請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/97816完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 吳肇欣 | zh_TW |
| dc.contributor.advisor | Chao-Hsin Wu | en |
| dc.contributor.author | 黃元泓 | zh_TW |
| dc.contributor.author | Yuan-Hung Huang | en |
| dc.date.accessioned | 2025-07-17T16:07:07Z | - |
| dc.date.available | 2025-07-18 | - |
| dc.date.copyright | 2025-07-17 | - |
| dc.date.issued | 2025 | - |
| dc.date.submitted | 2025-07-14 | - |
| dc.identifier.citation | [1] M. R. Akdeniz et al., "Millimeter Wave Channel Modeling and Cellular Capacity Evaluation," in IEEE Journal on Selected Areas in Communications, vol. 32, no. 6, pp. 1164-1179, June 2014
[2] P. Neininger et al., Advances in GaN Devices and Circuits at Higher mm-Wave Frequencies, e-Prime - Advances in Electrical Engineering, Electronics and Energy, Volume 4, 2023 [3] W. Holmberg, “Radiation Effects on GaN-based HEMTs for RF and Power Electronic Applications,” Dissertation, 2023. [4] Rueddenklau, Uwe et al. “mmWave Semiconductor Industry Technologies: Status and Evolution.” (2016). [5] Y. -H. Yu, W. -H. Hsu and Y. -J. E. Chen, "A Ka-Band Low Noise Amplifier Using Forward Combining Technique," in IEEE Microwave and Wireless Components Letters, vol. 20, no. 12, pp. 672-674, Dec. 2010 [6] R. Limacher et al., "Broadband low-noise amplifiers for K- and Q-bands using 0.2 /spl mu/m InP HEMT MMIC technology," IEEE Compound Semiconductor Integrated Circuit Symposium, 2004., Monterey, CA, USA, 2004 [7] Y. -l. Tang, N. Wadefalk, M. A. Morgan and S. Weinreb, "Full Ka-band High Performance InP MMIC LNA Module," 2006 IEEE MTT-S International Microwave Symposium Digest, San Francisco, CA, USA, 2006 [8] Y. -M. Chen, Y. Wang, C. -C. Chiong and H. Wang, "A 21.5-50 GHz Low Noise Amplifier in 0.15-μm GaAs pHEMT Process for Radio Astronomical Receiver System," 2021 IEEE Asia-Pacific Microwave Conference (APMC), 2021. [9] P. Ho, C. Chiong and H. Wang, "An ultra-low power Q-band LNA with 50% bandwidth in WIN GaAs 0.1-μm pHEMT process," 2013 Asia-Pacific Micro- wave Conference Proceedings (APMC), 2013. [10] P. E. Longhi, W. Ciccognani, S. Colangeli and E. Limiti, "Ka-Band High-Linearity and Low-Noise Gallium Nitride MMIC Amplifiers for Spaceborne Telecommunications," in IEEE Access, vol. 11, pp. 22124-22135, 2023 [11] K. W. Kobayashi, V. Kumar, C. Campbell, S. Chen and Y. Cao, "18-44GHz K/Ka-band Robust-35.5dBm Reconfigurable 90nm GaN HEMT LNA," 2020 IEEE BiCMOS and Compound Semiconductor Integrated Circuits and Technology Symposium (BCICTS), Monterey, CA, USA, 2020 [12] Vasileios Manouras, Yannis Papananos, A 28-GHz highly efficient Class-J SiGe power amplifier with pi-type load network, Integration, Volume 103,2025 [13] J. Curtis, A. V. Pham, and F. Aryanfar, “Ka-band doherty power amplifier with 26.9 dbm output power, 42% peak pae and 32% back-off pae using gaas phemts,” IET Microwaves, Antennas Propagation, vol. 10, no. 10, pp. 1101–1105, 2016. [14] D. P. Nguyen, T. Pham and A. -V. Pham, "A 28-GHz Symmetrical Doherty Power Amplifier Using Stacked-FET Cells," in IEEE Transactions on Microwave Theory and Techniques, vol. 66, no. 6, pp. 2628-2637, June 2018 [15] Wohlert, David et al. “8-Watt Linear Three-Stage GaN Doherty Power Amplifier for 28 GHz 5G Applications.” 2019 IEEE BiCMOS and Compound semiconductor Integrated Circuits and Technology Symposium (BCICTS) (2019) [16] R. Giofrè, A. Del Gaudio and E. Limiti, "A 28 GHz MMIC Doherty Power Amplifier in GaN on Si Technology for 5G Applications," 2019 IEEE MTT-S International Microwave Symposium (IMS), Boston, MA, USA, 2019 [17] Zhang, SM & Niu, GF & Cressler, J.D. & Mathew, S.J. & Gogineni, Usha & Clark, S.D. & Zampardi, Pete & Pierson, R.L.. (2001). A comparison of the effects of gamma irradiation on SiGe HBT and GaAs HBT technologies. Nuclear Science, IEEE Transactions on. 47. 2521 – 2527 [18] A. S. Youssouf, M. H. Habaebi and N. F. Hasbullah, "The Radiation Effect on Low Noise Amplifier Implemented in the Space-Aerial–Terrestrial Integrated 5G Networks," in IEEE Access, vol. 9, pp. 46641-46651, 2021 [19] D. C. Howard et al., "An 8–16 GHz SiGe Low Noise Amplifier With Performance Tuning Capability for Mitigation of Radiation-Induced Performance Loss," in IEEE Transactions on Nuclear Science, vol. 59, no. 6, pp. 2837-2846, Dec. 2012 [20] J. -G. Kim, E. Kim, D. -S. Kim, C. Cho and J. -H. Lee, "Investigation of Proton Irradiation-Enhanced Device Performances in AlGaN/GaN HEMTs," in IEEE Journal of the Electron Devices Society, vol. 10, pp. 19-22, 2022 [21] P. E. Longhi et al.,” Ka-Band High-Linearity and Low-Noise Gallium Nitride MMIC Amplifiers for Spaceborne Telecommunications,” in IEEE Access, vol. 11, pp. 22124-22135, 2023 [22] Y. -T. Chou et al.,” A Q-band LNA with 55.7% bandwidth for radio astronomy applications in 0.15-µm GaAs pHEMT process,” 2016 IEEE International Symposium on Radio-Frequency Integration Technology (RFIT), Taipei, Taiwan, 2016 [23] Modified small‐signal behavioral model for GaN HEMTs based on support vector regression, June 2021, International Journal of Rf and Microwave Computer-Aided Engineering [24] M. Micovic et al., “Ka-band lna mmic’s realized in fmax > 580 ghz gan hemt technology,” in 2016 IEEE Compound Semiconductor Integrated Circuit Symposium (CSICS), Oct 2016 [25] Ahn, H.; Ji, H.; Kang, D.; Son, S.-M.; Lee, S.; Han, J. A 26–30 GHz GaN HEMT Low-Noise Amplifier Employing a Series Inductor-Based Stability Enhancement Technique. Electronics 2022 [26] C. Li et al., "LNA Design with CMOS SOI Process-l.4dB NF K/Ka band LNA," 2018 IEEE/MTT-S International Microwave Symposium - IMS, Philadelphia, PA, USA, 2018 [27] Y. -C. Su, K. -H. Huang and H. -Y. Chang, "A Ka-Band Low Noise Amplifier Using R-L-C Feedback Technique in E-Mode 0.15-µm GaAs pHEMT Process," 2024 IEEE Asia-Pacific Microwave Conference (APMC), Bali, Indonesia, 2024 [28] B. -W. Min and G. M. Rebeiz, "Single-Ended and Differential Ka-Band BiCMOS Phased Array Front-Ends," in IEEE Journal of Solid-State Circuits, vol. 43, no. 10, pp. 2239-2250, Oct. 2008 [29] T. S. Rappaport et al., "Millimeter Wave Mobile Communications for 5G Cellular: It Will Work!," in IEEE Access, vol. 1, pp. 335-349, 2013 [30] X. Lin et al., "5G New Radio: Unveiling the Essentials of the Next Generation Wireless Access Technology," in IEEE Communications Standards Magazine, vol. 3, no. 3, pp. 30-37, September 2019 [31] Huang, Tian-Wei. *Power Amplifier Design for Wireless Communications*. Lecture slides, National Taiwan University [32] M. Carbone et al., "An overview of GaN FET Technology, Reliability, Radiation and Market for future Space Application," 2019 European Space Power Conference (ESPC), Juan-les-Pins, France, 2019 [33] B. Mossawir et al., "A TID and SEE Radiation-Hardened, Wideband, Low-Noise Amplifier," in IEEE Transactions on Nuclear Science, vol. 53, no. 6, pp. 3439-3448, Dec. 2006 [34] Stephen J. Pearton et al.,” Review of radiation damage in GaN-based materials and devices” Journal of Vacuum Science & Technology, April,2013 [35] J. -G. Kim, E. Kim, D. -S. Kim, C. Cho and J. -H. Lee, "Investigation of Proton Irradiation-Enhanced Device Performances in AlGaN/GaN HEMTs," in IEEE Journal of the Electron Devices Society, vol. 10, pp. 19-22, 2022 [36] Ling Lv, J.G. Ma, Y.R. Cao, J.C. Zhang, W. Zhang, L. Li, S.R. Xu, X.H. Ma, X.T. Ren, Y. Hao,Study of proton irradiation effects on AlGaN/GaN high electron mobility transistors, Microelectronics Reliability, Volume 51, Issue 12,2011 [37] T. Zhu et al., "A Thorough Study on the Effect of 3-MeV Proton Irradiation on the Performance of AlGaN/GaN HEMTs," in IEEE Transactions on Electron Devices, vol. 71, no. 12, pp. 7319-7325, Dec. 2024 [38] X. Wan et al., "Low Energy Proton Irradiation Effects on Commercial Enhancement Mode GaN HEMTs," in IEEE Transactions on Nuclear Science, vol. 64, no. 1, pp. 253-257, Jan. 2017 [39] Li, Xun & Wang, Pengfei & Qiu, Hao & Zhang, Enxia & McCurdy, Michael & Schrimpf, Ronald & Fleetwood, Daniel. (2022). Irradiation-and Bias-Stress-Induced Charge Trapping and Gate Leakage in AlGaN/GaN HEMTs. 1-5. 10.1109/RADECS55911.2022 [40] X. Wang, X. Li, J. Zhang, M. Heini, M. Liu and H. Liu, "Effects of Total Ionizing Dose on Low Frequency Noise Characteristics in SiGe HBT," 2023 5th International Conference on Radiation Effects of Electronic Devices (ICREED), Kunming, China, 2023 [41] N. Jiang, Z. Ma, P. Ma and M. Racanelli, "Impact of Proton Radiation on the Large-Signal Power Performance of SiGe Power HBTs," in IEEE Transactions on Nuclear Science, vol. 53, no. 4, pp. 2361-2366, Aug. 2006 | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/97816 | - |
| dc.description.abstract | 本論文共分為三個主題。
主題一為採用 0.12-µm GaN HEMT 製程實現之 K/Ka 頻段低雜訊放大器,應用於無人機追蹤與高功率雷達系統。透過源極退化與寬頻匹配設計,該放大器在 23 至 33 GHz 的 3-dB 頻寬範圍內,達成 21 dB 的峰值增益與 2.3 dB 的雜訊指數,直流功率為 400 mW。 主題二為同樣基於 0.12-µm GaN HEMT 製程之 5G 毫米波功率放大器,目標應用於 FR2 頻段。此功率放大器在功率級採用兩組並聯放大結構,在 26 GHz 時可實現 10.3 dB 的峰值增益,3-dB 頻寬涵蓋 25.5 至 27 GHz。在 26 GHz 下,其 1 dB 壓縮點為 21 dBm,飽和輸出功率為 23.6 dBm,峰值功率附加效率達 3.3%。 第三部分探討質子輻射對 LNA、PA 與 GaN HEMT 的影響。在低劑量與中等劑量(200 和 1000 krad)時,輻射促進的退火效應與氫鈍化作用減少了陷阱數量,提升了轉導值,並改善了射頻性能。但在更高劑量(1500 krad)下,輻射損傷導致閾值電壓偏移、電荷捕獲與載子遷移率劣化。DC 測試結果進一步顯示,在 2 × 50 元件中,正電荷效應占主導,使閾值電壓降低且轉導增加;而在 4 × 50 元件中,200 krad 時的性能改善,隨著輻射劑量升高,逐漸被缺陷引起的遷移率劣化所取代。這些結果展現了 GaN 射頻元件的輻射耐受性,並強調了在太空與航太等輻射環境中,需採取劑量敏感設計以確保元件可靠性。 | zh_TW |
| dc.description.abstract | This thesis is divided into three main topics.
The first topic presents a K/Ka-band low-noise amplifier (LNA) implemented using a 0.12-µm GaN HEMT process, targeting applications such as unmanned aerial vehicle (UAV) tracking and high-power radar systems. By employing source degeneration and wideband matching techniques, the proposed LNA achieves a peak gain of 21 dB and a noise figure of 2.3 dB within a 3-dB bandwidth ranging from 23 to 33 GHz, with a DC power consumption of 400 mW. The second topic introduces a 5G millimeter-wave power amplifier (PA), also realized using the 0.12-µm GaN HEMT process, and intended for FR2 band applications. The PA adopts two parallel amplifier paths at the output stage, delivering a peak gain of 10.3 dB at 26 GHz, with a 3-dB bandwidth spanning from 25.5 to 27 GHz. At 26 GHz, the amplifier achieves a OP1dB of 21 dBm, a Psat of 23.6 dBm, and a peak PAE of 3.3%. The third topic investigates proton irradiation effects on the LNA, PA, and GaN HEMTs. At low and moderate doses (200 & 1000 krad), radiation-enhanced annealing and hydrogen passivation reduces traps, enhancing transconductance and improving RF performance. At higher doses (1500 krad), radiation damage causes Vth shifts, charge trapping, and mobility degradation. DC results further show that in 2 × 50 devices, positive charge effects dominate, lowering Vth and increasing Gm, while in 4 × 50 devices, initial improvements at 200 krad give way to defect-induced mobility degradation at higher doses. These results demonstrate the radiation robustness of GaN RF devices and the need for dose-aware design in space and aerospace systems. | en |
| dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2025-07-17T16:07:07Z No. of bitstreams: 0 | en |
| dc.description.provenance | Made available in DSpace on 2025-07-17T16:07:07Z (GMT). No. of bitstreams: 0 | en |
| dc.description.tableofcontents | 致謝 i
中文摘要 iii ABSTRACT iv CONTENTS v LIST OF FIGURES viii LIST OF TABLES xii Chapter 1 Introduction 1 1.1 Background and Motivation 1 1.2 Literature Survey 2 1.2.1 K/Ka-band Low-Noise Amplifiers 2 1.2.2 Ka-band Power Amplifiers 4 1.2.3 Radiation reliability analysis 5 1.3 Thesis Organization 7 Chapter 2 A 23–33 GHz GaN HEMT LNA with High Linearity for UAV Radar Applications 8 2.1 Introduction 8 2.2 Circuit Design 10 2.2.1 Bias Point and Transistor Size 10 2.2.2 Source Degeneration 18 2.2.3 High-Linearity and Wideband Design 22 2.2.4 Circuit Architecture 23 2.2.5 Simulation Results 24 2.3 Experimental Results 29 2.3.1 Room-temperature measurement 29 2.3.2 Cryogenic measurement 35 2.4 Summary 38 Chapter 3 A GaN HEMT Power Amplifier for 5G Millimeter-Wave Communications 39 3.1 Introduction 39 3.2 Circuit Design 40 3.2.1 Bias Point and Transistor Size 40 3.2.2 Power Stage 43 3.2.3 Driver Stage 47 3.2.4 Circuit Architecture 49 3.2.5 Simulation Results 50 3.3 Experimental Results 54 3.4 Summary 60 Chapter 4 Impact of Proton Irradiation on Low Noise and Power Amplifiers 62 4.1 Introduction and Background 62 4.2 Radiation Dose Metrics and Conversion Principles 63 4.2.1 Fluence 63 4.2.2 Non-Ionizing Energy Loss (NIEL) 63 4.2.3 Absorbed Dose: rad and gray (Gy) 64 4.2.4 Dose Estimation from Fluence 64 4.3 Experimental Setup and Irradiation Conditions 65 4.4 Experimental Results 68 4.4.1 Results of Low Noise Amplifiers 68 4.4.2 Results of Power Amplifiers 72 4.4.3 Results of DC measurement 78 4.4.4 Summary 82 Chapter 5 Conclusion 83 REFERENCE 84 | - |
| dc.language.iso | en | - |
| dc.subject | K/Ka 頻段 | zh_TW |
| dc.subject | 質子輻射 | zh_TW |
| dc.subject | 功率放大器 | zh_TW |
| dc.subject | 低雜訊放大器 | zh_TW |
| dc.subject | 氮化鎵 | zh_TW |
| dc.subject | proton irradiation | en |
| dc.subject | GaN | en |
| dc.subject | LNA | en |
| dc.subject | PA | en |
| dc.subject | K/Ka-band | en |
| dc.title | 氮化鎵毫米波低雜訊及功率放大器之設計與 質子輻射可靠度分析 | zh_TW |
| dc.title | Design and Proton Radiation Reliability Analysis of GaN Millimeter-Wave Low-Noise and Power Amplifiers | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 113-2 | - |
| dc.description.degree | 碩士 | - |
| dc.contributor.oralexamcommittee | 吳育任;黃建璋;林坤佑 | zh_TW |
| dc.contributor.oralexamcommittee | Yuh-Renn Wu;Jian-Jang Huang;Kun-You Lin | en |
| dc.subject.keyword | 氮化鎵,低雜訊放大器,功率放大器,K/Ka 頻段,質子輻射, | zh_TW |
| dc.subject.keyword | GaN,LNA,PA,K/Ka-band,proton irradiation, | en |
| dc.relation.page | 89 | - |
| dc.identifier.doi | 10.6342/NTU202500855 | - |
| dc.rights.note | 未授權 | - |
| dc.date.accepted | 2025-07-15 | - |
| dc.contributor.author-college | 電機資訊學院 | - |
| dc.contributor.author-dept | 光電工程學研究所 | - |
| dc.date.embargo-lift | N/A | - |
| 顯示於系所單位: | 光電工程學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-113-2.pdf 未授權公開取用 | 2.91 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
