Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 土木工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/97815
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor謝尚賢zh_TW
dc.contributor.advisorShang-Hsien Hsiehen
dc.contributor.author張美智zh_TW
dc.contributor.authorMei-Chih Changen
dc.date.accessioned2025-07-17T16:06:55Z-
dc.date.available2025-07-18-
dc.date.copyright2025-07-17-
dc.date.issued2025-
dc.date.submitted2025-07-14-
dc.identifier.citation[1] International Energy Agency. (2021). Global energy review: CO2 emissions in 2021. https://www.iea.org/reports/global-energy-review-2021
[2] 台灣電力股份有限公司(2022年9月)。強化電網韌性建設計畫。
[3] 台灣大學土木工程資訊模擬與管理研究中心(2017)。業主 BIM 實施方針之擬定指引(2017 版)[Facility Owner’s Guide for Preparing BIM Guidelines (V. 2017)]。
[4] 台灣電力股份有限公司(2023年7月)。強化電網韌性建設計畫說明資料。取自https://www.taipower.com.tw/tc/page.aspx?mid=6644
[5] International Organization for Standardization. (2018). ISO 14067:2018 Greenhouse gases — Carbon footprint of products — Requirements and guidelines for quantification. ISO.
[6] U.S. Green Building Council. (2024). LEED green building rating system. Washington, DC: U.S. Green Building Council.
[7] Japan Sustainable Building Consortium. (2021). CASBEE evaluation manual. Tokyo: JSBC.
[8] Intergovernmental Panel on Climate Change. (2023). IPCC Sixth Assessment Report: SER framework (Sufficiency, Efficiency, Renewable). Geneva: IPCC.
[9] CEN(歐洲標準委員會)。(2011)。EN 15978:2011 建築工程永續性-建築物環境績效評估-計算方法。布魯塞爾:CEN。
[10] 林憲德(2024)。淨零建築的兩把鑰匙─給台灣建築的禮物。《林憲德退休紀念著作》(頁237–239)。臺北:詹氏書局。
[11] 內政部建築研究所(2023)。低碳(低蘊含碳)建築評估手冊(2023年版)(林憲德總編輯)。新北市:內政部建築研究所。
[12] 工業技術研究院永續碳管理平台(2025.04查詢)。永續碳管理平台資訊網站。取自 https://scmp.itri.org.tw/Frontend/WebPage/index.aspx
[13] 英國標準協會(British Standards Institution)。(2023)。PAS 2080:2023 建築與基礎設施碳管理規範。倫敦:BSI。
[14] 鄭恆志、黃品萱、蔡維哲、鄒萬祥(2014)。工程碳足跡評估及盤查實務—以加勁路堤為例。《土木水利期刊》,41(1)。臺北:詹氏書局。
[15] CEN(歐洲標準委員會)。(2021)。EN 17472:2021 土木工程設施永續性評估-計算方法。布魯塞爾:CEN。
[16] 行政院環境保護署(2024年5月查詢)。產品碳足跡資訊網。取自 https://cfp-calculate.tw/cfpc/WebPage/index.aspx
[17] Bashir, S., Xia, A., & Lees, J. (2020). Properties and mechanical strength analysis of concrete using fly ash and granulated blast-furnace slag. Buildings, 13(7), 1644. https://doi.org/10.3390/buildings13071644
[18] Rahman, M., & Zhang, X. (2019). Review on carbonation study of reinforcement concrete: effects of accelerated carbonation curing. Materials, 12(3), Article 6945. https://doi.org/10.3390/materials120306945
[19] Randl, W., & Coh, P. (2023). Environmental impact of concrete slab made of recycled aggregates: life‑cycle assessment. International Journal of Environmental Science, 58, 120–134. https://doi.org/10.3390/ijerph580010
[20] Correa de Melo, D., Silva, D., & Borges, M. (2024). Low-carbon bio-concretes with wood, bamboo, and rice husk aggregates: life cycle assessment of wall components. Sustainability, 17(5), Article 2176. https://doi.org/10.3390/su17052176
[21] Huang, Z., Wang, X., & Li, Y. (2024). A review of building digital twins to improve energy efficiency in the building lifecycle. Energy Informatics, 7, Article 13. https://doi.org/10.1186/s42162-024-00313-7
[22] Saleem, F., Mohd-Sahabuddin, M. F., & Shabbir, K. (2025). Passive design: Sustainable solutions for high‑performance architecture. In IGI Global Scientific Publishing. Chapter 8. https://doi.org/10.4018/978‑8‑3693‑5748‑4.ch008
[23] Nguyen, T. H., & Bock, T. (2024). Modular construction in the digital age: A systematic review integrating digital technologies and sustainable strategies. Buildings, 15(5), Article 765. https://doi.org/10.3390/buildings15050765
[24] Pereira, E., Silva, C., & Almeida, M. (2023). A comprehensive review on technologies for achieving zero‑energy buildings. Sustainability, 16(24), 10941. https://doi.org/10.3390/su162410941
[25] Kumar, A., & Singh, R. (2024). Smart energy management in residential buildings: the impact of IoT and AI. Scientific Reports, 14, 51638. https://doi.org/10.1038/s41598-024-51638-y
[26] Gupta, N., & Shukla, P. (2023). Intelligent building control systems for thermal comfort and energy efficiency: A systematic review of AI‑assisted techniques. arXiv. https://doi.org/10.48550/arXiv.2104.02214
[27] Chen, L., Zhao, Y., & Li, X. (2021). Phase change materials in solar photovoltaics applied in buildings. Solar Energy, 222, 569–592. https://doi.org/10.1016/j.solener.2021.06.010
[28] Wang, G., Luo, T., & Liu, R. (2024). A comprehensive review of building lifecycle carbon emissions and sustainable reduction strategies. City and Built Environment, 2, Article 12. https://doi.org/10.1007/s44213-024-00036-1
[29] Sánchez-Cordero, F., Nanía, L., Hidalgo-García, D., & López-Chacón, S. R. (2025). Assessing the spatial benefits of green roofs to mitigate urban heat island effects in a semi-arid city: A case study in Granada, Spain. Remote Sensing, 17(12), 2073. https://doi.org/10.3390/rs17122073
[30] Carbon Market Watch. (2024). EU ETS vs CORSIA: Which better navigates the turbulence of the climate crisis? Retrieved from Carbon Market Watch
[31] Wang, G., Luo, T., Liu, R., & Liu, Y. (2024). A comprehensive review of building lifecycle carbon emissions and reduction approaches. City and Built Environment, 2, Article 12. https://doi.org/10.1007/s44213-024-00036-1
[32] Tsoka, S., & Tsikaloudaki, K. (2024). Design for circularity, adaptability, and deconstruction in buildings. In Circular Economy Design and Management in the Built Environment (pp. 257–272). Springer. https://doi.org/10.1007/978-3-031-73490-8_9
[33] Perera, S., & Nanayakkara, S. (2025). Current methodologies of creating material passports: A systematic literature review. Construction and Building Materials. https://doi.org/10.1016/j.conbuildmat.2025.131234
[34] Madubuike, O. C., Anumba, C. J., & Khallaf, R. (2022). A review of digital twin applications in the construction industry. ITcon, 27, 146–166. https://doi.org/10.36680/itcon.v27.8
[35] Shenoi, R., Zheng, X., Zhao, J., & Li, C. (2021). Based BIM techniques to clash detection for construction projects. Automation in Construction, 129, Article 103854. https://doi.org/10.1016/j.autcon.2021.103854
[36] Jaillon, L., Poon, C. S., & Chiang, Y. H. (2014). Quantifying advantages of modular construction: Waste generation. Building and Environment, 69, 176–188. https://doi.org/10.1016/j.buildenv.2013.09.015
[37] Mencaroni, A., Leyman, P., Raa, B., De Vuyst, S., & Claeys, D. (2025). Carbon-aware scheduling for net‑zero manufacturing. arXiv. https://doi.org/10.48550/arXiv.2503.01325
[38] Wang, G., Luo, T., Liu, R., & Liu, Y. (2024). A comprehensive review of building lifecycle carbon emissions and reduction approaches. City and Built Environment, 2, Article 12. https://doi.org/10.1007/s44213-024-00036-1
[39] Shahnavaz, F., & Akhavian, R. (2021). Automated estimation of construction equipment emissions using inertial sensors and machine learning. arXiv. https://doi.org/10.48550/arXiv.2109.13375
[40] Peri, H., & Maierhofer, S. (2023). Impact of construction duration on energy consumption: A case study analysis. Energy and Buildings, 285, 112958. https://doi.org/10.1016/j.enbuild.2023.112958
[41] Lee, S., Kim, J., & Park, C. (2024). Optimization of construction logistics using dynamic simulation for carbon reduction. Journal of Building Engineering, 67, 106283. https://doi.org/10.1016/j.jobe.2024.106283
[42] Chen, Y., & Lin, T. (2022). Modeling and mitigation strategies of dust and noise emissions in urban construction sites. Environmental Impact Assessment Review, 95, 106714. https://doi.org/10.1016/j.eiar.2022.106714
[43] Qin, Z., Wang, J., & Liu, Y. (2024). BEMTrace: Visualization-driven approach for deriving building energy models from BIM. arXiv. https://doi.org/10.48550/arXiv.2407.19464
[44] Yang, Y., Yue, X., Luo, Y., Jin, L., & Jia, B. (2024). Building Information Modeling–Life Cycle Assessment: A Novel Technology for Rapid Calculation and Analysis System for Life Cycle Carbon Emissions of Bridges. Sustainability, 16(23), 10574. https://doi.org/10.3390/su162310574
[45] Quinn, C., Shabestari, A. Z., Litoiu, M., & McArthur, J. J. (2022). Building automation system data integration with BIM: Data structure and supporting case study. arXiv. https://doi.org/10.48550/arXiv.2205.05518
[46] Doloi, H., & Sharma, R. (2023). Integrating BIM with sustainability assessment tools for green building certification. Sustainability, 15(10), Article 7065. https://doi.org/10.3390/su15107065
[47] Zhang, Y., Yang, Z., & Lu, W. (2024). 4D BIM–enabled carbon accounting for net‑zero construction projects. Automation in Construction, 157, Article 105947. https://doi.org/10.1016/j.autcon.2024.105947
[48] Sohail, A., Shen, B., Cheema, M. A., Ali, M. E., & Babar, M. A. (2024). Beyond data, towards sustainability: A Sydney case study on urban digital twins. arXiv. https://doi.org/10.48550/arXiv.2406.04902
[49] 台賓科技有限公司(2015)。台電公司建築資訊模型(BIM)工作規範與標準契約之研究:期末報告(委託研究報告,計畫編號:017-0200-01201)。台灣電力公司。
[50] 謝尚賢、郭榮欽、陳奐廷、蔡沅澔(2020年9月)。透過案例演練學習 BIM:基礎篇(增訂二版)。臺北:臺大出版中心。
[51] 郭榮欽(2018年9月)。透過案例演練學習 BIM:元件篇。臺北:臺大出版中心。
[52] 張美智、黃積明、張芸翠、謝尚賢(2024年6月27日)。運用 4D BIM 於場鑄與預鑄 T 型涵洞興建及減碳效益之比較。發表於第 28 屆營建工程與管理學術研討會暨國際會議,雲林,臺灣。
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/97815-
dc.description.abstract本研究旨在探討場鑄與預鑄T型涵洞施工方式的差異,並進一步分析建築資訊塑模(BIM)技術在施工過程中的應用,特別是在提升施工效率和減少碳排放方面的潛力。以台灣電力公司地下電纜T型涵洞及輸電線路土木工程為案例,研究運用4D BIM技術及碳足跡計算工具,綜合評估兩種施工工法在材料、施工、進度、成本及碳排放等五大面向的差異。結果顯示,預鑄工法在成本上與場鑄工法相當,但在其他指標如碳排放和施工效率上展現顯著優勢,尤其在製造過程中可減少約22.4%的碳排放,為台電公司未來土建構造物的減碳提供可行之策略方針。
此外,本研究還探討了BIM技術在輸電線路土木工程(如鐵塔基礎)中的應用,使用Autodesk Revit建立參數化模型,並根據台大土木工程資訊模擬與管理研究中心的理論架構,提出BIM深化技術運用的參考建議。透過初級資料分析法、程式塑模模擬法,擬定組織導入BIM規範的初步雛型,並建議分階段的導入策略,包括資訊整合、人才培育與流程改善,以提高設計與施工階段的工作效率。
本研究的結果不僅為選擇場鑄與預鑄工法提供了減碳效益和施工效率的實證依據,還為組織導入BIM技術提供了具體的執行建議,期望能促進台灣建設產業實現永續發展早日達成數位轉型目標。
zh_TW
dc.description.abstractThis study investigates the differences between cast-in-place and precast construction methods for T-shaped cable culverts, with a particular focus on the application of Building Information Modeling (BIM) technology in enhancing construction efficiency and reducing carbon emissions. Using Taiwan Power Company’s underground transmission civil works as a representative case, the research adopts 4D BIM simulation combined with life cycle carbon footprint assessment tools to conduct a comprehensive evaluation across five key dimensions: materials, construction processes, project scheduling, cost, and carbon emissions. The findings indicate that while precast construction incurs costs comparable to cast-in-place methods, it demonstrates significant advantages in terms of construction efficiency and environmental impact—particularly achieving an estimated 22.4% reduction in carbon emissions during the manufacturing stage. These results offer practical guidance for low-carbon strategies in civil infrastructure development.
Furthermore, the study explores the broader applicability of BIM in transmission line civil works, such as tower foundation modeling. Parametric modeling was performed using Autodesk Revit, guided by the theoretical framework established by the Civil Engineering Information Modeling and Management Research Center at National Taiwan University. The research proposes a phased strategy for organizational BIM adoption, encompassing data integration, workforce training, and process optimization. Methodologically, a combination of primary data analysis and procedural simulation was employed to formulate a preliminary framework for BIM standard implementation.
Overall, this study not only provides empirical evidence supporting the benefits of precast construction in terms of carbon reduction and operational efficiency but also delivers actionable recommendations for BIM integration within utility-based construction organizations. The proposed approach aims to contribute to Taiwan’s sustainable development agenda and accelerate the digital transformation of the construction industry.
en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2025-07-17T16:06:55Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2025-07-17T16:06:55Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontents口試委員審定書 i
致 謝 ii
中文摘要 iv
英文摘要 v
目 次 vii
圖 次 ix
表 次 xii
第一章 緒論 1
1.1 研究背景與動機 1
1.2 研究目的 3
1.3 研究問題與範圍 3
1.4 研究方法與架構 3
1.5 研究流程 4
第二章 文獻回顧 6
2.1 4D BIM技術發展與應用 6
2.2 輸電線路及T型涵洞設計概要 10
2.3 營建產業實現淨零排放之策略概述 12
2.4 組織現階段所面臨的挑戰及導入BIM的迫切性要素 15
2.5 本研究引用碳排放評估方法說明 21
第三章 4D BIM於輸電線路T型涵洞設計中的應用 30
3.1 T型涵洞設計的技術需求 30
3.2興建與減碳效益比較評估過程說明 32
3.3 傳統場鑄工法與創新預鑄工法一般性比較 44
第四章 場鑄工法與預鑄工法興建與減碳效益評估 47
4.1 興建階段效益的量化比較 47
4.2 建築工程中的減碳策略 51
4.3 4D BIM對減碳效益的貢獻 55
4.4 減碳與效能的綜合評估 58
4.5 本研究使用4D BIM評估碳排放的價值 59
第五章 組織導入BIM的重要性探討 61
5.1 組織現行BIM相關應用情形 61
5.2 組織導入BIM的目標定位 72
5.3 組織導入BIM的挑戰與風險管理 74
5.4 組織導入BIM的策略規劃與執行計畫 75
5.5 虛擬案例實作與展示 77
5.6 對組織的具體建議方案 92
第六章 結論與建議 95
6.1 研究成果總結 95
6.2 對施工方法及減碳效益的比較結論 97
6.3 組織導入BIM的關鍵成功要素與實質建議 97
6.4 結合BIM之價值工程分析與整體效益探討 98
6.5公共工程減碳相關政策面的檢討與本研究成果之連動性 99
6.6未來研究方向與實務建議 101
參考文獻 103
附錄A 110
-
dc.language.isozh_TW-
dc.subject預鑄工法zh_TW
dc.subject土建構造物zh_TW
dc.subject碳足跡zh_TW
dc.subject減碳效益zh_TW
dc.subject淨零排放zh_TW
dc.subject公共工程zh_TW
dc.subject四維度建築資訊塑模zh_TW
dc.subjectpublic infrastructureen
dc.subject4D BIMen
dc.subjectprecast construction methoden
dc.subjectcivil structuresen
dc.subjectcarbon footprinten
dc.subjectcarbon reduction benefiten
dc.subjectnet-zero emissionen
dc.title從比較場鑄與預鑄T型涵洞之興建與減碳效益來探討組織導入BIM之策略zh_TW
dc.titleExploring BIM Adoption Strategies at the Organizational Level Through a Comparison of Cast-in-Place and Precast T-shaped Culverts for Construction and Carbon Reduction Benefitsen
dc.typeThesis-
dc.date.schoolyear113-2-
dc.description.degree碩士-
dc.contributor.oralexamcommittee林偲妘;黃琬淇zh_TW
dc.contributor.oralexamcommitteeSzu-Yun Lin;Wan-Chi Huangen
dc.subject.keyword四維度建築資訊塑模,預鑄工法,土建構造物,碳足跡,減碳效益,淨零排放,公共工程,zh_TW
dc.subject.keyword4D BIM,precast construction method,civil structures,carbon footprint,carbon reduction benefit,net-zero emission,public infrastructure,en
dc.relation.page116-
dc.identifier.doi10.6342/NTU202501551-
dc.rights.note同意授權(限校園內公開)-
dc.date.accepted2025-07-16-
dc.contributor.author-college工學院-
dc.contributor.author-dept土木工程學系-
dc.date.embargo-lift2027-09-01-
顯示於系所單位:土木工程學系

文件中的檔案:
檔案 大小格式 
ntu-113-2.pdf
  未授權公開取用
20.98 MBAdobe PDF檢視/開啟
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved