Skip navigation

DSpace JSPUI

DSpace preserves and enables easy and open access to all types of digital content including text, images, moving images, mpegs and data sets

Learn More
DSpace logo
English
中文
  • Browse
    • Communities
      & Collections
    • Publication Year
    • Author
    • Title
    • Subject
    • Advisor
  • Search TDR
  • Rights Q&A
    • My Page
    • Receive email
      updates
    • Edit Profile
  1. NTU Theses and Dissertations Repository
  2. 生物資源暨農學院
  3. 生物機電工程學系
Please use this identifier to cite or link to this item: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/97834
Full metadata record
???org.dspace.app.webui.jsptag.ItemTag.dcfield???ValueLanguage
dc.contributor.advisor黃振康zh_TW
dc.contributor.advisorChen-Kang Huangen
dc.contributor.author張品嫻zh_TW
dc.contributor.authorPin-Hsien Changen
dc.date.accessioned2025-07-18T16:06:52Z-
dc.date.available2025-07-19-
dc.date.copyright2025-07-18-
dc.date.issued2025-
dc.date.submitted2025-07-14-
dc.identifier.citation方俊德。2023。台灣淨零碳排路徑初探。臺灣經濟研究月刊 46(1): 13-20.
Amanor-Boadu, J. M., and A. Guiseppi-Elie. 2020. Improved performance of Li-ion polymer batteries through improved pulse charging algorithm. Applied Sciences, 10(3): 895.
Andreas, H. A. 2015. Self-discharge in electrochemical capacitors: a perspective article. Journal of The Electrochemical Society, 162(5): A5047.
Arun Chendhuran, R., and J. Senthil Kumar. 2020. Review of Model-Based State-Of-Charge Estimation Methods for Batteries of Electric Vehicles. International Conference on Automation, Signal Processing, Instrumentation and Control.
Berecibar, M., I. Gandiaga, I. Villarreal, N. Omar, J. Van Mierlo, and P. Van den Bossche. 2016. Critical review of state of health estimation methods of Li-ion batteries for real applications. Renewable and Sustainable Energy Reviews, 56: 572-587.
Bouguern, M. D., A. K. MR, and K. Zaghib. 2024. The critical role of interfaces in advanced Li-ion battery technology: A comprehensive review. Journal of Power Sources, 623: 235457.
Cao, J., N. Schofield, and A. Emadi. 2008. Battery balancing methods: A comprehensive review. 2008 IEEE Vehicle Power and Propulsion Conference.
Chang, W.-Y. 2013. The state of charge estimating methods for battery: A review. International Scholarly Research Notices, 2013(1): 953792.
Chaoui, H., and C. C. Ibe-Ekeocha. 2017. State of charge and state of health estimation for lithium batteries using recurrent neural networks. IEEE Transactions on Vehicular Technology, 66(10): 8773-8783.
Charkhgard, M., and M. Farrokhi. 2010. State-of-charge estimation for lithium-ion batteries using neural networks and EKF. IEEE Transactions on Industrial Electronics, 57(12): 4178-4187.
Ding, X., D. Zhang, J. Cheng, B. Wang, and P. C. K. Luk. 2019. An improved Thevenin model of lithium-ion battery with high accuracy for electric vehicles. Applied Energy, 254: 113615.
Ecker, M., J. B. Gerschler, J. Vogel, S. Käbitz, F. Hust, P. Dechent, and D. U. Sauer. 2012. Development of a lifetime prediction model for lithium-ion batteries based on extended accelerated aging test data. Journal of Power Sources, 215: 248-257.
Evro, S., A. Ajumobi, D. Mayon, and O. S. Tomomewo. 2024. Navigating Battery Choices: A Comparative Study of Lithium Iron Phosphate and Nickel Manganese Cobalt Battery Technologies. Future Batteries: 100007.
Gao, Y., J. Jiang, C. Zhang, W. Zhang, and Y. Jiang. 2018. Aging mechanisms under different state-of-charge ranges and the multi-indicators system of state-of-health for lithium-ion battery with Li (NiMnCo) O2 cathode. Journal of Power Sources, 400: 641-651.
Guyomard, D., and J. M. Tarascon. 1994. Rocking‐chair or lithium‐ion rechargeable lithium batteries. Advanced materials, 6(5): 408-412.
Han, X., M. Ouyang, L. Lu, J. Li, Y. Zheng, and Z. Li. 2014. A comparative study of commercial lithium ion battery cycle life in electrical vehicle: Aging mechanism identification. Journal of Power Sources, 251: 38-54.
Hein, T., D. Oeser, A. Ziegler, D. Montesinos-Miracle, and A. Ackva. 2023. Aging determination of series-connected lithium-ion cells independent of module design. Batteries, 9(3): 172.
Hoke, A., A. Brissette, K. Smith, A. Pratt, and D. Maksimovic. 2014. Accounting for lithium-ion battery degradation in electric vehicle charging optimization. IEEE Journal of Emerging and Selected Topics in Power Electronics, 2(3): 691-700.
Hou, J., W. Wu, L. Li, X. Tong, R. Hu, W. Wu, W. Cai, and H. Wang. 2022. Estimation of remaining capacity of lithium-ion batteries based on X-ray computed tomography. Journal of Energy Storage, 55: 105369.
Huang, X., Y. Li, A. B. Acharya, X. Sui, J. Meng, R. Teodorescu, and D.-I. Stroe. 2020. A review of pulsed current technique for lithium-ion batteries. Energies, 13(10): 2458.
Kim, R., Y. Kim, S. Kim, and D. K. Kim. 2024. Thermal–electrochemical effect on the degradation of lithium-ion batteries during the charging process. International Communications in Heat and Mass Transfer, 158: 107855.
Li, J., E. Murphy, J. Winnick, and P. Kohl. 2001. Studies on the cycle life of commercial lithium ion batteries during rapid charge–discharge cycling. Journal of Power Sources, 102(1-2): 294-301.
Lindgren, J., and P. D. Lund. 2016. Effect of extreme temperatures on battery charging and performance of electric vehicles. Journal of Power Sources, 328: 37-45.
Liu, J., Q. Duan, M. Ma, C. Zhao, J. Sun, and Q. Wang. 2020. Aging mechanisms and thermal stability of aged commercial 18650 lithium ion battery induced by slight overcharging cycling. Journal of Power Sources, 445: 227263.
Liu, J., C. Xu, Z. Chen, S. Ni, and Z. X. Shen. 2018. Progress in aqueous rechargeable batteries. Green Energy & Environment, 3(1): 20-41.
Liu, Y.-H., C.-H. Hsieh, and Y.-F. Luo. 2011. Search for an optimal five-step charging pattern for Li-ion batteries using consecutive orthogonal arrays. IEEE Transactions on Energy Conversion, 26(2): 654-661.
Mathieu, R., O. Briat, P. Gyan, and J.-M. Vinassa. 2021. Comparison of the impact of fast charging on the cycle life of three lithium-ion cells under several parameters of charge protocol and temperatures. Applied Energy, 283: 116344.
Nelson, P., D. Dees, K. Amine, and G. Henriksen. 2002. Modeling thermal management of lithium-ion PNGV batteries. Journal of Power Sources, 110(2): 349-356.
Ng, K. S., C.-S. Moo, Y.-P. Chen, and Y.-C. Hsieh. 2009. Enhanced coulomb counting method for estimating state-of-charge and state-of-health of lithium-ion batteries. Applied Energy, 86(9): 1506-1511.
Peukert, W. 1897. About the dependence of the capacity of the discharge current magnitude and lead acid batterie. Elektrotech. Z, 20: 287-288.
Preger, Y., H. M. Barkholtz, A. Fresquez, D. L. Campbell, B. W. Juba, J. Romàn-Kustas, S. R. Ferreira, and B. Chalamala. 2020. Degradation of commercial lithium-ion cells as a function of chemistry and cycling conditions. Journal of The Electrochemical Society, 167(12): 120532.
Rahimi-Eichi, H., U. Ojha, F. Baronti, and M.-Y. Chow. 2013. Battery management system: An overview of its application in the smart grid and electric vehicles. IEEE Industrial Electronics Magazine, 7(2): 4-16.
Ruane, A. C. 2024. Synthesis report of the IPCC sixth assessment report (AR6).
Schweiger, H.-G., O. Obeidi, O. Komesker, A. Raschke, M. Schiemann, C. Zehner, M. Gehnen, M. Keller, and P. Birke. 2010. Comparison of several methods for determining the internal resistance of lithium ion cells. Sensors, 10(6): 5604-5625.
Scrosati, B. 1992. Lithium rocking chair batteries: an old concept? Journal of The Electrochemical Society, 139(10): 2776.
Seong, W. M., K.-Y. Park, M. H. Lee, S. Moon, K. Oh, H. Park, S. Lee, and K. Kang. 2018. Abnormal self-discharge in lithium-ion batteries. Energy & Environmental Science, 11(4): 970-978.
Shen, W., T. T. Vo, and A. Kapoor. 2012. Charging algorithms of lithium-ion batteries: An overview. 2012 7th IEEE Conference on Industrial Electronics and Applications (ICIEA).
Tahir, M. U., A. Sangwongwanich, D.-I. Stroe, and F. Blaabjerg. 2023a. Overview of multi-stage charging strategies for Li-ion batteries. Journal of Energy Chemistry, 84: 228-241.
Tahir, M. U., A. Sangwongwanich, D.-I. Stroe, and F. Blaabjerg. 2023b. Optimized multi-stage constant current charging strategy for li-ion batteries. 2023 25th European Conference on Power Electronics and Applications (EPE'23 ECCE Europe).
Team, M. E. V. 2008. A guide to understanding battery specifications. Academia. edu.
Tian, H., P. Qin, K. Li, and Z. Zhao. 2020. A review of the state of health for lithium-ion batteries: Research status and suggestions. Journal of Cleaner Production, 261: 120813.
Wang, C., C. Yang, and Z. Zheng. 2022. Toward practical high‐energy and high‐power lithium battery anodes: present and future. Advanced Science, 9(9): 2105213.
Wei, X., B. Zhu, and W. Xu. 2009. Internal resistance identification in vehicle power lithium-ion battery and application in lifetime evaluation. 2009 International Conference on Measuring Technology and Mechatronics Automation.
Yue, Q., C. He, M. Wu, and T. Zhao. 2021. Advances in thermal management systems for next-generation power batteries. International Journal of Heat and Mass Transfer, 181: 121853.
Zhang, L., H. Peng, Z. Ning, Z. Mu, and C. Sun. 2017. Comparative research on RC equivalent circuit models for lithium-ion batteries of electric vehicles. Applied Sciences, 7(10): 1002.
Zhang, S. S. 2006. A review on electrolyte additives for lithium-ion batteries. Journal of Power Sources, 162(2): 1379-1394.
Zhang, X., W. Zhang, and G. Lei. 2016. A review of li-ion battery equivalent circuit models. Transactions on Electrical and Electronic Materials, 17(6): 311-316.
Zhou, Y., D. Yan, H. Xu, J. Feng, X. Jiang, J. Yue, J. Yang, and Y. Qian. 2015. Hollow nanospheres of mesoporous Co9S8 as a high-capacity and long-life anode for advanced lithium ion batteries. Nano Energy, 12: 528-537.
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/97834-
dc.description.abstract隨著全球環境問題日益嚴峻,鋰離子電池作為電動農機核心動力來源的重要性逐漸提升。本研究探討鋰離子電池的使用策略與健康度預測及老化對電池組性能之影響。透過充電倍率實驗分析LFP、NCM及LTO三種材料電池之充電行為,發現當倍率提升至2 C時,NCM電池溫度上升最高到14.5°C。放電深度實驗顯示,高電量區間循環對容量衰退影響最大,LFP與NCM分別衰退1.75%與2.48%。設定充電SOC上限結果指出,SOC 80%組雖然單次放電容量較低,但整體衰退速率較SOC 100%組減少1.27%,平均充電時間僅為後者之54.69%,適度降低SOC上限有助提升使用效益。研究建立多項式回歸模型預測NCM電池健康度,其中一次、 二次與三次模型之MAE分別為3.95、2.37與0.84。三次多項式雖於訓練資料中表現最佳,但在LOOCV驗證下出現過擬合現象,MAE上升到156.74%顯示泛化能力不足,而二次多項式模型兼具精度與穩健性LOOCV MAE小幅提高至5.98%。老化電池影響實驗顯示,電池組含老化電池時,循環後內阻增加9.31 mΩ,運行溫度提升。研究成果有助鋰離子電池壽命管理與電動農機設計,推動農業電動化及淨零碳排。zh_TW
dc.description.abstractAs global environmental issues become increasingly severe, the importance of lithium batteries as the core power source for electric agricultural machinery has gained more attention. This study investigates the estimation of lithium battery’s SOH and the effects of aging on battery pack performance. Charge rate experiments were conducted to analyze the charging behavior of three types of batteries: LFP, NCM, and LTO. The results show that when the charge rate increased to 2C, the temperature of the NCM batteries reached up to 14.5°C. Depth of discharge experiments indicate that cycling in the high SOC range has the greatest impact on capacity degradation, with LFP and NCM batteries exhibiting capacity reductions of 1.75% and 2.48%, respectively. In experiments with a set upper limit of charging SOC, despite the SOC 80% group having lower single discharge capacity, its overall degradation rate was 1.27% lower, and its average charging time was only 54.69% compared to the SOC 100% group. These findings suggest that moderately lowering the SOC upper limit can enhance operational efficiency. Polynomial regression models were developed to predict the SOH of NCM batteries, with MAEs of 3.95, 2.37, and 0.84 for first-, second-, and third-order models, respectively. Although the third-order model shows the best performance on the training data, it exhibited overfitting under LOOCV, with its MAE rising to 156.74, indicating poor generalizability, whereas the second-order model balances accuracy and robustness, with its MAE under LOOCV increasing only marginally to 5.98%. Experiments examining the effects of aged cells reveal that including aged batteries in the pack leads to a sharp increase in internal resistance by 9.31 mΩ after cycling, accompanied by elevated operating temperatures. The findings of this study provide valuable insights for lithium battery life management and the design of electric agricultural machinery, thereby advancing agricultural electrification and net-zero carbon emissions.en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2025-07-18T16:06:52Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2025-07-18T16:06:52Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontents摘要 i
Abstract ii
目次 iv
圖次 vii
表次 xi
第一章、緒論 1
1.1 前言 1
1.2 研究動機 3
1.3 研究目的 4
第二章、文獻探討 6
2.1 電池基本介紹 6
2.1.1 電池特性及定義 7
2.1.2 鋰離子電池化學性質 11
2.1.3 鋰離子電池分類 12
2.1.4 能量型與動力型電池 13
2.2 鋰離子電池的充電策略 14
2.2.1 CC-CV充電 15
2.2.2 脈衝充電 16
2.2.3 多階段恆定電流充電 18
2.2.4 各種充電方式之比較 19
2.3 電池管理系統(BMS) 20
2.3.1 電池健康狀態(SOH) 21
2.3.2 電池充電狀態(SOC) 23
2.3.3 電池平衡 25
2.4 電池老化機制 25
2.4.1 溫度對電池老化的影響 27
2.4.2 放電深度對電池老化的影響 29
2.4.3 充電策略對電池老化影響 31
2.5 電池模型 33
第三章、研究方法 38
3.1 儀器與設備 38
3.2 數據紀錄及儲存 42
3.3 電池選擇及參數設定 43
3.4 電池充電特性分析 45
3.5 不同放電深度範圍對電池壽命影響 46
3.5.1 不同放電深度範圍對LFP電池壽命影響 46
3.5.2 不同放電深度範圍對NCM電池壽命影響 47
3.6 充電策略對電池能量輸出與老化行為之比較 49
3.7 NCM電池健康度估計方法 50
3.7.1 平均電壓差 50
3.7.2 最低電壓點與健康度關係 51
3.7.3 結合斜率與電壓差法估計電池健康度 52
3.8 老化電池對電池組影響 54
第四章、結果與討論 56
4.1 電池充電特性分析 56
4.1.1 LFP電池在不同倍率下的充電特性 56
4.1.2 NCM電池在不同倍率下的充電特性 61
4.1.3 LTO電池在不同倍率下的充電特性 65
4.1.4 三種電池材料充電特性之比較與綜合分析 69
4.2 不同放電深度範圍對電池壽命影響 71
4.2.1 LFP電池在不同放電深度範圍對電池壽命影響 71
4.2.2 NCM電池在不同放電深度範圍對電池壽命影響 74
4.2.3 兩種電池在不同放電深度範圍對電池壽命影響 77
4.3 充電策略對NCM電池能量輸出與老化行為之比較 79
4.4 NCM電池健康度估計方法 81
4.5 老化NCM電池對電池組影響結果 85
第五章、結論與建議 89
5.1 結論 89
5.2 建議 91
參考文獻 92
-
dc.language.isozh_TW-
dc.subject電池健康度zh_TW
dc.subject電池老化zh_TW
dc.subject放電深度zh_TW
dc.subject充電策略zh_TW
dc.subject鋰離子電池zh_TW
dc.subjectBattery agingen
dc.subjectLithium-ion batteryen
dc.subjectCharging strategyen
dc.subjectDepth of dischargeen
dc.subjectState of Healthen
dc.title電池使用策略與健康度預測之研究zh_TW
dc.titleBattery Management Strategies and Battery State of Health Estimationen
dc.typeThesis-
dc.date.schoolyear113-2-
dc.description.degree碩士-
dc.contributor.oralexamcommittee吳有恒;楊朝旺zh_TW
dc.contributor.oralexamcommitteeYu-heng Wu;Chao-Wang Youngen
dc.subject.keyword鋰離子電池,充電策略,放電深度,電池健康度,電池老化,zh_TW
dc.subject.keywordLithium-ion battery,Charging strategy,Depth of discharge,State of Health,Battery aging,en
dc.relation.page95-
dc.identifier.doi10.6342/NTU202501431-
dc.rights.note同意授權(限校園內公開)-
dc.date.accepted2025-07-14-
dc.contributor.author-college生物資源暨農學院-
dc.contributor.author-dept生物機電工程學系-
dc.date.embargo-lift2030-07-14-
Appears in Collections:生物機電工程學系

Files in This Item:
File SizeFormat 
ntu-113-2.pdf
  Restricted Access
4.52 MBAdobe PDFView/Open
Show simple item record


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved