., Dos Santos, D. P., Mercadal, P. A., Coronado, E. A., & Poppi, R. J. (2020). Colloidal gold clusters formation and chemometrics for direct SERS determination of bioanalytes in complex media. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 224, 117380.
[34] Hsiao, H. H., Ke, H., Dvoynenko, M. M., & Wang, J. K. (2020). Multipolar resonances of Ag nanoparticle arrays in anodic aluminum oxide nanochannels for enhanced hot spot intensity and signal-to-background ratio in surface-enhanced raman scattering. ACS Applied Nano Materials, 3(5), 4477-4485.
[35] Liu, K., Zhao, Q., Li, B., & Zhao, X. (2022). Raman spectroscopy: A novel technology for gastric cancer diagnosis. Frontiers in Bioengineering and Biotechnology, 10, 856591.
[36] Halvorson, R. A., & Vikesland, P. J. (2010). Surface-enhanced Raman spectroscopy (SERS) for environmental analyses.
[37] Smeliková, V., Kopal, I., Člupek, M., Dendisová, M., & Švecová, M. (2024). Unveiling the crucial role of chemical enhancement in the SERS analysis of amphetamine–metal interactions on gold and silver surfaces: importance of selective amplification of the narrow interval of vibrational modes. Analytical Chemistry, 96(14), 5416-5427.
[38] Botta, R., Limwichean, S., Limsuwan, N., Moonlek, C., Horprathum, M., Eiamchai, P., ... & Ngernsutivorakul, T. (2022). An efficient and simple SERS approach for trace analysis of tetrahydrocannabinol and cannabinol and multi-cannabinoid detection. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 281, 121598.
[39] Geng, P., Sun, S., Wang, X., Ma, L., Guo, C., Li, J., & Guan, M. (2022). Rapid and sensitive detection of amphetamine by SERS-based competitive immunoassay coupled with magnetic separation. Analytical Methods, 14(26), 2608-2615.
[40] Huang, J. A., Zhang, Y. L., Zhao, Y., Zhang, X. L., Sun, M. L., & Zhang, W. (2016). Superhydrophobic SERS chip based on a Ag coated natural taro-leaf. Nanoscale, 8(22), 11487-11493.
[41] Yuan, K., Zheng, J., Yang, D., Jurado Sanchez, B., Liu, X., Guo, X., ... & Jiang, Z. (2018). Self-assembly of Au@ Ag nanoparticles on mussel shell to form large-scale 3D supercrystals as natural SERS substrates for the detection of pathogenic bacteria. ACS omega, 3(3), 2855-2864.
[42] Kumar, P., Khosla, R., Soni, M., Deva, D., & Sharma, S. K. (2017). A highly sensitive, flexible SERS sensor for malachite green detection based on Ag decorated microstructured PDMS substrate fabricated from Taro leaf as template. Sensors and Actuators B: Chemical, 246, 477-486.
[43] Zang, L. S., Chen, Y. M., Koc-Bilican, B., Bilican, I., Sakir, M., Wait, J., ... & Kaya, M. (2021). From bio-waste to biomaterials: The eggshells of Chinese oak silkworm as templates for SERS-active surfaces. Chemical Engineering Journal, 426, 131874.
[44] Guo, L., Cao, H., Cao, L., Yang, Y., & Wang, M. (2022). SERS study of wheat leaves substrates with two different structures. Optics Communications, 510, 127921.
[45] Lu, C. H., Cheng, M. R., Chen, S., Syu, W. L., Chien, M. Y., Wang, K. S., ... & Liu, T. Y. (2022). Flexible PDMS-Based SERS Substrates Replicated from Beetle Wings for Water Pollutant Detection. Polymers, 15(1), 191.
[46] Yang, Y., Shi, J., Kawamura, G., & Nogami, M. (2008). Preparation of Au–Ag, Ag–Au core–shell bimetallic nanoparticles for surface-enhanced Raman scattering. Scripta Materialia, 58(10), 862-865.
[47] Lee, K. S., & El-Sayed, M. A. (2006). Gold and silver nanoparticles in sensing and imaging: sensitivity of plasmon response to size, shape, and metal composition. The journal of physical chemistry B, 110(39), 19220-19225.
[48] Li, H., Liu, G., Zhang, Y., Hao, L., Zou, P., Xu, Y., ... & Ma, L. (2024). Study of SERS activity of different gold nanostructures prepared by electron beam lithography. Journal of Materials Science: Materials in Engineering, 19(1), 1-7.
[49] Xing, T., Wang, J., Wei, J., Du, X., Hong, R., Tao, C., ... & Zhang, D. (2025). Fabrication of Ag based Surface Enhanced Raman Scattering substrates with periodic mask arrays by electron beam deposition. Analytica Chimica Acta, 1340, 343666.
[50] Yokota, Y., Ueno, K., & Misawa, H. (2011). Highly Controlled Surface‐Enhanced Raman Scattering Chips Using Nanoengineered Gold Blocks. Small, 7(2), 252-258.
[51] Huang, Z., Meng, G., Huang, Q., Chen, B., Zhu, C., & Zhang, Z. (2013). Large‐area Ag nanorod array substrates for SERS: AAO template‐assisted fabrication, functionalization, and application in detection PCBs. Journal of Raman Spectroscopy, 44(2), 240-246.
[52] Robatjazi, H., Bahauddin, S. M., Macfarlan, L. H., Fu, S., & Thomann, I. (2016). Ultrathin AAO membrane as a generic template for sub-100 nm nanostructure fabrication. Chemistry of Materials, 28(13), 4546-4553.
[53] Pozar, D. M. (2021). Microwave engineering: theory and techniques. John wiley & sons.
[54] Guo, Z., Lang, J., Zhang, H., Yang, C., Lin, S., & Wu, H. (2022). Facile and Scalable Synthesis of Ag Nano‐Flowers that Can be Sintered Below 120° C. Advanced Materials Interfaces, 9(26), 2200611.
[55] Yang, J., Dennis, R. C., & Sardar, D. K. (2011). Room-temperature synthesis of flowerlike Ag nanostructures consisting of single crystalline Ag nanoplates. Materials Research Bulletin, 46(7), 1080-1084.
[56] Shen, X. S., Wang, G. Z., Hong, X., & Zhu, W. (2009). Nanospheres of silver nanoparticles: agglomeration, surface morphology control and application as SERS substrates. Physical Chemistry Chemical Physics, 11(34), 7450-7454.
[57] Pandey, R., Paidi, S. K., Valdez, T. A., Zhang, C., Spegazzini, N., Dasari, R. R., & Barman, I. (2017). Noninvasive monitoring of blood glucose with Raman spectroscopy. Accounts of chemical research, 50(2), 264-272.
[58] Golparvar, A., Boukhayma, A., Loayza, T., Caizzone, A., Enz, C., & Carrara, S. (2021). Very selective detection of low physiopathological glucose levels by spontaneous Raman spectroscopy with univariate data analysis. BioNanoScience, 11(3), 871-877.
[59] Dudek, M., Zajac, G., Szafraniec, E., Wiercigroch, E., Tott, S., Malek, K., ... & Baranska, M. (2019). Raman Optical Activity and Raman spectroscopy of carbohydrates in solution. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 206, 597-612.
[60] Dhanumalayan, E., & Joshi, G. M. (2018). Performance properties and applications of polytetrafluoroethylene (PTFE)—a review. Advanced Composites and Hybrid Materials, 1, 247-268.
[61] Ebrahimi, A., Scott, J., & Ghorbani, K. (2019). Ultrahigh-sensitivity microwave sensor for microfluidic complex permittivity measurement. IEEE Transactions on Microwave Theory and Techniques, 67(10), 4269-4277.
[62] Liang, H., Li, Z., Wang, W., Wu, Y., & Xu, H. (2009). Highly surface‐roughened “Flower‐like” silver nanoparticles for extremely sensitive substrates of surface‐enhanced Raman scattering. Advanced Materials, 21(45), 4614-4618.
[63] Lin, H. Y., Chen, W. R., Lu, L. C., Chen, H. L., Chen, Y. H., Pan, M., ... & Wan, D. (2023). Direct thermal growth of gold nanopearls on 3D interweaved hydrophobic fibers as ultrasensitive portable SERS substrates for clinical applications. Small, 19(28), 2207404.
[64] Amer, R. A. B., Said, M. A. M., Ghani, M. S. M., Misran, M. H., Othman, M. A., Suhaimi, S., & Hassan, N. I. High Responsive Microwave Resonator Sensor for Material Characterization. International Journal of Academic Research in Business and Social Sciences, Vol 14, Issue 10, (2024), 2222-6990.
[65] Kiani, S., & Rezaei, P. (2023). Microwave substrate integrated waveguide resonator sensor for non-invasive monitoring of blood glucose concentration: Low cost and painless tool for diabetics. Measurement, 219, 113232.
[66] Kiani, S., Rezaei, P., Karami, M., & Sadeghzadeh, R. A. (2019). Band‐stop filter sensor based on SIW cavity for the non‐invasive measuring of blood glucose. IET Wireless Sensor Systems, 9(1), 1-5.
[67] Moolat, R., Mani, M., & Pezholil, M. (2022). Asymmetric coplanar strip based stepped monopole sensor for liquid permittivity measurements. Engineering Science and Technology, an International Journal, 32, 101063.
[68] Shi, G., Wang, M., Zhu, Y., Shen, L., Wang, Y., Ma, W., ... & Li, R. (2018). A flexible and stable surface-enhanced Raman scattering (SERS) substrate based on Au nanoparticles/Graphene oxide/Cicada wing array. Optics Communications, 412, 28-36.
[69] Zhao, N., Li, H., Tian, C., Xie, Y., Feng, Z., Wang, Z., ... & Yu, H. (2019). Bioscaffold arrays decorated with Ag nanoparticles as a SERS substrate for direct detection of melamine in infant formula. RSC advances, 9(38), 21771-21776.
[70] Chung-Hung Hong, Cheng-Wei Kuo, Hui-Hsin Hsiao, “SERS enhancement via biotemplated ag nanostructures on empress cicada wings: effects of sputtering and e-gun deposition on gap geometry,” Submitted to Sensors and Actuators A: Physical.
[71] Lv, M. Y., Teng, H. Y., Chen, Z. Y., Zhao, Y. M., Zhang, X., Liu, L., ... & Xu, H. J. (2015). Low-cost Au nanoparticle-decorated cicada wing as sensitive and recyclable substrates for surface enhanced Raman scattering. Sensors and Actuators B: Chemical, 209, 820-827.
[72] Shi, G., Wang, M., Zhu, Y., Wang, Y., & Ma, W. (2018). Synthesis of flexible and stable SERS substrate based on Au nanofilms/cicada wing array for rapid detection of pesticide residues. Optics Communications, 425, 49-57.
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/97837-
dc.description.abstract  本研究提出一種整合表面增強拉曼散射(Surface-Enhanced Raman Scattering, SERS)技術與微波平面天線感測器(Microwave Planar Antenna Sensor)的高靈敏度雙模式檢測平台,特別針對液體樣品的準確量測。我們利用蟬翼的天然奈米結構作為 SERS 基底,透過濺鍍(Sputtering)與電子束蒸鍍(Electron Beam Evaporation, E-beam Evaporation)技術沉積銀薄膜,研究不同製程對 SERS 增強效應的影響。結果顯示,濺鍍沉積可形成均勻的柱狀奈米結構,可實現高達 10⁷ 倍的 SERS 增強因子,有助於提升微量分析的靈敏度與準確性。
  除此之外,我們也開發了一種低成本、量測均勻性佳的 SERS 晶片,其製作方式結合化學合成法與纖維紙張基材,透過控制化學藥品濃度以調控奈米顆粒的形貌與尺寸,進而最佳化 SERS 熱點 (hotspots) 的形成與分布。此方法不僅無須花費大量時間及資源使用半導體製程機台,材料取得容易,適合用於快速篩檢與實地檢測的應用。
  在微波感測技術方面,本研究設計並製作了一款以平面天線為基礎的液體介電常數感測器,其外觀尺寸為2.5 cm × 2.5 cm,操作頻率中心約落在 4.906 GHz。此感測器可透過量測反射參數S11的頻譜變化,精準分析液體樣品的電磁響應特性。由於液體的介電特性與其成分密切相關,透過該感測器能有效辨識不同濃度下的液體摻雜比例,顯示其在液體組成分析上具有高度靈敏度。整體而言,此感測器具備結構簡單、體積小巧、響應快速以及可即時輸出數據等優點,非常適合應用於食品安全領域中液體摻雜偵測的智慧化與自動化系統。
  本研究能同時利用SERS技術提供高選擇性分子識別,並透過微波感測器快速分析液體介電常數變化,實現更全面的樣品檢測能力。此技術可進一步應用於食品安全檢測、環境污染監測、半導體原料品質管控以及生物醫學分析,為多功能感測平台的發展奠定基礎,提供低成本、高效能的創新檢測解決方案。
zh_TW
dc.description.abstractThis study presents a highly sensitive dual-mode detection platform that integrates SERS with a microwave planar antenna sensor for accurate analysis of liquid samples. Natural nanostructures from cicada wings were used as SERS substrates, with silver films deposited via sputtering and electron beam evaporation. The results show that sputtering forms uniform columnar nanostructures, optimizing LSPR at 633 nm and achieving a SERS enhancement factor up to 167, significantly improving trace detection sensitivity.
Additionally, we developed a low-cost, high-sensitivity SERS chip by combining chemically synthesized nanoparticles with fiber paper substrates. By adjusting reagent concentrations, the morphology and size of nanoparticles can be controlled to optimize SERS hotspot formation. This approach avoids complex semiconductor processes, uses accessible materials, and is suitable for rapid and on-site detection.
For microwave sensing, a planar antenna-based dielectric sensor (2.5 cm × 2.5 cm, ~4.906 GHz) was designed. By monitoring changes in the S11 parameter, the sensor can detect subtle variations in liquid dielectric properties and distinguish different adulteration levels. It provides accurate, real-time data to support automated food adulteration detection.
This study demonstrates the complementarity of SERS and microwave sensing, offering both molecular selectivity and rapid dielectric analysis. The platform shows great potential for applications in food safety, environmental monitoring, semiconductor quality control, and biomedical analysis, providing a low-cost and efficient sensing solution.
en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2025-07-18T16:07:25Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2025-07-18T16:07:25Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontents口試委員審定書 i
誌謝 ii
中文摘要 iii
Abstract iv
目次 v
表次 ix
圖次 x
第一章 、緒論 1
1.1 前言 1
1.2 研究背景與動機 2
1.3 本研究貢獻 7
1.4 論文架構 8
第二章、 SERS感測器與平面天線感測器原理介紹 10
2.1 拉曼光譜與SERS的原理與近代發展 10
2.1.1 熱點效應 11
2.1.2 影響 SERS 增強效應的因素 13
2.2 傳輸線理論 14
2.3 自然材料在SERS中的應用潛力 16
2.3.1 結構平台選擇與蟬翼品種差異 16
2.4 人造紡織物在SERS中的應用潛力 17
2.4.1 不同材質紡織物的比較 17
2.5 拉曼光譜儀原理 18
2.6 半導體製程機台沉積原理與機制 19
2.6.1 濺鍍機台原理與機制 19
2.6.2 蒸鍍機台原理與機制 21
2.7 氧化還原反應 22
2.7.1 銀微米花與銀奈米花的氧化還原反應過程 22
2.8 COMSOL 有限元素分析法原理 23
第三章 、自然結構基底結合薄膜沉積技術製成的SERS感測晶片 25
3.1 SERS Chip 的製作 25
3.1.1 蟬翼標本清洗與處理 25
3.1.2 使用濺鍍機台進行金屬沉積 26
3.1.3 使用E-Gun蒸鍍進行金屬沉積 28
3.2 待測物量測 29
3.2.1 化學藥品調配方式 29
3.2.2 實際量測方式 31
3.3 根據原始蟬翼SEM取結構參數 32
3.4 E Gun鍍膜參數設定 33
3.4.1 E Gun 鍍膜樣品SEM影像分析 . 33
3.5 Sputter鍍膜參數設定 34
3.5.1 Sputter 鍍膜樣品SEM影像分析 34
3.5.2 確定鍍膜厚度 35
3.6 蟬翼建模與電磁模擬結果 36
3.6.1 Sputter、E Gun樣品建模與電磁模擬結果 36
3.6.2 Sputter、E Gun 反射率與電場強度分析 37
3.7 Sputter、E Gun 45nm樣品量測 39
3.7.1 Sputter、E Gun 45 nm樣品量測 39
3.8 本研究所提出之自然結構SERS感測晶片與其他文獻之比較 41
第四章 、銀奈米花結合人造纖維基底製成的SERS感測晶片 43
4.1 基於紡織材料的SERS Chip 製作 43
4.1.1 仿照文獻中銀奈米花合成方法與步驟 43
4.1.2 調整文獻中銀奈米花合成方法變更為微米花製程 45
4.1.3 過濾實驗 45
4.2 待測物量測方法 46
4.3 在相同製程條件下,以超音波震盪時間、攪拌反應時間為變數測試對形貌之影響 47
4.4 調整製程後,以環境溫度為變數測試對形貌之影響 48
4.5 以硝酸銀為變數,製作不同型貌之微、奈米花 50
4.6 量測相關實驗 53
4.6.1 量測不同形貌奈米花之吸收率 53
4.6.2 微、奈米花於相同環境下量測拉曼光譜 54
4.6.3 與蟬翼SERS晶片在相同條件下量測葡萄糖水樣品並比較增強效果 56
第五章 、微波感測器 59
5.1 微波感測器於ADS電磁模擬軟體上的最佳化設計 59
5.1.1 平面天線結構的設計概述 59
5.2 PCB製作 62
5.2.1 天線製作材料與工藝 62
5.2.2 PCB化學製程 63
5.2.3 PCB物理製程 64
5.3 模擬與實體成品特性驗證 65
5.3.1 S11參數對比驗證 65
5.3.2 等效電路建模與分析 66
5.3.3 三維空間電磁模擬與實際量測驗證 68
5.4 各式樣品量測實驗 70
5.4.1 各式油品量測結果 70
5.4.2 混合油品的量測結果 71
5.4.3 甲醇與乙醇量測結果 72
5.4.4 葡萄糖水量測結果 73
第六章 、結論 77
參考文獻 79
-
dc.language.isozh_TW-
dc.subject表面增強拉曼散射zh_TW
dc.subject平面天線zh_TW
dc.subject局域表面電漿共面振zh_TW
dc.subject摻雜檢測zh_TW
dc.subject介電常數zh_TW
dc.subjectSurface-Enhanced Raman Scattering (SERS)en
dc.subjectAdulteration Detectionen
dc.subjectPlanar Antennaen
dc.subjectdielectric sensoren
dc.subjectlocalized surface plasmon resonance (LSPR)en
dc.title表面增強型拉曼感測晶片與微波感測器於液體樣品中的應用與分析zh_TW
dc.titleApplication and analysis of surface enhanced Raman sensing chips and microwave sensors in liquid samplesen
dc.typeThesis-
dc.date.schoolyear113-2-
dc.description.degree碩士-
dc.contributor.oralexamcommittee李佳翰;洪宗宏;簡儀欣zh_TW
dc.contributor.oralexamcommitteeJia-Han Li;Chung-Hung Hong;Jian-Yi Xinen
dc.subject.keyword表面增強拉曼散射,介電常數,摻雜檢測,局域表面電漿共面振,平面天線,zh_TW
dc.subject.keywordSurface-Enhanced Raman Scattering (SERS),localized surface plasmon resonance (LSPR),Planar Antenna,dielectric sensor,Adulteration Detection,en
dc.relation.page86-
dc.identifier.doi10.6342/NTU202501712-
dc.rights.note未授權-
dc.date.accepted2025-07-16-
dc.contributor.author-college工學院-
dc.contributor.author-dept工程科學及海洋工程學系-
dc.date.embargo-liftN/A-
顯示於系所單位:工程科學及海洋工程學系

文件中的檔案:
檔案 大小格式 
ntu-113-2.pdf
  未授權公開取用
12.17 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved