Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 理學院
  3. 化學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/97814
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor劉如熹zh_TW
dc.contributor.advisorRu-Shi Liuen
dc.contributor.author吳氏鸞zh_TW
dc.contributor.authorLoan Thi Ngoen
dc.date.accessioned2025-07-17T16:06:43Z-
dc.date.available2025-07-18-
dc.date.copyright2025-07-17-
dc.date.issued2025-
dc.date.submitted2025-07-14-
dc.identifier.citation(1) Mekuye, B.; Abera, B. Nanomaterials: An Overview of Synthesis, Classification, Characterization, and Applications. Nano Select 2023, 4, 486–501.
(2) Chan, W. C. W.; Maxwell, D. J.; Gao, X.; Bailey, R. E.; Han, M.; Nie, S. Luminescent Quantum Dots for Multiplexed Biological Detection and Imaging. Curr. Opin. Biotechnol. 2002, 13, 40–46.
(3) Zeng, H.; Du, X. W.; Singh, S. C.; Kulinich, S. A.; Yang, S.; He, J.; Cai, W. Nanomaterials via Laser Ablation/Irradiation in Liquid: A Review. Adv. Funct. Mater. 2012, 22, 1333–1353.
(4) Wazeer, A.; Das, A.; Sinha, A.; Karmakar, A. Nanomaterials Synthesis via Laser Ablation in Liquid: A Review. J. Inst. Eng. India Ser. D 2023, 104, 413–426.
(5) El-Khawaga, A. M.; Zidan, A.; El-Mageed, A. I. A. A. Preparation Methods of Different Nanomaterials for Various Potential Applications: A Review. J. Mol. Struct. 2023, 1281, 135148.
(6) Käufer, F.; Quade, A.; Kruth, A.; Kahlert, H. Magnetron Sputtering as a Versatile Tool for Precise Synthesis of Hybrid Iron Oxide–Graphite Nanomaterial for Electrochemical Applications. Nanomaterials 2024, 14, 252.
(7) Paras; Yadav, K.; Kumar, P.; Teja, D. R.; Chakraborty, S.; Chakraborty, M.; Mohapatra, S. S.; Sahoo, A.; Chou, M. M. C.; Liang, C. T.; Hang, D. R. A Review on Low-Dimensional Nanomaterials: Nanofabrication, Characterization and Applications. Nanomaterials 2023, 13, 160.
(8) Chen, Q.; Yao, M.; Zhou, Y.; Sun, Y.; Zhang, G.; Pang, H. Etching MOF Nanomaterials: Precise Synthesis and Electrochemical Applications. Coord. Chem. Rev. 2024, 517, 216016.
(9) Wang, X.; Dai, X.; Wang, H.; Wang, J.; Chen, Q.; Chen, F.; Yi, Q.; Tang, R.; Gao, L.; Ma, L.; Wang, C.; Wang, X.; He, G.; Fei, Y.; Guan, Y.; Zhang, B.; Dai, Y.; Tu, X.; Zhang, L.; Zhang, L.; et al. All-Water Etching-Free Electron Beam Lithography for On-Chip Nanomaterials. ACS Nano 2023, 17, 4933–4941.
(10) Ko, T.; Kumar, S.; Shin, S.; Seo, D.; Seo, S. Colloidal Quantum Dot Nanolithography: Direct Patterning via Electron Beam Lithography. Nanomaterials 2023, 13, 2111.
(11) Abid, N.; Khan, A. M.; Shujait, S.; Chaudhary, K.; Ikram, M.; Imran, M.; Haider, J.; Khan, M.; Khan, Q.; Maqbool, M. Synthesis of Nanomaterials Using Various Top-Down and Bottom-Up Approaches, Influencing Factors, Advantages, And Disadvantages: A Review. Adv. Colloid Interface Sci. 2022, 300, 102597.
(12) Ravnsbæk, D. B.; Sørensen, L. H.; Filinchuk, Y.; Besenbacher, F.; Jensen, T. R. Screening of Metal Borohydrides by Mechanochemistry and Diffraction. Angew. Chem. Int. Ed. 2012, 51, 3582–3586.
(13) Kumar, S.; Bhushan, P.; Bhattacharya, S. Fabrication of Nanostructures with Bottom-Up Approach and their Utility in Diagnostics, Therapeutics, and Others. In Environmental, Chemical and Medical Sensors, Bhattacharya, S., Agarwal, A. K., Chanda, N., Pandey, A., Sen, A. K. Eds.; Springer Singapore, 2018; pp 167–198.
(14) Roduner, E. Size Matters: Why Nanomaterials Are Different. Chem. Soc. Rev. 2006, 35, 583–592.
(15) Baig, N.; Kammakakam, I.; Falath, W. Nanomaterials: A Review of Synthesis Methods, Properties, Recent Progress, and Challenges. Mater. Adv. 2021, 2, 1821–1871.
(16) Mabrouk, M.; Das, D. B.; Salem, Z. A.; Beherei, H. H. Nanomaterials for Biomedical Applications: Production, Characterisations, Recent Trends and Difficulties. Molecules 2021, 26, 1077.
(17) Liu, W. L.; Zou, M. Z.; Qin, S. Y.; Cheng, Y. J.; Ma, Y. H.; Sun, Y. X.; Zhang, X. Z. Recent Advances of Cell Membrane-Coated Nanomaterials for Biomedical Applications. Adv. Funct. Mater. 2020, 30, 2003559.
(18) Bera, S.; Pradhan, N. Perovskite Nanocrystal Heterostructures: Synthesis, Optical Properties, and Applications. ACS Energy Lett. 2020, 5, 2858–2872.
(19) Reed, M. A.; Bate, R. T.; Bradshaw, K.; Duncan, W. M.; Frensley, W. R.; Lee, J. W.; Shih, H. D. Spatial Quantization in GaAs–AlGaAs Multiple Quantum Dots. J. Vac. Sci. Technol. B 1986, 4, 358–360.
(20) Bonilla, J. C.; Bozkurt, F.; Ansari, S.; Sozer, N.; Kokini, J. L. Applications of Quantum Dots in Food Science and Biology. Trends Food Sci. Technol. 2016, 53, 75–89.
(21) Agarwal, K.; Rai, H.; Mondal, S. Quantum Dots: An Overview of Synthesis, Properties, and Applications. Mater. Res. Express 2023, 10, 062001.
(22) Matea, C. T.; Mocan, T.; Tabaran, F.; Pop, T.; Mosteanu, O.; Puia, C.; Iancu, C.; Mocan, L. Quantum Dots in Imaging, Drug Delivery and Sensor Applications. Int. J. Nanomed. 2017, 12, 5421–5431.
(23) Kim, T.; Shin, D.; Kim, M.; Kim, H.; Cho, E.; Choi, M.; Kim, J.; Jang, E.; Jeong, S. Development of Group III–V Colloidal Quantum Dots for Optoelectronic Applications. ACS Energy Lett. 2023, 8, 447–456.
(24) Peng, C.-W.; Li, Y. Application of Quantum Dots-Based Biotechnology in Cancer Diagnosis: Current Status and Future Perspectives. J. Nanomater. 2010, 2010, 676839.
(25) Wagner, A. M.; Knipe, J. M.; Orive, G.; Peppas, N. A. Quantum Dots in Biomedical Applications. Acta Biomater. 2019, 94, 44–63.
(26) Sun, P.; Xing, Z.; Li, Z.; Zhou, W. Recent Advances in Quantum Dots Photocatalysts. Chem. Eng. J. 2023, 458, 141399.
(27) Shi, H.; Wang, C.; Zhao, Y.; Liu, E.; Fan, J.; Ji, Z. Highly Efficient Visible Light Driven Photocatalytic Inactivation of E. coli with Ag QDs Decorated Z-scheme Bi2S3/SnIn4S8 Composite. Appl. Catal. B: Environ. 2019, 254, 403–413.
(28) Al-Douri, Y.; Khan, M. M.; Jennings, J. R. Synthesis and Optical Properties of II–VI Semiconductor Quantum Dots: A Review. J. Mater. Sci.: Mater. Electron. 2023, 34, 993.
(29) Jang, Y.; Shapiro, A.; Isarov, M.; Rubin-Brusilovski, A.; Safran, A.; Budniak, A. K.; Horani, F.; Dehnel, J.; Sashchiuk, A.; Lifshitz, E. Interface Control of Electronic and Optical Properties in IV–VI and II–VI Core/Shell Colloidal Quantum Dots: A Review. Chem. Commun. 2017, 53, 1002–1024.
(30) Bailey, R. E.; Smith, A. M.; Nie, S. Quantum Dots in Biology and Medicine. Phys. E: Low-Dimens. Syst. Nanostructures 2004, 25, 1–12.
(31) Qu, L.; Peng, X. Control of Photoluminescence Properties of CdSe Nanocrystals in Growth. J. Am. Chem. Soc. 2002, 124, 2049–2055.
(32) Murray, C. B.; Norris, D. J.; Bawendi, M. G. Synthesis and Characterization of Nearly Monodisperse CdE (E = Sulfur, Selenium, Tellurium) Semiconductor Nanocrystallites. J. Am. Chem. Soc. 1993, 115, 8706–8715.
(33) Xiang, X.; Wang, L.; Zhang, J.; Cheng, B.; Yu, J.; Macyk, W. Cadmium Chalcogenide (CdS, CdSe, CdTe) Quantum Dots for Solar-to-Fuel Conversion. Adv. Photonics Res. 2022, 3, 2200065.
(34) Kolny-Olesiak, J.; Weller, H. Synthesis and Application of Colloidal CuInS2 Semiconductor Nanocrystals. ACS Appl. Mater. Interfaces 2013, 5, 12221–12237.
(35) Li, L.; Lin, X.; Chen, T.; Liu, K.; Chen, Y.; Yang, Z.; Liu, D.; Xu, G.; Wang, X.; Lin, G. Systematic Evaluation of CdSe/ZnS Quantum Dots Toxicity on the Reproduction and Offspring Health in Male BALB/C Mice. Ecotoxicol. Environ. Saf. 2021, 211, 111946.
(36) Chen, B.; Li, D.; Wang, F. InP Quantum Dots: Synthesis and Lighting Applications. Small 2020, 16, 2002454.
(37) Ramasamy, P.; Kim, N.; Kang, Y. S.; Ramirez, O.; Lee, J. S. Tunable, Bright, and Narrow-Band Luminescence from Colloidal Indium Phosphide Quantum Dots. Chem. Mater. 2017, 29, 6893–6899.
(38) Guzelian, A. A.; Katari, J. E. B.; Kadavanich, A. V.; Banin, U.; Hamad, K.; Juban, E.; Alivisatos, A. P.; Wolters, R. H.; Arnold, C. C.; Heath, J. R. Synthesis of Size-Selected, Surface-Passivated InP Nanocrystals. J. Phys. Chem. 1996, 100, 7212–7219.
(39) Battaglia, D.; Peng, X. Formation of High Quality InP and InAs Nanocrystals in a Noncoordinating Solvent. Nano Lett. 2002, 2, 1027–1030.
(40) Li, L.; Reiss, P. One-Pot Synthesis of Highly Luminescent InP/ZnS Nanocrystals without Precursor Injection. J. Am. Chem. Soc. 2008, 130, 11588–11589.
(41) Yang, Z.; Gao, M.; Wu, W.; Yang, X.; Sun, X. W.; Zhang, J.; Wang, H. C.; Liu, R. S.; Han, C. Y.; Yang, H.; Li, W. Recent Advances in Quantum Dot-Based Light-Emitting Devices: Challenges and Possible Solutions. Mater. Today 2019, 24, 69–93.
(42) Yang, Z.; Lin, G.; Bai, J.; Li, L.; Zhu, Y.; He, L.; Jiang, Z.; Wu, W.; Yu, X.; Li, F.; Li, W. Inkjet-Printed Blue InP/ZnS/ZnS Quantum Dot Light-Emitting Diodes. Chem. Eng. J. 2022, 450, 138413.
(43) Kim, T.; Kim, S. W.; Kang, M.; Kim, S. W. Large-Scale Synthesis of InPZnS Alloy Quantum Dots with Dodecanethiol as a Composition Controller. J. Phys. Chem. Lett. 2012, 3, 214–218.
(44) Park, J. P.; Lee, J. J.; Kim, S. W. Highly Luminescent InP/GaP/ZnS QDs Emitting in the Entire Color Range via a Heating up Process. Sci. Rep. 2016, 6, 30094.
(45) Zhang, W.; Ding, S.; Zhuang, W.; Wu, D.; Liu, P.; Qu, X.; Liu, H.; Yang, H.; Wu, Z.; Wang, K.; Sun, X. W. InP/ZnS/ZnS Core/Shell Blue Quantum Dots for Efficient Light-Emitting Diodes. Adv. Funct. Mater. 2020, 30, 2005303.
(46) Cui, Z.; Yang, D.; Qin, S.; Wen, Z.; He, H.; Mei, S.; Zhang, W.; Xing, G.; Liang, C.; Guo, R. Advances, Challenges, and Perspectives for Heavy-Metal-Free Blue-Emitting Indium Phosphide Quantum Dot Light-Emitting Diodes. Adv. Opt. Mater. 2023, 11, 2202036.
(47) Xie, R.; Rutherford, M.; Peng, X. Formation of High-Quality I−III−VI Semiconductor Nanocrystals by Tuning Relative Reactivity of Cationic Precursors. J. Am. Chem. Soc. 2009, 131, 5691–5697.
(48) Lim, L. J.; Zhao, X.; Tan, Z.-K. Non-Toxic CuInS2/ZnS Colloidal Quantum Dots for Near-Infrared Light-Emitting Diodes. Adv. Mater. 2023, 35, 2301887.
(49) Jain, S.; Bharti, S.; Bhullar, G. K.; Tripathi, S. K. I-III-VI Core/Shell QDs: Synthesis, Characterizations and Applications. J. Lumin. 2020, 219, 116912.
(50) Wang, X.; Bao, Z.; Chang, Y. C.; Liu, R. S. Perovskite Quantum Dots for Application in High Color Gamut Backlighting Display of Light-Emitting Diodes. ACS Energy Lett. 2020, 5, 3374–3396.
(51) Chen, D.; Chen, X. Luminescent Perovskite Quantum Dots: Synthesis, Microstructures, Optical Properties and Applications. J. Mater. Chem. C 2019, 7, 1413–1446.
(52) Attfield, J. P.; Lightfoot, P.; Morris, R. E. Perovskites. Dalton Trans. 2015, 44, 10541–10542.
(53) Akkerman, Q. A.; Manna, L. What Defines a Halide Perovskite? ACS Energy Lett. 2020, 5, 604–610.
(54) Jena, A. K.; Kulkarni, A.; Miyasaka, T. Halide Perovskite Photovoltaics: Background, Status, and Future Prospects. Chem. Rev. 2019, 119, 3036–3103.
(55) Kallawar, G. A.; Barai, D. P.; Bhanvase, B. A. Bismuth Titanate Based Photocatalysts for Degradation of Persistent Organic Compounds in Wastewater: A Comprehensive Review on Synthesis Methods, Performance as Photocatalyst and Challenges. J. Clean. Prod. 2021, 318, 128563.
(56) Wei, K.; Faraj, Y.; Yao, G.; Xie, R.; Lai, B. Strategies for Improving Perovskite Photocatalysts Reactivity for Organic Pollutants Degradation: A Review on Recent Progress. Chem. Eng. J. 2021, 414, 128783.
(57) Mahmoudi, F.; Saravanakumar, K.; Maheskumar, V.; Njaramba, L. K.; Yoon, Y.; Park, C. M. Application of Perovskite Oxides and their Composites for Degrading Organic Pollutants from Wastewater Using Advanced Oxidation Processes: Review of the Recent Progress. J. Hazard. Mater. 2022, 436, 129074.
(58) Wells, H. L. Über Die Cäsium- und Kalium-Bleihalogenide. Z. Anorg. Chem. 1893, 3, 195–210.
(59) MØLler, C. K. A Phase Transition in Cæsium Plumbochloride. Nature 1957, 180, 981–982.
(60) MØLler, C. K. Crystal Structure and Photoconductivity of Cæsium Plumbohalides. Nature 1958, 182, 1436−1436.
(61) Dey, A.; Ye, J.; De, A.; Debroye, E.; Ha, S. K.; Bladt, E.; Kshirsagar, A. S.; Wang, Z.; Yin, J.; Wang, Y.; Quan, L. N.; Yan, F.; Gao, M.; Li, X.; Shamsi, J.; Debnath, T.; Cao, M.; Scheel, M. A.; Kumar, S.; Steele, J. A.; et al. State of the Art and Prospects for Halide Perovskite Nanocrystals. ACS Nano 2021, 15, 10775–10981.
(62) Kumar, V.; Kathiravan, A.; Jhonsi, M. A. Beyond Lead Halide Perovskites: Crystal Structure, Bandgaps, Photovoltaic Properties and Future Stance of Lead-Free Halide Double Perovskites. Nano Energy 2024, 125, 109523.
(63) Van Le, Q.; Jang, H. W.; Kim, S. Y. Recent Advances Toward High-Efficiency Halide Perovskite Light-Emitting Diodes: Review and Perspective. Small Methods 2018, 2, 1700419.
(64) Liang, S.; Zhang, M.; Biesold, G. M.; Choi, W.; He, Y.; Li, Z.; Shen, D.; Lin, Z. Recent Advances in Synthesis, Properties, and Applications of Metal Halide Perovskite Nanocrystals/Polymer Nanocomposites. Adv. Mater. 2021, 33, 2005888.
(65) Chen, Q.; De Marco, N.; Yang, Y.; Song, T. B.; Chen, C. C.; Zhao, H.; Hong, Z.; Zhou, H.; Yang, Y. Under the Spotlight: The Organic–Inorganic Hybrid Halide Perovskite for Optoelectronic Applications. Nano Today 2015, 10, 355–396.
(66) Shamsi, J.; Urban, A. S.; Imran, M.; De Trizio, L.; Manna, L. Metal Halide Perovskite Nanocrystals: Synthesis, Post-Synthesis Modifications, and their Optical Properties. Chem. Rev. 2019, 119, 3296–3348.
(67) Yun, S.; Kirakosyan, A.; Yoon, S. G.; Choi, J. Scalable Synthesis of Exfoliated Organometal Halide Perovskite Nanocrystals by Ligand-Assisted Ball Milling. ACS Sustainable Chem. Eng. 2018, 6, 3733–3738.
(68) Wang, L.; Ma, D.; Guo, C.; Jiang, X.; Li, M.; Xu, T.; Zhu, J.; Fan, B.; Liu, W.; Shao, G.; Xu, H.; Wang, H.; Zhang, R.; Lu, H. CsPbBr3 Nanocrystals Prepared by High Energy Ball Milling in One-step and Structural Transformation from CsPbBr3 to CsPb2Br5. Appl. Surf. Sci. 2021, 543, 148782.
(69) Zhang, K.; Su, Z.; Shen, Y.; Cao, L. X.; Zeng, X. Y.; Feng, S. C.; Yu, Y.; Gao, X.; Tang, J. X.; Li, Y. Top-Down Exfoliation Process Constructing 2D/3D Heterojunction Toward Ultrapure Blue Perovskite Light-Emitting Diodes. ACS Nano 2024, 18, 4570–4578.
(70) Jeong, B.; Han, H.; Park, C. Micro- and Nanopatterning of Halide Perovskites Where Crystal Engineering for Emerging Photoelectronics Meets Integrated Device Array Technology. Adv. Mater. 2020, 32, 2000597.
(71) Zhang, Y.; Siegler, T. D.; Thomas, C. J.; Abney, M. K.; Shah, T.; De Gorostiza, A.; Greene, R. M.; Korgel, B. A. A “Tips and Tricks” Practical Guide to the Synthesis of Metal Halide Perovskite Nanocrystals. Chem. Mater. 2020, 32, 5410–5423.
(72) Bullen, C. R.; Mulvaney, P. Nucleation and Growth Kinetics of CdSe Nanocrystals in Octadecene. Nano Lett. 2004, 4, 2303–2307.
(73) Yu, W. W.; Peng, X. Formation of High-Quality CdS and Other II–VI Semiconductor Nanocrystals in Noncoordinating Solvents: Tunable Reactivity of Monomers. Angew. Chem., Int. Ed. 2007, 46, 2559–2559.
(74) Protesescu, L.; Yakunin, S.; Bodnarchuk, M. I.; Krieg, F.; Caputo, R.; Hendon, C. H.; Yang, R. X.; Walsh, A.; Kovalenko, M. V. Nanocrystals of Cesium Lead Halide Perovskites (CsPbX3, X = Cl, Br, and I): Novel Optoelectronic Materials Showing Bright Emission with Wide Color Gamut. Nano Lett. 2015, 15, 3692–3696.
(75) Pan, A.; He, B.; Fan, X.; Liu, Z.; Urban, J. J.; Alivisatos, A. P.; He, L.; Liu, Y. Insight into the Ligand-Mediated Synthesis of Colloidal CsPbBr3 Perovskite Nanocrystals: The Role of Organic Acid, Base, and Cesium Precursors. ACS Nano 2016, 10, 7943–7954.
(76) Shamsi, J.; Rastogi, P.; Caligiuri, V.; Abdelhady, A. L.; Spirito, D.; Manna, L.; Krahne, R. Bright-Emitting Perovskite Films by Large-Scale Synthesis and Photoinduced Solid-State Transformation of CsPbBr3 Nanoplatelets. ACS Nano 2017, 11, 10206–10213.
(77) Papavassiliou, G. C.; Pagona, G.; Karousis, N.; Mousdis, G. A.; Koutselas, I.; Vassilakopoulou, A. Nanocrystalline/MicroCrystalline Materials Based on Lead-Halide Units. J. Mater. Chem. 2012, 22, 8271–8280.
(78) Zhang, F.; Zhong, H.; Chen, C.; Wu, X. G.; Hu, X.; Huang, H.; Han, J.; Zou, B.; Dong, Y. Brightly Luminescent and Color-Tunable Colloidal CH3NH3PbX3 (X = Br, I, Cl) Quantum Dots: Potential Alternatives for Display Technology. ACS Nano 2015, 9, 4533–4542.
(79) Huang, H.; Susha, A. S.; Kershaw, S. V.; Hung, T. F.; Rogach, A. L. Control of Emission Color of High Quantum Yield CH3NH3PbBr3 Perovskite Quantum Dots by Precipitation Temperature. Adv. Sci. 2015, 2, 1500194.
(80) Zhao, Y.; Xu, X.; You, X. Colloidal Organometal Halide Perovskite (MAPbBrxI3−x, 0≤x≤3) Quantum Dots: Controllable Synthesis and Tunable Photoluminescence. Sci. Rep. 2016, 6, 35931.
(81) Sanchez, S. L.; Tang, Y.; Hu, B.; Yang, J.; Ahmadi, M. Understanding the Ligand-Assisted Reprecipitation of CsPbBr3 Nanocrystals via High-Throughput Robotic Synthesis Approach. Matter 2023, 6, 2900–2918.
(82) Qiu, J.; Xue, W.; Wang, W.; Li, Y. Effective Surface Passivation on CsPbBr3 Nanocrystals Via Post-Treatment With Aromatic Carboxylic Acid. Dyes Pigm. 2022, 198, 109806.
(83) Zhang, X.; Bai, X.; Wu, H.; Zhang, X.; Sun, C.; Zhang, Y.; Zhang, W.; Zheng, W.; Yu, W. W.; Rogach, A. L. Water-Assisted Size and Shape Control of CsPbBr3 Perovskite Nanocrystals. Angew. Chem. Int. Ed. 2018, 57, 3337–3342.
(84) Aharon, S.; Wierzbowska, M.; Etgar, L. The Effect of the Alkylammonium Ligand’s Length on Organic–Inorganic Perovskite Nanoparticles. ACS Energy Lett. 2018, 3, 1387–1393.
(85) Liu, Z.; Bekenstein, Y.; Ye, X.; Nguyen, S. C.; Swabeck, J.; Zhang, D.; Lee, S. T.; Yang, P.; Ma, W.; Alivisatos, A. P. Ligand Mediated Transformation of Cesium Lead Bromide Perovskite Nanocrystals to Lead Depleted Cs4PbBr6 Nanocrystals. J. Am. Chem. Soc. 2017, 139, 5309–5312.
(86) Levchuk, I.; Osvet, A.; Tang, X.; Brandl, M.; Perea, J. D.; Hoegl, F.; Matt, G. J.; Hock, R.; Batentschuk, M.; Brabec, C. J. Brightly Luminescent and Color-Tunable Formamidinium Lead Halide Perovskite FAPbX3 (X = Cl, Br, I) Colloidal Nanocrystals. Nano Lett. 2017, 17, 3993–3993.
(87) Elvira, K. S.; i Solvas, X. C.; Wootton, R. C. R.; deMello, A. J. The Past, Present and Potential for Microfluidic Reactor Technology in Chemical Synthesis. Nat. Chem. 2013, 5, 905–915.
(88) Lignos, I.; Stavrakis, S.; Nedelcu, G.; Protesescu, L.; deMello, A. J.; Kovalenko, M. V. Synthesis of Cesium Lead Halide Perovskite Nanocrystals in a Droplet-Based Microfluidic Platform: Fast Parametric Space Mapping. Nano Lett. 2016, 16, 1869–1877.
(89) Maceiczyk, R. M.; Dümbgen, K.; Lignos, I.; Protesescu, L.; Kovalenko, M. V.; deMello, A. J. Microfluidic Reactors Provide Preparative and Mechanistic Insights into the Synthesis of Formamidinium Lead Halide Perovskite Nanocrystals. Chem. Mater. 2017, 29, 8433–8439.
(90) Bao, Z.; Wang, H. C.; Jiang, Z. F.; Chung, R. J.; Liu, R. S. Continuous Synthesis of Highly Stable Cs4PbBr6 Perovskite Microcrystals by a Microfluidic System and their Application in White-Light-Emitting Diodes. Inorg. Chem. 2018, 57, 13071–13074.
(91) Bao, Z.; Luo, J. W.; Wang, Y. S.; Hu, T. C.; Tsai, S. Y.; Tsai, Y. T.; Wang, H.; Chen, F. H.; Lee, Y. C.; Tsai, T. L.; Chung, R. J.; Liu, R. S. Microfluidic Synthesis of CsPbBr3/Cs4PbBr6 Nanocrystals for Inkjet Printing of Mini-LEDs. Chem. Eng. J. 2021, 426, 130849.
(92) Ye, J.; Byranvand, M. M.; Martínez, C. O.; Hoye, R. L. Z.; Saliba, M.; Polavarapu, L. Defect Passivation in Lead-Halide Perovskite Nanocrystals and Thin Films: Toward Efficient LEDs and Solar Cells. Angew. Chem. Int. Ed. 2021, 60, 21636–21660.
(93) Goldschmidt, V. M. Die Gesetze der Krystallochemie. NW 1926, 14, 477–485.
(94) Wei, Y.; Cheng, Z.; Lin, J. An Overview on Enhancing the Stability of Lead Halide Perovskite Quantum Dots and their Applications in Phosphor-Converted LEDs. Chem. Soc. Rev. 2019, 48, 310–350.
(95) Manser, J. S.; Christians, J. A.; Kamat, P. V. Intriguing Optoelectronic Properties of Metal Halide Perovskites. Chem. Rev. 2016, 116, 12956–13008.
(96) Huang, S.; Li, Z.; Wang, B.; Zhu, N.; Zhang, C.; Kong, L.; Zhang, Q.; Shan, A.; Li, L. Morphology Evolution and Degradation of CsPbBr3 Nanocrystals under Blue Light-Emitting Diode Illumination. ACS Appl. Mater. Interfaces 2017, 9, 7249–7258.
(97) Meggiolaro, D.; Mosconi, E.; De Angelis, F. Mechanism of Reversible Trap Passivation by Molecular Oxygen in Lead-Halide Perovskites. ACS Energy Lett. 2017, 2, 2794–2798.
(98) Aristidou, N.; Eames, C.; Sanchez-Molina, I.; Bu, X.; Kosco, J.; Islam, M. S.; Haque, S. A. Fast Oxygen Diffusion and Iodide Defects Mediate Oxygen-Induced Degradation of Perovskite Solar Cells. Nat. Commun. 2017, 8, 15218.
(99) You, J.; Yang, Y.; Hong, Z.; Song, T. B.; Meng, L.; Liu, Y.; Jiang, C.; Zhou, H.; Chang, W. H.; Li, G.; Yang, Y. Moisture Assisted Perovskite Film Growth for High Performance Solar Cells. Appl. Phys. Lett. 2014, 105, 183902.
(100) Zhou, H.; Chen, Q.; Li, G.; Luo, S.; Song, T. B.; Duan, H. S.; Hong, Z.; You, J.; Liu, Y.; Yang, Y. Interface Engineering of Highly Efficient Perovskite Solar Cells. Science 2014, 345, 542–546.
(101) Bass, K. K.; McAnally, R. E.; Zhou, S.; Djurovich, P. I.; Thompson, M. E.; Melot, B. C. Influence of Moisture on the Preparation, Crystal Structure, and Photophysical Properties of Organohalide Perovskites. Chem. Commun. 2014, 50, 15819–15822.
(102) Christians, J. A.; Miranda Herrera, P. A.; Kamat, P. V. Transformation of the Excited State and Photovoltaic Efficiency of CH3NH3PbI3 Perovskite upon Controlled Exposure to Humidified Air. J. Am. Chem. Soc. 2015, 137, 1530–1538.
(103) Habisreutinger, S. N.; Leijtens, T.; Eperon, G. E.; Stranks, S. D.; Nicholas, R. J.; Snaith, H. J. Carbon Nanotube/Polymer Composites as a Highly Stable Hole Collection Layer in Perovskite Solar Cells. Nano Lett. 2014, 14, 5561–5568.
(104) Nie, W.; Blancon, J.-C.; Neukirch, A. J.; Appavoo, K.; Tsai, H.; Chhowalla, M.; Alam, M. A.; Sfeir, M. Y.; Katan, C.; Even, J.; Tretiak, S.; Crochet, J. J.; Gupta, G.; Mohite, A. D. Light-Activated Photocurrent Degradation and Self-Healing in Perovskite Solar Cells. Nat. Commun. 2016, 7, 11574.
(105) deQuilettes, D. W.; Zhang, W.; Burlakov, V. M.; Graham, D. J.; Leijtens, T.; Osherov, A.; Bulović, V.; Snaith, H. J.; Ginger, D. S.; Stranks, S. D. Photo-Induced Halide Redistribution in Organic–Inorganic Perovskite Films. Nat. Commun. 2016, 7, 11683.
(106) Kulbak, M.; Gupta, S.; Kedem, N.; Levine, I.; Bendikov, T.; Hodes, G.; Cahen, D. Cesium Enhances Long-Term Stability of Lead Bromide Perovskite-Based Solar Cells. J. Phys. Chem. Lett. 2016, 7, 167–172.
(107) Lv, W.; Li, L.; Xu, M.; Hong, J.; Tang, X.; Xu, L.; Wu, Y.; Zhu, R.; Chen, R.; Huang, W. Improving the Stability of Metal Halide Perovskite Quantum Dots by Encapsulation. Adv. Mater. 2019, 31, 1900682.
(108) Wang, Z.; Wei, Z.; Cai, Y.; Wang, L.; Li, M.; Liu, P.; Xie, R.; Wang, L.; Wei, G.; Fu, H. Y. Encapsulation-Enabled Perovskite–PMMA Films Combining a Micro-LED for High-Speed White-Light Communication. ACS Appl. Mater. Interfaces 2021, 13, 54143–54151.
(109) Wang, Z.; Fu, R.; Li, F.; Xie, H.; He, P.; Sha, Q.; Tang, Z.; Wang, N.; Zhong, H. One-Step Polymeric Melt Encapsulation Method to Prepare CsPbBr3 Perovskite Quantum Dots/Polymethyl Methacrylate Composite with High Performance. Adv. Funct. Mater. 2021, 31, 2010009.
(110) Wei, Y.; Deng, X.; Xie, Z.; Cai, X.; Liang, S.; Ma, P. a.; Hou, Z.; Cheng, Z.; Lin, J. Enhancing the Stability of Perovskite Quantum Dots by Encapsulation in Crosslinked Polystyrene Beads via a Swelling–Shrinking Strategy Toward Superior Water Resistance. Adv. Funct. Mater. 2017, 27, 1703535.
(111) Cueto, C.; Hu, W.; Ribbe, A.; Bolduc, K.; Emrick, T. Polystyrene-Based Macromolecular Ammonium Halides for Tuning Color and Exchange Kinetics of Perovskite Nanocrystals. Angew. Chem. Int. Ed. 2022, 61, e202207126.
(112) Liu, J.; He, Q.; Bi, J.; Lei, M.; Zhang, W.; Wang, G. Remarkable Quality Improvement of CsPbIBr2 Perovskite Film by Cellulose Acetate Addition for Efficient and Stable Carbon-Based Inorganic Perovskite Solar Cells. Chem. Eng. J. 2021, 424, 130324.
(113) Nazir, G.; Liu, H.; Rehman, A.; Hussain, S.; Vikraman, D.; Aftab, S.; Heo, K.; Ikram, M.; AlObaid, A. A.; Kang, J. Cellulose Acetate-Derived Ternary-Doped Hierarchically Porous Carbons Blended Perovskite Active Layers for Solar Cells and X-Ray Detectors. Surf. Interfaces 2023, 39, 102945.
(114) Wang, Y.; He, J.; Chen, H.; Chen, J.; Zhu, R.; Ma, P.; Towers, A.; Lin, Y.; Gesquiere, A. J.; Wu, S. T.; Dong, Y. Ultrastable, Highly Luminescent Organic–Inorganic Perovskite–Polymer Composite Films. Adv. Mater. 2016, 28, 10710–10717.
(115) Tai, C. L.; Hong, W. L.; Kuo, Y. T.; Chang, C. Y.; Niu, M. C.; Karupathevar Ponnusamythevar Ochathevar, M.; Hsu, C. L.; Horng, S. F.; Chao, Y. C. Ultrastable, Deformable, and Stretchable Luminescent Organic–Inorganic Perovskite Nanocrystal–Polymer Composites for 3D Printing and White Light-Emitting Diodes. ACS Appl. Mater. Interfaces 2019, 11, 30176–30184.
(116) Lin, D.; Xu, X.; Wang, J.; Zhang, T.; Xie, F.; Gong, L.; Chen, J.; Shi, T.; Shi, J.; Liu, P.; Xie, W. Construction of an Iodine Diffusion Barrier Using Network Structure Silicone Resin for Stable Perovskite Solar Cells. ACS Appl. Mater. Interfaces 2021, 13, 8138–8146.
(117) Wang, Y.; Dong, Y.; Liu, Q.; Guo, X.; Zhang, M.; Li, Y. In-Situ Stabilization Strategy for CsPbX3-Silicone Resin Composite with Enhanced Luminescence and Stability. Nano Energy 2020, 78, 105150.
(118) Wang, T.; Wan, Z.; Min, X.; Chen, R.; Li, Y.; Yang, J.; Pu, X.; Chen, H.; He, X.; Cao, Q.; Feng, G.; Chen, X.; Ma, Z.; Jiang, L.; Liu, Z.; Li, Z.; Chen, W.; Li, X. Synergistic Defect Healing and Device Encapsulation via Structure Regulation by Silicone Polymer Enables Durable Inverted Perovskite Photovoltaics with High Efficiency. Adv. Energy Mater. 2024, 14, 2302552.
(119) Sun, J.; Hua, Q.; Zhao, M.; Dong, L.; Chang, Y.; Wu, W.; Li, J.; Chen, Q.; Xi, J.; Hu, W.; Pan, C.; Shan, C. Stable Ultrathin Perovskite/Polyvinylidene Fluoride Composite Films for Imperceptible Multi-Color Fluorescent Anti-Counterfeiting Labels. Adv. Mater. Technol. 2021, 6, 2100229.
(120) Yang, L.; Fu, B.; Li, X.; Chen, H.; Li, L. Poly(Vinylidene Fluoride)-Passivated CsPbBr3 Perovskite Quantum Dots with Near-Unity Photoluminescence Quantum Yield and Superior Stability. J. Mater. Chem. C 2021, 9, 1983–1991.
(121) Kim, Y.; Yassitepe, E.; Voznyy, O.; Comin, R.; Walters, G.; Gong, X.; Kanjanaboos, P.; Nogueira, A. F.; Sargent, E. H. Efficient Luminescence from Perovskite Quantum Dot Solids. ACS Appl. Mater. Interfaces 2015, 7, 25007–25013.
(122) Hintermayr, V. A.; Lampe, C.; Löw, M.; Roemer, J.; Vanderlinden, W.; Gramlich, M.; Böhm, A. X.; Sattler, C.; Nickel, B.; Lohmüller, T.; Urban, A. S. Polymer Nanoreactors Shield Perovskite Nanocrystals from Degradation. Nano Lett. 2019, 19, 4928–4933.
(123) Wong, Y. C.; De Andrew Ng, J.; Tan, Z. K. Perovskite-Initiated Photopolymerization for Singly Dispersed Luminescent Nanocomposites. Adv. Mater. 2018, 30, 1800774.
(124) Han, T. H.; Lee, J. W.; Choi, C.; Tan, S.; Lee, C.; Zhao, Y.; Dai, Z.; De Marco, N.; Lee, S. J.; Bae, S. H.; Yuan, Y.; Lee, H. M.; Huang, Y.; Yang, Y. Perovskite-Polymer Composite Cross-Linker Approach for Highly-Stable and Efficient Perovskite Solar Cells. Nat. Commun. 2019, 10, 520.
(125) Lyu, B.; Lin, H.; Li, D.; Sergeev, A.; Wang, Q.; Jiang, Z.; Huo, L.; Su, H.; Wong, K. S.; Wang, Y.; Choy, W. C. H. Side-Chain-Promoted Polymer Architecture Enabling Stable Mixed-Halide Perovskite Light-Emitting Diodes. ACS Energy Lett. 2024, 9, 2118–2127.
(126) Wang, H. C.; Lin, S. Y.; Tang, A. C.; Singh, B. P.; Tong, H. C.; Chen, C. Y.; Lee, Y. C.; Tsai, T. L.; Liu, R. S. Mesoporous Silica Particles Integrated with All-Inorganic CsPbBr3 Perovskite Quantum-Dot Nanocomposites (MP-PQDs) with High Stability and Wide Color Gamut Used for Backlight Display. Angew. Chem. Int. Ed. 2016, 55, 7924–7929.
(127) Dirin, D. N.; Protesescu, L.; Trummer, D.; Kochetygov, I. V.; Yakunin, S.; Krumeich, F.; Stadie, N. P.; Kovalenko, M. V. Harnessing Defect-Tolerance at the Nanoscale: Highly Luminescent Lead Halide Perovskite Nanocrystals in Mesoporous Silica Matrixes. Nano Lett. 2016, 16, 5866–5874.
(128) Hu, H.; Wu, L.; Tan, Y.; Zhong, Q.; Chen, M.; Qiu, Y.; Yang, D.; Sun, B.; Zhang, Q.; Yin, Y. Interfacial Synthesis of Highly Stable CsPbX3/Oxide Janus Nanoparticles. J. Am. Chem. Soc. 2018, 140, 406–412.
(129) Huang, S.; Li, Z.; Kong, L.; Zhu, N.; Shan, A.; Li, L. Enhancing the Stability of CH3NH3PbBr3 Quantum Dots by Embedding in Silica Spheres Derived from Tetramethyl Orthosilicate in “Waterless” Toluene. J. Am. Chem. Soc. 2016, 138, 5749–5752.
(130) Naresh, V.; Kim, B. H.; Lee, N. Synthesis of CsPbX3 (X = Cl/Br, Br, and Br/I)@SiO2/PMMA Composite Films as Color-Conversion Materials for Achieving Tunable Multi-Color and White Light Emission. Nano Res. 2021, 14, 1187–1194.
(131) Ma, S. Y.; Li, J. K.; Liu, Z. M. Stability of Core–Shell Structure CsPbX3@SiO2 (X = Cl,Br) Perovskite Quantum Dots. Chem. Phys. Lett. 2024, 843, 141242.
(132) Cheng, H.; Yin, Y.; Tang, J.; Fan, D.; Huang, J. J.; Jin, S. Water-Assisted Synthesis of Highly Stable CsPbX3 Perovskite Quantum Dots Embedded in Zeolite-Y. RSC Adv. 2021, 11, 2866–2871.
(133) Zhenfu, Z.; Zhihai, W.; Jiong, C.; Liang, J.; Yafei, H. Nanocomposites of Perovskite Quantum Dots Embedded in Magnesium Silicate Hollow Spheres for Multicolor Display. J. Phys. Chem. C 2018, 122, 16887–16893.
(134) Chen, Z.; Gu, Z. G.; Fu, W. Q.; Wang, F.; Zhang, J. A Confined Fabrication of Perovskite Quantum Dots in Oriented MOF Thin Film. ACS Appl. Mater. Interfaces 2016, 8, 28737–28742.
(135) Wang, C.; Yan, L.; Si, J.; Wang, N.; Li, T.; Hou, X. Exceptional Stability Against Water, UV Light, and Heat for CsPbBr3@Pb-MOF Composites. Small Methods 2024, 8, 2400241.
(136) Loiudice, A.; Saris, S.; Oveisi, E.; Alexander, D. T. L.; Buonsanti, R. CsPbBr3 QD/AlOx Inorganic Nanocomposites with Exceptional Stability in Water, Light, and Heat. Angew. Chem. Int. Ed. 2017, 56, 10696–10701.
(137) Li, Z. J.; Hofman, E.; Li, J.; Davis, A. H.; Tung, C. H.; Wu, L. Z.; Zheng, W. Photoelectrochemically Active and Environmentally Stable CsPbBr3/TiO2 Core/Shell Nanocrystals. Adv. Funct. Mater. 2018, 28, 1704288.
(138) Ji, Y.; Wang, M.; Yang, Z.; Wang, H.; Padhiar, M. A.; Shi, J.; Qiu, H.; Bhatti, A. S. In Situ Synthesis of UltraStable TiO2 Coating Rb+-Doped Red Emitting CsPbBrI2 Perovskite Quantum Dots. J. Phys. Chem. C 2022, 126, 1542–1551.
(139) Zhang, X.; Wu, X.; Liu, X.; Chen, G.; Wang, Y.; Bao, J.; Xu, X.; Liu, X.; Zhang, Q.; Yu, K.; Wei, W.; Liu, J.; Xu, J.; Jiang, H.; Wang, P.; Wang, X. Heterostructural CsPbX3-PbS (X = Cl, Br, I) Quantum Dots with Tunable Vis–NIR Dual Emission. J. Am. Chem. Soc. 2020, 142, 4464–4471.
(140) Zhang, X.; Lu, M.; Zhang, Y.; Wu, H.; Shen, X.; Zhang, W.; Zheng, W.; Colvin, V. L.; Yu, W. W. PbS Capped CsPbI3 Nanocrystals for Efficient and Stable Light-Emitting Devices Using p–i–n Structures. ACS Cent. Sci. 2018, 4, 1352–1359.
(141) Yang, J. N.; Song, Y.; Yao, J. S.; Wang, K. H.; Wang, J. J.; Zhu, B. S.; Yao, M. M.; Rahman, S. U.; Lan, Y. F.; Fan, F. J.; Yao, H. B. Potassium Bromide Surface Passivation on CsPbI3-xBrx Nanocrystals for Efficient and Stable Pure Red Perovskite Light-Emitting Diodes. J. Am. Chem. Soc. 2020, 142, 2956–2967.
(142) Chen, W.; Hao, J.; Hu, W.; Zang, Z.; Tang, X.; Fang, L.; Niu, T.; Zhou, M. Enhanced Stability and Tunable Photoluminescence in Perovskite CsPbX3/ZnS Quantum Dot Heterostructure. Small 2017, 13, 1604085.
(143) Lou, S.; Xuan, T.; Yu, C.; Cao, M.; Xia, C.; Wang, J.; Li, H. Nanocomposites of CsPbBr3 Perovskite Nanocrystals in an Ammonium Bromide Framework with Enhanced Stability. J. Mater. Chem. C 2017, 5, 7431–7435.
(144) Wang, Y.-K.; Yuan, F.; Dong, Y.; Li, J.-Y.; Johnston, A.; Chen, B.; Saidaminov, M. I.; Zhou, C.; Zheng, X.; Hou, Y.; Bertens, K.; Ebe, H.; Ma, D.; Deng, Z.; Yuan, S.; Chen, R.; Sagar, L. K.; Liu, J.; Fan, J.; Li, P.; et al. All-Inorganic Quantum-Dot LEDs Based on a Phase-Stabilized α-CsPbI3 Perovskite. Angew. Chem. Int. Ed. 2021, 60, 16164–16170.
(145) Zhang, C.; Chen, J.; Kong, L.; Wang, L.; Wang, S.; Chen, W.; Mao, R.; Turyanska, L.; Jia, G.; Yang, X. Core/Shell Metal Halide Perovskite Nanocrystals for Optoelectronic Applications. Adv. Funct. Mater. 2021, 31, 2100438.
(146) Jia, C.; Li, H.; Meng, X.; Li, H. CsPbX3/Cs4PbX6 Core/Shell Perovskite Nanocrystals. Chem. Commun. 2018, 54, 6300–6303.
(147) Zhang, C.; Wang, S.; Li, X.; Yuan, M.; Turyanska, L.; Yang, X. Core/Shell Perovskite Nanocrystals: Synthesis of Highly Efficient and Environmentally Stable FAPbBr3/CsPbBr3 for LED Applications. Adv. Funct. Mater. 2020, 30, 1910582.
(148) Zhang, X.; Wang, H. C.; Tang, A. C.; Lin, S. Y.; Tong, H. C.; Chen, C. Y.; Lee, Y. C.; Tsai, T. L.; Liu, R. S. Robust and Stable Narrow-Band Green Emitter: An Option for Advanced Wide-Color-Gamut Backlight Display. Chem. Mater. 2016, 28, 8493–8497.
(149) Hong, Y.; Yu, C.; Je, H.; Park, J. Y.; Kim, T.; Baik, H.; Tomboc, G. M.; Kim, Y.; Ha, J. M.; Joo, J.; Kim, C. W.; Woo, H. Y.; Park, S.; Choi, D. H.; Lee, K. Perovskite Nanocrystals Protected by Hermetically Sealing for Highly Bright and Stable Deep-Blue Light-Emitting Diodes. Adv. Sci. 2023, 10, 2302906.
(150) Sun, C.; Zhang, Y.; Ruan, C.; Yin, C.; Wang, X.; Wang, Y.; Yu, W. W. Efficient and Stable White LEDs with Silica-Coated Inorganic Perovskite Quantum Dots. Adv. Mater. 2016, 28, 10088–10094.
(151) Yoon, H. C.; Lee, S.; Song, J. K.; Yang, H.; Do, Y. R. Efficient and Stable CsPbBr3 Quantum-Dot Powders Passivated and Encapsulated with a Mixed Silicon Nitride and Silicon Oxide Inorganic Polymer Matrix. ACS Appl. Mater. Interfaces 2018, 10, 11756–11767.
(152) Yu, Y.; Tang, Y.; Wang, B.; Zhang, K.; Tang, J. X.; Li, Y. Q. Red Perovskite Light-Emitting Diodes: Recent Advances and Perspectives. Laser Photonics Rev. 2023, 17, 2200608.
(153) Huang, S.; Wang, B.; Zhang, Q.; Li, Z.; Shan, A.; Li, L. Postsynthesis Potassium-Modification Method to Improve Stability of CsPbBr3 Perovskite Nanocrystals. Adv. Opt. Mater. 2018, 6, 1701106.
(154) Abdi-Jalebi, M.; Andaji-Garmaroudi, Z.; Cacovich, S.; Stavrakas, C.; Philippe, B.; Richter, J. M.; Alsari, M.; Booker, E. P.; Hutter, E. M.; Pearson, A. J.; Lilliu, S.; Savenije, T. J.; Rensmo, H.; Divitini, G.; Ducati, C.; Friend, R. H.; Stranks, S. D. Maximizing and Stabilizing Luminescence from Halide Perovskites with Potassium Passivation. Nature 2018, 555, 497–501.
(155) Liu, M.; Jiang, N.; Huang, H.; Lin, J.; Huang, F.; Zheng, Y.; Chen, D. Ni2+-Doped CsPbI3 Perovskite Nanocrystals with Near-Unity Photoluminescence Quantum Yield and Superior Structure Stability for Red Light-Emitting Devices. Chem. Eng. J. 2021, 413, 127547.
(156) Shi, J.; Li, F.; Jin, Y.; Liu, C.; Cohen‐Kleinstein, B.; Yuan, S.; Li, Y.; Wang, Z. K.; Yuan, J.; Ma, W. In Situ Ligand Bonding Management of CsPbI3 Perovskite Quantum Dots Enables High‐Performance Photovoltaics and Red Light‐Emitting Diodes. Angew. Chem. Int. Ed. 2020, 132, 22414–22421.
(157) Chen, X.; Sun, Z.; Cai, B.; Li, X.; Zhang, S.; Fu, D.; Zou, Y.; Fan, Z.; Zeng, H. Substantial Improvement of Operating Stability by Strengthening Metal-Halogen Bonds in Halide Perovskites. Adv. Funct. Mater. 2022, 32, 2112129.
(158) Yan, Z. L.; Benas, J. S.; Chueh, C. C.; Chen, W. C.; Liang, F. C.; Zhang, Z. X.; Lin, B. H.; Su, C. J.; Chiba, T.; Kido, J.; Kuo, C. C. Stable Blue Perovskite Light-Emitting Diodes Achieved by Optimization of Crystal Dimension Through Zinc Bromide Addition. Chem. Eng. J. 2021, 414, 128774.
(159) Shen, X.; Zhang, Y.; Kershaw, S. V.; Li, T.; Wang, C.; Zhang, X.; Wang, W.; Li, D.; Wang, Y.; Lu, M.; Zhang, L.; Sun, C.; Zhao, D.; Qin, G.; Bai, X.; Yu, W. W.; Rogach, A. L. Zn-Alloyed CsPbI3 Nanocrystals for Highly Efficient Perovskite Light-Emitting Devices. Nano Lett. 2019, 19, 1552–1559.
(160) Song, P.; Qiao, B.; Song, D.; Cao, J.; Shen, Z.; Xu, Z.; Zhao, S.; Wageh, S.; Al-Ghamdi, A. Modifying the Crystal Field of CsPbCl3:Mn2+ Nanocrystals by Co-Doping to Enhance Its Red Emission by a Hundredfold. ACS Appl. Mater. Interfaces 2020, 12, 30711–30719.
(161) Luo, B.; Pu, Y. C.; Lindley, S. A.; Yang, Y.; Lu, L.; Li, Y.; Li, X.; Zhang, J. Z. Organolead Halide Perovskite Nanocrystals: Branched Capping Ligands Control Crystal Size and Stability. Angew. Chem. Int. Ed. 2016, 55, 8864–8868.
(162) Gonzalez-Carrero, S.; Francés-Soriano, L.; González-Béjar, M.; Agouram, S.; Galian, R. E.; Pérez-Prieto, J. The Luminescence of CH3NH3PbBr3 Perovskite Nanoparticles Crests the Summit and their Photostability under Wet Conditions is Enhanced. Small 2016, 12, 5245–5250.
(163) Hu, H.; Shi, H.; Zhang, J.; Hauch, J. A.; Osvet, A.; Brabec, C. J. Automated Synthesis of 1-Tetradecylphosphonic Acid-Capped FAPbBr3 Nanocrystals for Light Conversion in Display Applications. ACS Appl. Nano Mater. 2024, 7, 8823–8829.
(164) Lan, Y. F.; Yao, J. S.; Yang, J. N.; Song, Y. H.; Ru, X. C.; Zhang, Q.; Feng, L. Z.; Chen, T.; Song, K. H.; Yao, H. B. Spectrally Stable and Efficient Pure Red CsPbI3 Quantum Dot Light-Emitting Diodes Enabled by Sequential Ligand Post-Treatment Strategy. Nano Lett. 2021, 21, 8756–8763.
(165) Huang, H.; Lin, H.; Kershaw, S. V.; Susha, A. S.; Choy, W. C. H.; Rogach, A. L. Polyhedral Oligomeric Silsesquioxane Enhances the Brightness of Perovskite Nanocrystal-Based Green Light-Emitting Devices. J. Phys. Chem. Lett. 2016, 7, 4398–4404.
(166) Wu, L.; Zhong, Q.; Yang, D.; Chen, M.; Hu, H.; Pan, Q.; Liu, H.; Cao, M.; Xu, Y.; Sun, B.; Zhang, Q. Improving the Stability and Size Tunability of Cesium Lead Halide Perovskite Nanocrystals Using Trioctylphosphine Oxide as the Capping Ligand. Langmuir 2017, 33, 12689–12696.
(167) Scharf, E.; Krieg, F.; Elimelech, O.; Oded, M.; Levi, A.; Dirin, D. N.; Kovalenko, M. V.; Banin, U. Ligands Mediate Anion Exchange Between Colloidal Lead-Halide Perovskite Nanocrystals. Nano Lett. 2022, 22, 4340–4346.
(168) Mir, W. J.; Alamoudi, A.; Yin, J.; Yorov, K. E.; Maity, P.; Naphade, R.; Shao, B.; Wang, J.; Lintangpradipto, M. N.; Nematulloev, S.; Emwas, A. H.; Genovese, A.; Mohammed, O. F.; Bakr, O. M. Lecithin Capping Ligands Enable Ultrastable Perovskite-Phase CsPbI3 Quantum Dots for Rec. 2020 Bright-Red Light-Emitting Diodes. J. Am. Chem. Soc. 2022, 144, 13302–13310.
(169) Yu, W.; Wei, M.; Tang, Z.; Zou, H.; Li, L.; Zou, Y.; Yang, S.; Wang, Y.; Zhang, Y.; Li, X.; Guo, H.; Wu, C.; Qu, B.; Gao, Y.; Lu, G.; Wang, S.; Chen, Z.; Liu, Z.; Zhou, H.; Wei, B.; et al. Separating Crystal Growth from Nucleation Enables the In Situ Controllable Synthesis of Nanocrystals for Efficient Perovskite Light-Emitting Diodes. Adv. Mater. 2023, 35, 2301114.
(170) Xie, M.; Guo, J.; Zhang, X.; Bi, C.; Sun, X.; Li, H.; Zhang, L.; Binks, D.; Li, G.; Zheng, W.; Tian, J. Suppressing Ion Migration of Mixed-Halide Perovskite Quantum Dots for High Efficiency Pure-Red Light-Emitting Diodes. Adv. Funct. Mater. 2023, 33, 2300116.
(171) Pan, J.; Quan, L. N.; Zhao, Y.; Peng, W.; Murali, B.; Sarmah, S. P.; Yuan, M.; Sinatra, L.; Alyami, N. M.; Liu, J.; Yassitepe, E.; Yang, Z.; Voznyy, O.; Comin, R.; Hedhili, M. N.; Mohammed, O. F.; Lu, Z. H.; Kim, D. H.; Sargent, E. H.; Bakr, O. M. Highly Efficient Perovskite-Quantum-Dot Light-Emitting Diodes by Surface Engineering. Adv. Mater. 2016, 28, 8718–8725.
(172) Wang, J.; Li, M.; Cai, B.; Ren, H.; Fan, W.; Xu, L.; Yao, J.; Wang, S.; Song, J. Matched Electron-Transport Materials Enabling Efficient and Stable Perovskite Quantum-Dot-Based Light-Emitting Diodes. Angew. Chem. Int. Ed. 2024, 63, e202410689.
(173) Zhang, J.; Yin, C.; Yang, F.; Yao, Y.; Yuan, F.; Chen, H.; Wang, R.; Bai, S.; Tu, G.; Hou, L. Highly Luminescent and Stable CsPbI3 Perovskite Nanocrystals with Sodium Dodecyl Sulfate Ligand Passivation for Red-Light-Emitting Diodes. J. Phys. Chem. Lett. 2021, 12, 2437–2443.
(174) Sun, H.; Li, Z.; Kong, L.; Wang, B.; Zhang, C.; Yuan, Q.; Huang, S.; Liu, Y.; Li, L. Enhancing the Stability of CsPbBr3 Nanocrystals by Sequential Surface Adsorption of S2− and Metal Ions. Chem. Commun. 2018, 54, 9345-9348.
(175) Sarkar, D.; Stelmakh, A.; Karmakar, A.; Aebli, M.; Krieg, F.; Bhattacharya, A.; Pawsey, S.; Kovalenko, M. V.; Michaelis, V. K. Surface Structure of Lecithin-Capped Cesium Lead Halide Perovskite Nanocrystals Using Solid-State and Dynamic Nuclear Polarization NMR Spectroscopy. ACS Nano 2024, 18, 21894–21910.
(176) Kojima, A.; Teshima, K.; Shirai, Y.; Miyasaka, T. Organometal Halide Perovskites as Visible-Light Sensitizers for Photovoltaic Cells. J. Am. Chem. Soc. 2009, 131, 6050–6051.
(177) Yang, C.; Hu, W.; Liu, J.; Han, C.; Gao, Q.; Mei, A.; Zhou, Y.; Guo, F.; Han, H. Achievements, Challenges, and Future Prospects for Industrialization of Perovskite Solar Cells. Light Sci. Appl. 2024, 13, 227.
(178) Chenna, P.; Gandi, S.; Pookatt, S.; Parne, S. R. Perovskite White Light Emitting Diodes: A Review. Mater. Today Electron. 2023, 5, 100057.
(179) Chen, Z.; Li, Z.; Chen, Z.; Xia, R.; Zou, G.; Chu, L.; Su, S. J.; Peng, J.; Yip, H. L.; Cao, Y. Utilization of Trapped Optical Modes for White Perovskite Light-Emitting Diodes with Efficiency over 12%. Joule 2021, 5, 456–466.
(180) Tan, Z. K.; Moghaddam, R. S.; Lai, M. L.; Docampo, P.; Higler, R.; Deschler, F.; Price, M.; Sadhanala, A.; Pazos, L. M.; Credgington, D.; Hanusch, F.; Bein, T.; Snaith, H. J.; Friend, R. H. Bright Light-Emitting Diodes Based on Organometal Halide Perovskite. Nat. Nanotechnol. 2014, 9, 687–692.
(181) Chiba, T.; Hayashi, Y.; Ebe, H.; Hoshi, K.; Sato, J.; Sato, S.; Pu, Y. J.; Ohisa, S.; Kido, J. Anion-Exchange Red Perovskite Quantum Dots with Ammonium Iodine Salts for Highly Efficient Light-Emitting Devices. Nat. Photonics 2018, 12, 681–687.
(182) Cao, Y.; Wang, N.; Tian, H.; Guo, J.; Wei, Y.; Chen, H.; Miao, Y.; Zou, W.; Pan, K.; He, Y.; Cao, H.; Ke, Y.; Xu, M.; Wang, Y.; Yang, M.; Du, K.; Fu, Z.; Kong, D.; Dai, D.; Jin, Y.; et al. Perovskite Light-Emitting Diodes Based on Spontaneously Formed Submicrometre-Scale Structures. Nature 2018, 562, 249–253.
(183) Kim, J. S.; Heo, J. M.; Park, G. S.; Woo, S. J.; Cho, C.; Yun, H. J.; Kim, D. H.; Park, J.; Lee, S. C.; Park, S. H.; Yoon, E.; Greenham, N. C.; Lee, T. W. Ultra-Bright, Efficient and Stable Perovskite Light-Emitting Diodes. Nature 2022, 611, 688–694.
(184) Liu, Z.; Qiu, W.; Peng, X.; Sun, G.; Liu, X.; Liu, D.; Li, Z.; He, F.; Shen, C.; Gu, Q.; Ma, F.; Yip, H. L.; Hou, L.; Qi, Z.; Su, S.-J. Perovskite Light-Emitting Diodes with EQE Exceeding 28% Through a Synergetic Dual-Additive Strategy for Defect Passivation and Nanostructure Regulation. Adv. Mater. 2021, 33, 2103268.
(185) Zou, C.; Liu, Y.; Ginger, D. S.; Lin, L. Y. Suppressing Efficiency Roll-Off at High Current Densities for Ultra-Bright Green Perovskite Light-Emitting Diodes. ACS Nano 2020, 14, 6076–6086.
(186) Lin, K.; Xing, J.; Quan, L. N.; de Arquer, F. P. G.; Gong, X.; Lu, J.; Xie, L.; Zhao, W.; Zhang, D.; Yan, C.; Li, W.; Liu, X.; Lu, Y.; Kirman, J.; Sargent, E. H.; Xiong, Q.; Wei, Z. Perovskite Light-Emitting Diodes with External Quantum Efficiency Exceeding 20 per cent. Nature 2018, 562, 245–248.
(187) Zarazua, I.; Han, G.; Boix, P. P.; Mhaisalkar, S.; Fabregat-Santiago, F.; Mora-Seró, I.; Bisquert, J.; Garcia-Belmonte, G. Surface Recombination and Collection Efficiency in Perovskite Solar Cells from Impedance Analysis. J. Phys. Chem. Lett. 2016, 7, 5105–5113.
(188) Zhao, B.; Lian, Y.; Cui, L.; Divitini, G.; Kusch, G.; Ruggeri, E.; Auras, F.; Li, W.; Yang, D.; Zhu, B.; Oliver, R. A.; MacManus-Driscoll, J. L.; Stranks, S. D.; Di, D.; Friend, R. H. Efficient Light-Emitting Diodes from Mixed-Dimensional Perovskites on a Fluoride Interface. Nat. Electron. 2020, 3, 704–710.
(189) Wang, J.; Wang, N.; Jin, Y.; Si, J.; Tan, Z. K.; Du, H.; Cheng, L.; Dai, X.; Bai, S.; He, H.; Ye, Z.; Lai, M. L.; Friend, R. H.; Huang, W. Interfacial Control Toward Efficient and Low-Voltage Perovskite Light-Emitting Diodes. Adv. Mater. 2015, 27, 2311–2316.
(190) Yu, J. C.; Kim, D. B.; Baek, G.; Lee, B. R.; Jung, E. D.; Lee, S.; Chu, J. H.; Lee, D. K.; Choi, K. J.; Cho, S.; Song, M. H. Optoelectronics: High-Performance Planar Perovskite Optoelectronic Devices: A Morphological and Interfacial Control by Polar Solvent Treatment Adv. Mater. 2015, 27, 3465–33465.
(191) Li, R.; Cai, L.; Zou, Y.; Xu, H.; Tan, Y.; Wang, Y.; Li, J.; Wang, X.; Li, Y.; Qin, Y.; Liang, D.; Song, T.; Sun, B. High-Efficiency Perovskite Light-Emitting Diodes with Improved Interfacial Contact. ACS Appl. Mater. Interfaces 2020, 12, 36681–36687.
(192) Li, G.; Rivarola, F. W. R.; Davis, N. J. L. K.; Bai, S.; Jellicoe, T. C.; de la Peña, F.; Hou, S.; Ducati, C.; Gao, F.; Friend, R. H.; Greenham, N. C.; Tan, Z. K. Highly Efficient Perovskite Nanocrystal Light-Emitting Diodes Enabled by a Universal Crosslinking Method. Adv. Mater. 2016, 28, 3528–3534.
(193) Yuan, M.; Quan, L. N.; Comin, R.; Walters, G.; Sabatini, R.; Voznyy, O.; Hoogland, S.; Zhao, Y.; Beauregard, E. M.; Kanjanaboos, P.; Lu, Z.; Kim, D. H.; Sargent, E. H. Perovskite Energy Funnels for Efficient Light-Emitting Diodes. Nat. Nanotechnol. 2016, 11, 872–877.
(194) Maculan, G.; Sheikh, A. D.; Abdelhady, A. L.; Saidaminov, M. I.; Haque, M. A.; Murali, B.; Alarousu, E.; Mohammed, O. F.; Wu, T.; Bakr, O. M. CH3NH3PbCl3 Single Crystals: Inverse Temperature Crystallization and Visible-Blind UV-Photodetector. J. Phys. Chem. Lett. 2015, 6, 3781–3786.
(195) Zhu, W.; Deng, M.; Chen, D.; Zhang, Z.; Chai, W.; Chen, D.; Xi, H.; Zhang, J.; Zhang, C.; Hao, Y. Dual-Phase CsPbCl3–Cs4PbCl6 Perovskite Films for Self-Powered, Visible-Blind UV Photodetectors with Fast Response. ACS Appl. Mater. Interfaces 2020, 12, 32961–32969.
(196) Gui, P.; Zhou, H.; Yao, F.; Song, Z.; Li, B.; Fang, G. Space-Confined Growth of Individual Wide Bandgap Single Crystal CsPbCl3 Microplatelet for Near-Ultraviolet Photodetection. Small 2019, 15, 1902618.
(197) Zhan, X.; Zhang, X.; Liu, Z.; Chen, C.; Kong, L.; Jiang, S.; Xi, S.; Liao, G.; Liu, X. Boosting the Performance of Self-Powered CsPbCl3-Based UV Photodetectors by a Sequential Vapor-Deposition Strategy and Heterojunction Engineering. ACS Appl. Mater. Interfaces 2021, 13, 45744–45757.
(198) Fang, Y.; Dong, Q.; Shao, Y.; Yuan, Y.; Huang, J. Highly Narrowband Perovskite Single-Crystal Photodetectors Enabled by Surface-Charge Recombination. Nat. Photonics. 2015, 9, 679–686.
(199) Wu, W.; Han, X.; Li, J.; Wang, X.; Zhang, Y.; Huo, Z.; Chen, Q.; Sun, X.; Xu, Z.; Tan, Y.; Pan, C.; Pan, A. Ultrathin and Conformable Lead Halide Perovskite Photodetector Arrays for Potential Application in Retina-Like Vision Sensing. Adv. Mater. 2021, 33, 2006006.
(200) Mei, L.; Huang, R.; Shen, C.; Hu, J.; Wang, P.; Xu, Z.; Huang, Z.; Zhu, L. Hybrid Halide Perovskite-Based Near-Infrared Photodetectors and Imaging Arrays. Adv. Opt. Mater. 2022, 10, 2102656.
(201) Lin, Q.; Armin, A.; Burn, P. L.; Meredith, P. Near Infrared Photodetectors Based on Sub-Gap Absorption in Organohalide Perovskite Single Crystals. Laser Photonics Rev. 2016, 10, 1047–1053.
(202) He, Y.; Matei, L.; Jung, H. J.; McCall, K. M.; Chen, M.; Stoumpos, C. C.; Liu, Z.; Peters, J. A.; Chung, D. Y.; Wessels, B. W.; Wasielewski, M. R.; Dravid, V. P.; Burger, A.; Kanatzidis, M. G. High Spectral Resolution of Gamma-Rays at Room Temperature by Perovskite CsPbBr3 Single Crystals. Nat. Commun. 2018, 9, 1609.
(203) He, Y.; Petryk, M.; Liu, Z.; Chica, D. G.; Hadar, I.; Leak, C.; Ke, W.; Spanopoulos, I.; Lin, W.; Chung, D. Y.; Wessels, B. W.; He, Z.; Kanatzidis, M. G. CsPbBr3 Perovskite Detectors with 1.4% Energy Resolution for High-Energy γ-Rays. Nat. Photonics 2021, 15, 36–42.
(204) Yakunin, S.; Sytnyk, M.; Kriegner, D.; Shrestha, S.; Richter, M.; Matt, G. J.; Azimi, H.; Brabec, C. J.; Stangl, J.; Kovalenko, M. V.; Heiss, W. Detection of X-ray Photons by Solution-Processed Lead Halide Perovskites. Nat. Photonics 2015, 9, 444–449.
(205) Wei, W.; Zhang, Y.; Xu, Q.; Wei, H.; Fang, Y.; Wang, Q.; Deng, Y.; Li, T.; Gruverman, A.; Cao, L.; Huang, J. Monolithic Integration of Hybrid Perovskite Single Crystals with Heterogenous Substrate for Highly Sensitive X-Ray Imaging. Nat. Photonics 2017, 11, 315–321.
(206) Getachew, G.; Wibrianto, A.; Rasal, A. S.; Batu Dirersa, W.; Chang, J. Y. Metal Halide Perovskite Nanocrystals for Biomedical Engineering: Recent Advances, Challenges, and Future Perspectives. Coord. Chem. Rev. 2023, 482, 215073.
(207) Yan, Q. B.; Bao, N.; Ding, S. N. Thermally Stable and Hydrophilic CsPbBr3/mPEG-NH2 Nanocrystals with Enhanced Aqueous Fluorescence for Cell Imaging. J. Mater. Chem. B 2019, 7, 4153–4160.
(208) Lou, S.; Zhou, Z.; Xuan, T.; Li, H.; Jiao, J.; Zhang, H.; Gautier, R.; Wang, J. Chemical Transformation of Lead Halide Perovskite into Insoluble, Less Cytotoxic, and Brightly Luminescent CsPbBr3/CsPb2Br5 Composite Nanocrystals for Cell Imaging. ACS Appl. Mater. Interfaces 2019, 11, 24241–24246.
(209) Ryu, I.; Ryu, J. Y.; Choe, G.; Kwon, H.; Park, H.; Cho, Y. S.; Du, R.; Yim, S. In Vivo Plain X-Ray Imaging of Cancer Using Perovskite Quantum Dot Scintillators. Adv. Funct. Mater. 2021, 31, 2102334.
(210) Ito, Y.; Hori, T.; Kusunoki, T.; Nomura, H.; Kondo, H. A Phosphor Sheet and a Backlight System Providing Wider Color Gamut for LCDs. Jnl. Soc. Info. Display 2014, 22, 419–428.
(211) Nguyen, H. D.; Lin, C. C.; Liu, R. S. Waterproof Alkyl Phosphate Coated Fluoride Phosphors for Optoelectronic Materials. Angew. Chem. Int. Ed. 2015, 54, 10862–10866.
(212) Fang, M. H.; Wu, W. L.; Jin, Y.; Lesniewski, T.; Mahlik, S.; Grinberg, M.; Brik, M. G.; Srivastava, A. M.; Chiang, C. Y.; Zhou, W.; Jeong, D.; Kim, S. H.; Leniec, G.; Kaczmarek, S. M.; Sheu, H. S.; Liu, R. S. Control of Luminescence by Tuning of Crystal Symmetry and Local Structure in Mn4+-Activated Narrow Band Fluoride Phosphors. Angew. Chem. Int. Ed. 2018, 57, 1797–1801.
(213) Fang, M. H.; Bao, Z.; Huang, W. T.; Liu, R. S. Evolutionary Generation of Phosphor Materials and their Progress in Future Applications for Light-Emitting Diodes. Chem. Rev. 2022, 122, 11474–11513.
(214) Jang, E.; Jun, S.; Jang, H.; Lim, J.; Kim, B.; Kim, Y. White-Light-Emitting Diodes with Quantum Dot Color Converters for Display Backlights. Adv. Mater. 2010, 22, 3076–3080.
(215) Jang, E. Environmentally Friendly Quantum Dots for Display Applications. In 2018 IEEE International Electron Devices Meeting (IEDM), 1-5 Dec. 2018, 2018; pp 38.32.31–38.32.34. DOI: 10.1109/IEDM.2018.8614647.
(216) Supran, G. J.; Shirasaki, Y.; Song, K. W.; Caruge, J. M.; Kazlas, P. T.; Coe-Sullivan, S.; Andrew, T. L.; Bawendi, M. G.; Bulović, V. QLEDs for Displays and Solid-State Lighting. MRS Bulletin 2013, 38, 703–711.
(217) Osypiw, A. R. C.; Lee, S.; Jung, S. M.; Leoni, S.; Smowton, P. M.; Hou, B.; Kim, J. M.; Amaratunga, G. A. J. Solution-Processed Colloidal Quantum Dots for Light Emission. Mater. Adv. 2022, 3, 6773–6790.
(218) Wang, H.; Kosasih, F. U.; Yu, H.; Zheng, G.; Zhang, J.; Pozina, G.; Liu, Y.; Bao, C.; Hu, Z.; Liu, X.; Kobera, L.; Abbrent, S.; Brus, J.; Jin, Y.; Fahlman, M.; Friend, R. H.; Ducati, C.; Liu, X. K.; Gao, F. Perovskite-Molecule Composite Thin Films for Efficient and Stable Light-Emitting Diodes. Nat. Commun. 2020, 11, 891.
(219) Liu, C.; Zhang, D.; Sun, J.; Li, D.; Xiong, Q.; Lyu, B.; Guo, W.; Choy, W. C. H. Constructing Multi-Functional Polymeric-Termination Surface Enables High-Performance Flexible Perovskite LEDs. Adv. Funct. Mater. 2024, 34, 2404791.
(220) Hanifi, D. A.; Bronstein, N. D.; Koscher, B. A.; Nett, Z.; Swabeck, J. K.; Takano, K.; Schwartzberg, A. M.; Maserati, L.; Vandewal, K.; van de Burgt, Y.; Salleo, A.; Alivisatos, A. P. Redefining Near-Unity Luminescence in Quantum Dots with Photothermal Threshold Quantum Yield. Science 2019, 363, 1199–1202.
(221) Chen, O.; Zhao, J.; Chauhan, V. P.; Cui, J.; Wong, C.; Harris, D. K.; Wei, H.; Han, H. S.; Fukumura, D.; Jain, R. K.; Bawendi, M. G. Compact High-Quality CdSe–CdS Core–Shell Nanocrystals with Narrow Emission Linewidths and Suppressed Blinking. Nature Mater. 2013, 12, 445–451.
(222) Yin, Y.; Hu, Z.; Ali, M. U.; Duan, M.; Gao, L.; Liu, M.; Peng, W.; Geng, J.; Pan, S.; Wu, Y.; Hou, J.; Fan, J.; Li, D.; Zhang, X.; Meng, H. Full-Color Micro-LED Display with CsPbBr3 Perovskite and CdSe Quantum Dots as Color Conversion Layers. Adv. Mater. Technol. 2020, 5, 2000251.
(223) Chen, J.; Zhao, Q.; Yu, B.; Lemmer, U. A Review on Quantum Dot-Based Color Conversion Layers for Mini/Micro-LED Displays: Packaging, Light Management, and Pixelation. Adv. Opt. Mater. 2024, 12, 2300873.
(224) Oh, J. T.; Lee, S. Y.; Moon, Y. T.; Moon, J. H.; Park, S.; Hong, K. Y.; Song, K. Y.; Oh, C.; Shim, J. I.; Jeong, H. H.; Song, J. O.; Amano, H.; Seong, T. Y. Light Output Performance of Red AlGaInP-Based Light Emitting Diodes with Different Chip Geometries and Structures. Opt. Express 2018, 26, 11194–11200.
(225) Royo, P.; Stanley, R. P.; Ilegems, M.; Streubel, K.; Gulden, K. H. Experimental Determination of the Internal Quantum Efficiency of AlGaInP Microcavity Light-Emitting Diodes. J. Appl. Phys. 2002, 91, 2563–2568.
(226) Huang, Y.; Hsiang, E. L.; Deng, M. Y.; Wu, S. T. Mini-LED, Micro-LED and OLED Displays: Present Status and Future Perspectives. Light Sci. Appl. 2020, 9, 105.
(227) Yan, C.; Liang, G.; Liu, G.; Tang, Y.; Li, J.; Li, Z. T. Eliminating the Residual Ultraviolet Excitation Light and Increasing Quantum Dot Emission Intensity in LED Display Devices. IEEE Trans. Electron Devices 2021, 68, 584–591.
(228) Bai, X.; Yang, H.; Zhao, B.; Zhang, X.; Li, X.; Xu, B.; Wei, F.; Liu, Z.; Wang, K.; Sun, X. W. 4-4: Flexible Quantum Dot Color Converter Film for Micro-LED Applications. Dig. Tech. Pap. - SID Int. Symp. 2019, 50, 30–33.
(229) Coropceanu, I.; Rossinelli, A.; Caram, J. R.; Freyria, F. S.; Bawendi, M. G. Slow-Injection Growth of Seeded CdSe/CdS Nanorods with Unity Fluorescence Quantum Yield and Complete Shell to Core Energy Transfer. ACS Nano 2016, 10, 3295–3301.
(230) Chang, K. P.; Wu, C. J.; Lo, C. W.; Lin, Y. S.; Yen, C. C.; Wuu, D. S. Synthesis of SiO2-Coated CdSe/ZnS Quantum Dots Using Various Dispersants in the Photoresist for Color-Conversion Micro-LED Displays. Mater. Sci. Semicond. Process. 2022, 148, 106790.
(231) Lin, C. C.; Liang, K. L.; Chao, H. Y.; Wu, C. I.; Lin, S. f.; Huang, B. M.; Huang, C. W.; Wu, C. C.; Kuo, W. H.; Fang, Y. H. Fabricating Quantum Dot Color Conversion Layers for Micro-LED-Based Augmented Reality Displays. ACS Appl. Opt. Mater. 2024, 2, 1303–1313.
(232) Won, Y. H.; Cho, O.; Kim, T.; Chung, D. Y.; Kim, T.; Chung, H.; Jang, H.; Lee, J.; Kim, D.; Jang, E. Highly Efficient and Stable InP/ZnSe/ZnS Quantum Dot Light-Emitting Diodes. Nature 2019, 575, 634–638.
(233) Li, Y.; Hou, X.; Dai, X.; Yao, Z.; Lv, L.; Jin, Y.; Peng, X. Stoichiometry-Controlled InP-Based Quantum Dots: Synthesis, Photoluminescence, and Electroluminescence. J. Am. Chem. Soc. 2019, 141, 6448–6452.
(234) Tian, W.; Wu, T.; Wu, Y.; Xiao, J.; Wang, P.; Li, J. Application of InP Quantum Dot Film by Photolithography Technology on a Micro-LED Display. ECS J. Solid State Sci. Technol. 2023, 12, 046003.
(235) Chou, H. Y.; Lo, C. W.; Chang, K. P.; Shi, W. Y.; Yen, C. C.; Wuu, D. S. Synthesis of SiO2-Coated Perovskite Quantum Dots for Micro-LED Display Applications. Surf. Interfaces 2023, 38, 102802.
(236) Huang, R.; Yao, D.; Sun, K.; Liu, Q.; Xu, Z.; Lv, R.; Ma, T.; Chen, J. Flexible Quantum Dots Color Conversion Layer Fabricated via Laser Direct Writing Technique for Micro-LED. J. Lumin. 2025, 277, 120902.
(237) Gomez, L.; de Weerd, C.; Hueso, J. L.; Gregorkiewicz, T. Color-Stable Water-Dispersed Cesium Lead Halide Perovskite Nanocrystals. Nanoscale 2017, 9, 631−636.
(238) Ngo, L. T.; Huang, W. T.; Chan, M. H.; Su, T. Y.; Li, C. H.; Hsiao, M.; Liu, R. S. Comprehensive Neurotoxicity of Lead Halide Perovskite Nanocrystals in Nematode Caenorhabditis elegans. Small 2024, 20, 2306020.
(239) Bunaciu, A. A.; Udriştioiu, E. G.; Aboul-Enein, H. Y. X-Ray Diffraction: Instrumentation and Applications. Crit. Rev. Anal. Chem. 2015, 45, 289–299.
(240) Weiss, J. N. Dynamic Light Scattering (DLS) Spectroscopy. In Dynamic Light Scattering Spectroscopy of the Human Eye, Weiss, J. N. Ed.; Springer International Publishing, 2022; pp 13–17.
(241) Pate, K.; Safier, P. 12 - Chemical Metrology Methods for CMP Quality. In Advances in Chemical Mechanical Planarization (CMP), Babu, S. Ed.; Woodhead Publishing, 2016; pp 299–325.
(242) Stevie, F. A.; Donley, C. L. Introduction to X-ray Photoelectron Spectroscopy. J. Vac. Sci. Technol. A 2020, 38.
(243) Suzuki, K. Quantaurus-QY: Absolute Photoluminescence Quantum Yield Spectrometer. Nat. Photonics 2011, 5, 247–247.
(244) Ngo, L. T.; Huang, W. T.; Verma, H.; Lin, Y. H.; Liang, L. W.; Fang, C. T.; Chang, J. C.; Chu, W. C.; Su, C.; Kaun, C. C.; Liu, R. S. Hybrid-Protected Perovskite Quantum Dot Films with Ultra-High Efficiency and Stability for LED Backlighting. ACS Appl. Mater. Interfaces 2024, 16, 66262–66272.
(245) Hu, L.; Guan, X.; Huang, H.; Ye, T.; Ding, J.; Aarti, A.; Venkatesan, K.; Wang, W.; Chen, F.; Lin, C. H.; Wan, T.; Li, M.; Yi, J.; Zheng, R.; Chu, D.; Cai, S.; Chen, J.; Cazorla, C.; Yuan, J.; Bai, Y.; et al. Assessing the Optoelectronic Performance of Halide Perovskite Quantum Dots with Identical Bandgaps: Composition Tuning Versus Quantum Confinement. ACS Energy Lett. 2024, 9, 3970–3981.
(246) Yang, X.; Wang, S.; Hou, Y.; Wang, Y.; Zhang, T.; Chen, Y.; Chen, G.; Zhong, C.; Fan, X.; Kong, X.; Wu, T.; Lu, Y.; Lin, Y.; Chen, Z. Dual-Ligand Red Perovskite Ink for Electrohydrodynamic Printing Color Conversion Arrays over 2540 dpi in Near-Eye Micro-LED Display. Nano Lett. 2024, 24, 3661–3669.
(247) Zhang, Q.; Zhang, D.; Cao, B.; Poddar, S.; Mo, X.; Fan, Z. Improving the Operational Lifetime of Metal-Halide Perovskite Light-Emitting Diodes with Dimension Control and Ligand Engineering. ACS Nano 2024, 18, 8557–8570.
(248) Malgras, V.; Tominaka, S.; Ryan, J. W.; Henzie, J.; Takei, T.; Ohara, K.; Yamauchi, Y. Observation of Quantum Confinement in Monodisperse Methylammonium Lead Halide Perovskite Nanocrystals Embedded in Mesoporous Silica. J. Am. Chem. Soc. 2016, 138, 13874–13881.
(249) Lin, H.; Tian, P.; Luo, C.; Wang, H.; Zhang, J.; Yang, J.; Peng, H. Luminescent Nanofluids of Organometal Halide Perovskite Nanocrystals in Silicone Oils with Ultrastability. ACS Appl. Mater. Interfaces 2018, 10, 27244–27251.
(250) Xia, H.; Wang, L.; Ding, H.; Hu, B.; Li, Q.; Li, H.; Yu, T.; Liu, Z.; Tian, F.; Jin, L. In Situ Preparation of Water-Stable SiO2@mSiO2/CsPbBr3 and Its Application in WLED. J. Alloys Compd. 2024, 988, 174322.
(251) Nedelcu, G.; Protesescu, L.; Yakunin, S.; Bodnarchuk, M. I.; Grotevent, M. J.; Kovalenko, M. V. Fast Anion-Exchange in Highly Luminescent Nanocrystals of Cesium Lead Halide Perovskites (CsPbX3, X = Cl, Br, I). Nano Lett. 2015, 15, 5635–5640.
(252) Akkerman, Q. A.; D’Innocenzo, V.; Accornero, S.; Scarpellini, A.; Petrozza, A.; Prato, M.; Manna, L. Tuning the Optical Properties of Cesium Lead Halide Perovskite Nanocrystals by Anion Exchange Reactions. J. Am. Chem. Soc. 2015, 137, 10276–10281.
(253) Cai, W.; Chen, Z.; Li, Z.; Yan, L.; Zhang, D.; Liu, L.; Xu, Q. H.; Ma, Y.; Huang, F.; Yip, H. L.; Cao, Y. Polymer-Assisted In Situ Growth of All-Inorganic Perovskite Nanocrystal Film for Efficient and Stable Pure-Red Light-Emitting Devices. ACS Appl. Mater. Interfaces 2018, 10, 42564–42572.
(254) Liu, P.; Cai, W.; Zhao, C.; Zhang, S.; Nie, P.; Xu, W.; Meng, H.; Fu, H.; Wei, G. Quasi‐2D CsPbBrxI3−x Composite Thin Films for Efficient and Stable Red Perovskite Light‐Emitting Diodes. Adv. Opt. Mater. 2021, 9, 2101419.
(255) Feng, Y.; Li, H.; Zhu, M.; Gao, Y.; Cai, Q.; Lu, G.; Dai, X.; Ye, Z.; He, H. Nucleophilic Reaction-Enabled Chloride Modification on CsPbI3 Quantum Dots for Pure Red Light-Emitting Diodes with Efficiency Exceeding 26 %. Angew. Chem. Int. Ed. 2024, 63, e202318777.
(256) Sadhanala, A.; Ahmad, S.; Zhao, B.; Giesbrecht, N.; Pearce, P. M.; Deschler, F.; Hoye, R. L. Z.; Gödel, K. C.; Bein, T.; Docampo, P.; Dutton, S. E.; De Volder, M. F. L.; Friend, R. H. Blue-Green Color Tunable Solution Processable Organolead Chloride–Bromide Mixed Halide Perovskites for Optoelectronic Applications. Nano Lett. 2015, 15, 6095–6101.
(257) Hoke, E. T.; Slotcavage, D. J.; Dohner, E. R.; Bowring, A. R.; Karunadasa, H. I.; McGehee, M. D. Reversible Photo-Induced Trap Formation in Mixed-Halide Hybrid Perovskites for Photovoltaics. Chem. Sci. 2015, 6, 613–617.
(258) Wang, K. H.; Wang, L.; Liu, Y. Y.; Song, Y. H.; Yin, Y. C.; Yao, J. S.; Yang, J. N.; Wang, J.; Feng, L. Z.; Zhang, Q. High Quality CsPbI3−xBrx Thin Films Enabled by Synergetic Regulation of Fluorine Polymers and Amino Acid Molecules for Efficient Pure Red Light Emitting Diodes. Adv. Opt. Mater. 2021, 9, 2001684.
(259) Song, J.; Li, J.; Li, X.; Xu, L.; Dong, Y.; Zeng, H. Quantum Dot Light‐Emitting Diodes Based on Inorganic Perovskite Cesium Lead Halides (CsPbX3). Adv. Mater. 2015, 27, 7162–7167.
(260) Guo, J.; Xie, M.; Li, H.; Zhang, L.; Zhang, L.; Zhang, X.; Zheng, W.; Tian, J. High Efficiency and Low Roll-Off Pure-Red Perovskite LED Enabled by Simultaneously Inhibiting Auger and Trap Recombination of Quantum Dots. Nano Lett. 2024, 24, 6410–6416.
(261) Wang, H.; Lin, H.; Piao, X.; Tian, P.; Fang, M.; Luo, C.; Qi, R.; Chen, Y.; Peng, H. Organometal Halide Perovskite Nanocrystals Embedded in Silicone Resins with Bright Luminescence and Ultrastability. J. Mater. Chem. C 2017, 5, 12044–12049.
(262) Kresse, G.; Furthmüller, J. Efficient Iterative Schemes for Ab Initio Total-Energy Calculations Using a Plane-Wave Basis Set. Phys. Rev. B 1996, 54, 11169−11186.
(263) Kresse, G.; Furthmüller, J. Efficiency of Ab-Initio Total Energy Calculations for Metals and Semiconductors Using a Plane-Wave Basis Set. Comput. Mater. Sci. 1996, 6, 15−50.
(264) Blöchl, P. E. Projector Augmented-Wave Method. Phys. Rev. B 1994, 50, 17953−17979.
(265) Perdew, J. P.; Burke, K.; Ernzerhof, M. Generalized Gradient Approximation Made Simple. Phys. Rev. Lett. 1997, 78, 1396−1396.
(266) Perdew, J. P.; Burke, K.; Wang, Y. Generalized Gradient Approximation for the Exchange-Correlation Hole of a Many-Electron System. Phys. Rev. B 1996, 54, 16533−16539.
(267) Monkhorst, H. J.; Pack, J. D. Special Points for Brillouin-Zone Integrations. Phys. Rev. B 1976, 13, 5188−5192.
(268) Zhang, D.; Chao, L.; Jin, G.; Xing, Z.; Hong, W.; Chen, Y.; Wang, L.; Chen, J.; Ma, D. Highly Efficient Red Perovskite Light‐Emitting Diodes with Reduced Efficiency Roll‐Off Enabled by Manipulating Crystallization of Quasi‐2D Perovskites. Adv. Funct. Mater. 2022, 32, 2205707.
(269) Noman, M.; Khan, A. H. H.; Jan, S. T. Interface Engineering and Defect Passivation for Enhanced Hole Extraction, Ion Migration, and Optimal Charge Dynamics in Both Lead-Based and Lead-Free Perovskite Solar Cells. Sci. Rep. 2024, 14, 5449.
(270) Vijayakumari, G.; Selvakumar, N.; Jeyasubramanian, K.; Mala, R. Investigation on the Electrical Properties of Polymer Metal Nanocomposites for Physiological Sensing Applications. Phys. Procedia 2013, 49, 67–78.
(271) Ji, J.; Ge, X.; Pang, X.; Liu, R.; Wen, S.; Sun, J.; Liang, W.; Ge, J.; Chen, X. Synthesis and Characterization of Room Temperature Vulcanized Silicone Rubber Using Methoxyl-Capped MQ Silicone Resin as Self-Reinforced Cross-Linker. Polymers 2019, 11, 1142.
(272) Wang, J.; Wang, J.; Li, N.; Du, X.; Ma, J.; He, C.; Li, Z. Direct Z-Scheme 0D/2D Heterojunction of CsPbBr3 Quantum Dots/Bi2WO6 Nanosheets for Efficient Photocatalytic CO2 Reduction. ACS Appl. Mater. Interfaces 2020, 12, 31477–31485.
(273) Song, Y. H.; Choi, S. H.; Yoo, J. S.; Kang, B. K.; Ji, E. K.; Jung, H. S.; Yoon, D. H. Design of Long-Term Stable Red-Emitting CsPb(Br0.4I0.6)3 Perovskite Quantum Dot Film for Generation of Warm White Light. Chem. Eng. J. 2017, 313, 461–465.
(274) Song, Y. H.; Ge, J.; Mao, L. B.; Wang, K. H.; Tai, X. L.; Zhang, Q.; Tang, L.; Hao, J. M.; Yao, J. S.; Wang, J. J.; Ma, T.; Yang, J. N.; Lan, Y. F.; Ru, X. C.; Feng, L. Z.; Zhang, G.; Lin, Y.; Zhang, Q.; Yao, H. B. Planar Defect–Free Pure Red Perovskite Light-Emitting Diodes via Metastable Phase Crystallization. Sci. Adv. 2022, 8, eabq2321.
(275) Jiang, M.; Hu, Z.; Ono, L. K.; Qi, Y. CsPbBrxI3-x Thin Films with Multiple Ammonium Ligands for Low Turn-On Pure-Red Perovskite Light-Emitting Diodes. Nano Res. 2021, 14, 191–197.
(276) Xie, Y.; Yu, Y.; Gong, J.; Yang, C.; Zeng, P.; Dong, Y.; Yang, B.; Liang, R.; Ou, Q.; Zhang, S. Encapsulated Room-Temperature Synthesized CsPbX3 Perovskite Quantum Dots with High Stability and Wide Color Gamut for Display. Opt. Mater. Express 2018, 8, 3494–3505.
(277) Zhang, M.; Tian, Z. Q.; Zhu, D. L.; He, H.; Guo, S. W.; Chen, Z. L.; Pang, D. W. Stable CsPbBr3 Perovskite Quantum Dots with High Fluorescence Quantum Yields. New J. Chem. 2018, 42, 9496–9500.
(278) Zhang, D.; Zhao, J.; Liu, Q.; Xia, Z. Synthesis and Luminescence Properties of CsPbX3@Uio-67 Composites Toward Stable Photoluminescence Convertors. Inorg. Chem. 2019, 58, 1690–1696.
(279) Raptis, I.; Kovač, J.; Chatzichristidi, M.; Sarantopoulou, E.; Kollia, Z.; Kobe, S.; Cefalas, A. C. Enhancement of Sensing Properties of Thin Poly(Methyl Methacrylate) Films by VUV Modification. J. Laser Micro Nanoeng. 2007, 2, 200–205.
(280) Zhu, X. L.; Liu, S. B.; Man, B. Y.; Xie, C. Q.; Chen, D. P.; Wang, D. Q.; Ye, T. C.; Liu, M. Analysis by Using X-Ray Photoelectron Spectroscopy for Polymethyl Methacrylate and Polytetrafluoroethylene Etched by KrF Excimer Laser. Appl. Surf. Sci. 2007, 253, 3122–3126.
(281) Wang, K.; Chen, M.; Lei, G.; Wang, X. Analysis of Physical–Chemical Properties and Space Environment Adaptability of Two-Component RTV Silicone Rubber. ACS Omega 2021, 6, 28477–28484.
(282) Shu, B.; Chang, Y.; Yang, S.; Dong, L.; Zhang, J.; Cheng, X.; Yu, D. Fabrication and Optical Properties of High-Quality Blue-Emitting CsPbBr3 QDs-PMMA Films. Opt. Mater. 2021, 115, 111069.
(283) Singh, H.; Fei, R.; Rakita, Y.; Kulbak, M.; Cahen, D.; Rappe, A. M.; Frenkel, A. I. Origin of the Anomalous Pb-Br Bond Dynamics in Formamidinium Lead Bromide Perovskites. Phys. Rev. B 2020, 101, 054302.
(284) Chakraborty, S.; Dash, G.; Mannar, S.; Maurya, K. C.; Das, A.; Narasimhan, S.; Saha, B.; Viswanatha, R. Nonresonant Exciton–Plasmon Interaction in Metal–Chalcogenide (CuxS)/Perovskite (CsPbBr3) Based Colloidal Heterostructure. J. Phys. Chem. C 2023, 127, 15353–15362.
(285) Jeon, M. G.; Kabir, R. M. D.; Kim, S.; Kirakosyan, A.; Kim, C. Y.; Lee, S. M.; Lee, D. H.; Kim, Y.; Choi, J. Highly Processable and Stable PMMA-Grafted CsPbBr3–SiO2 Nanoparticles for Down-Conversion Photoluminescence. Compos. B. Eng. 2022, 239, 109956.
(286) Jain, A.; Ong, S. P.; Hautier, G.; Chen, W.; Richards, W. D.; Dacek, S.; Cholia, S.; Gunter, D.; Skinner, D.; Ceder, G.; Persson, K. A. Commentary: The Materials Project: A Materials Genome Approach to Accelerating Materials Innovation. APL Mater. 2013, 1, 011002.
(287) Wang, Y.; Wu, T.; Barbaud, J.; Kong, W.; Cui, D.; Chen, H.; Yang, X.; Han, L. Stabilizing Heterostructures of Soft Perovskite Semiconductors. Science 2019, 365, 687–691.
(288) Thi Ngo, L.; Huang, Y.-T.; Chang, C.-C.; Verma, H.; Lin, Y.-H.; Kuo, C.-T.; Liao, Y.-C.; Kaun, C.-C.; Chung, R.-J.; Liu, R.-S. High-Efficiency and Ultrastable Solvent-Free Curable Perovskite Quantum Dot inks for MicroLED and LED Backlighting Applications. Nano Energy 2025, 142, 111230.
(289) Wang, S.; Chen, D.; Xu, K.; Hu, J.; Liang, S.; He, K.; Zhu, H.; Hong, M. Boosting Stability and Inkjet Printability of Pure-Red CsPb(Br/I)3 Quantum Dots through Dual-Shell Encapsulation for Micro-LED Displays. ACS Energy Lett. 2024, 9, 2517–2526.
(290) Lin, Y. H.; Huang, W. T.; Ngo, L. T.; Gong, J.; Hung, P. C.; Chen, X.; Chung, R. J.; Liu, R. S. Ultrabright and Stable Red Perovskite Nanocrystals in Micro Light-Emitting Diodes Using Flow Chemistry System. Small 2025, 21, 2410753.
(291) Yi, C.; Wang, A.; Cao, C.; Kuang, Z.; Tao, X.; Wang, Z.; Zhou, F.; Zhang, G.; Liu, Z.; Huang, H.; Cao, Y.; Li, R.; Wang, N.; Huang, W.; Wang, J. Elevating Charge Transport Layer for Stable Perovskite Light-Emitting Diodes. Adv. Mater. 2024, 36, 2400658.
(292) Hoang, M. T.; Ünlü, F.; Martens, W.; Bell, J.; Mathur, S.; Wang, H. Towards the Environmentally Friendly Solution Processing of Metal Halide Perovskite Technology. Green Chem. 2021, 23, 5302–5336.
(293) Shi, L.; Meng, L.; Jiang, F.; Ge, Y.; Li, F.; Wu, X.-g.; Zhong, H. In Situ Inkjet Printing Strategy for Fabricating Perovskite Quantum Dot Patterns. Adv. Funct. Mater. 2019, 29, 1903648.
(294) Liu, Y.; Li, F.; Qiu, L.; Yang, K.; Li, Q.; Zheng, X.; Hu, H.; Guo, T.; Wu, C.; Kim, T. W. Fluorescent Microarrays of In Situ Crystallized Perovskite Nanocomposites Fabricated for Patterned Applications by Using Inkjet Printing. ACS Nano 2019, 13, 2042–2049.
(295) Park, N. G.; Zhu, K. Scalable Fabrication and Coating Methods for Perovskite Solar Cells and Solar Modules. Nat. Rev. Mater. 2020, 5, 333–350.
(296) Hong, S.-J.; Zhang, X.-N.; Sun, Z.; Zeng, T. The Potential Health Risks of N,N-Dimethylformamide: An Updated Review. J. Appl. Toxicol. 2024, 44, 1637–1646.
(297) Syme, R.; Bewick, M.; Stewart, D.; Porter, K.; Chadderton, T.; Glück, S. The Role of Depletion of Dimethyl Sulfoxide Before Autografting: On Hematologic Recovery, Side Effects, and Toxicity. Biol. Blood Marrow Transplant. 2004, 10, 135–141.
(298) Win-Shwe, T. T.; Fujimaki, H. Neurotoxicity of Toluene. Toxicol. Lett. 2010, 198, 93–99.
(299) Shi, S.; Bai, W.; Xuan, T.; Zhou, T.; Dong, G.; Xie, R. J. In Situ Inkjet Printing Patterned Lead Halide Perovskite Quantum Dot Color Conversion Films by Using Cheap and Eco‐Friendly Aqueous Inks. Small Methods 2021, 5, 2000889.
(300) Shen, W.; Yang, L.; Feng, J.; Chen, Y.; Wang, W.; Zhang, J.; Liu, L.; Cao, K.; Chen, S. Environmentally Friendly Syntheses of Self-Healed and Printable CsPbBr3 Nanocrystals. Inorg. Chem. 2022, 61, 8604–8610.
(301) Li, F.; Cao, L.; Shi, S.; Gao, H.; Song, L.; Geng, C.; Bi, W.; Xu, S. Controlled Growth of CH3NH3PbBr3 Perovskite Nanocrystals via a Water–Oil Interfacial Synthesis Method. Angew. Chem. Int. Ed. 2019, 58, 17631–17635.
(302) Wang, Y.; Yin, Y.; Liu, M.; Ali, M. U.; Meng, H. One-Step Synthesis of UV-Curable CsPbX3 (X = Cl, Br, and I) Nanocrystal Inks for Printing. Laser Photonics Rev. 2024, 18, 2300962.
(303) Yuan, L.; Chen, D.; He, K.; Xu, J.; Xu, K.; Hu, J.; Liang, S.; Zhu, H. Advancing Microarray Fabrication: One-Pot Synthesis and High-Resolution Patterning of UV-Crosslinkable Perovskite Quantum Dots. Nano Res. 2024, 17, 8600–8609.
(304) Grimme, S.; Ehrlich, S.; Goerigk, L. Effect of the Damping Function in Dispersion Corrected Density Functional Theory. J. Comput. Chem. 2011, 32, 1456–1465.
(305) Huang, W. T.; Lin, Y. H.; Tu, P. Y.; Ngo, L. T.; Chen, W. C.; Liang, K. L.; Fang, Y. H.; Su, C.; Liu, R. S. Enhancing Color Conversion of Perovskite Quantum Dot-Based Micro-Light-Emitting Diodes via Electrochemical Etching and Flow Chemistry System. Chem. Eng. J. 2025, 512, 162428.
(306) Wang, L.; Jiang, X.; Wang, C.; Huang, Y.; Meng, Y.; Shao, J. Titanium Dioxide Grafted with Silane Coupling Agents and Its Use in Blue Light Curing Ink. Coloration Technol. 2020, 136, 15–22.
(307) Aziz, T.; Ullah, A.; Fan, H.; Jamil, M. I.; Khan, F. U.; Ullah, R.; Iqbal, M.; Ali, A.; Ullah, B. Recent Progress in Silane Coupling Agent with Its Emerging Applications. J. Polym. Environ. 2021, 29, 3427–3443.
(308) Ahmed, N.; Fan, H.; Dubois, P.; Zhang, X.; Fahad, S.; Aziz, T.; Wan, J. Nano-Engineering and Micromolecular Science of Polysilsesquioxane Materials and their Emerging Applications. J. Mater. Chem. A 2019, 7, 21577–21604.
(309) Trinh, C. K.; Lee, H.; So, M. G.; Lee, C. L. Synthesis of Chemically Stable Ultrathin SiO2-Coated Core–Shell Perovskite QDs via Modulation of Ligand Binding Energy for All-Solution-Processed Light-Emitting Diodes. ACS Appl. Mater. Interfaces 2021, 13, 29798–29808.
(310) Li, X.; Cai, W.; Guan, H.; Zhao, S.; Cao, S.; Chen, C.; Liu, M.; Zang, Z. Highly Stable CsPbBr3 Quantum Dots by Silica-Coating and Ligand Modification for White Light-Emitting Diodes and Visible Light Communication. Chem. Eng. J. 2021, 419, 129551.
(311) Yang, J.; Katagiri, D.; Mao, S.; Zeng, H.; Nakajima, H.; Kato, S.; Uchiyama, K. Inkjet Printing Based Assembly of Thermoresponsive Core–Shell Polymer Microcapsules for Controlled Drug Release. J. Mater. Chem. B 2016, 4, 4156–4163.
(312) Lopes, I. M. F.; Abersfelder, K.; Oliveira, P. W.; Mousavi, S. H.; Junqueira, R. M. R. Flower-Like Silicon Dioxide/Polymer Composite Particles Synthesized by Dispersion Polymerization Route. J. Mater. Sci. 2018, 53, 11367–11377.
(313) Feng, Q.; Chen, X. W.; Peng, Z. G.; Zheng, Y.; Zhang, X. F. Preparation and Characterization of Controlled-Release Microencapsulated Acids for Deep Acidizing of Carbonate Reservoirs. J. Appl. Polym. Sci. 2021, 138, 50502.
(314) Ni, L.; Huynh, U.; Cheminal, A.; Thomas, T. H.; Shivanna, R.; Hinrichsen, T. F.; Ahmad, S.; Sadhanala, A.; Rao, A. Real-Time Observation of Exciton–Phonon Coupling Dynamics in Self-Assembled Hybrid Perovskite Quantum Wells. ACS Nano 2017, 11, 10834–10843.
(315) Peng, S.; Wei, Q.; Wang, B.; Zhang, Z.; Yang, H.; Pang, G.; Wang, K.; Xing, G.; Sun, X. W.; Tang, Z. Suppressing Strong Exciton–Phonon Coupling in Blue Perovskite Nanoplatelet Solids by Binary Systems. Angew. Chem. Int. Ed. 2020, 59, 22156–22162.
(316) Yoo, J. H.; Jeong, S. G.; Choi, S. H.; Kwon, S. B.; Song, Y. H.; Yoon, D. H. Drying Stability Enhancement of Red-Perovskite Colloidal Ink via Ligand-Derived Coating for Inkjet Printing. Ceram. Int. 2021, 47, 6041–6048.
(317) Vescio, G.; Frieiro, J. L.; Gualdrón-Reyes, A. F.; Hernández, S.; Mora-Seró, I.; Garrido, B.; Cirera, A. High Quality Inkjet Printed-Emissive Nanocrystalline Perovskite CsPbBr3 Layers for Color Conversion Layer and LEDs Applications. Adv. Mater. Technol. 2022, 7, 2101525.
(318) Bai, W.; Xuan, T.; Zhao, H.; Shi, S.; Zhang, X.; Zhou, T.; Wang, L.; Xie, R.-J. Microscale Perovskite Quantum Dot Light-Emitting Diodes (Micro-PeLEDs) for Full-Color Displays. Adv. Opt. Mater. 2022, 10, 2200087.
(319) Wei, C.; Su, W.; Li, J.; Xu, B.; Shan, Q.; Wu, Y.; Zhang, F.; Luo, M.; Xiang, H.; Cui, Z. A Universal Ternary-Solvent-Ink Strategy Toward Efficient Inkjet-Printed Perovskite Quantum Dot Light-Emitting Diodes. Adv. Mater. 2022, 34, 2107798.
(320) Yang, X.; Yan, Z.-J.; Zhong, C.-M.; Jia, H.; Chen, G.-L.; Fan, X.-T.; Wang, S.-L.; Wu, T.-Z.; Lin, Y.; Chen, Z. Electrohydrodynamically Printed High-resolution Arrays Based on Stabilized CsPbBr3 Quantum Dot Inks. Adv. Opt. Mater. 2023, 11, 2202673.
(321) Recalde, I.; Gualdrón-Reyes, A. F.; Echeverría-Arrondo, C.; Villanueva-Antolí, A.; Simancas, J.; Rodriguez-Pereira, J.; Zanatta, M.; Mora-Seró, I.; Sans, V. Vitamins as Active Agents for Highly Emissive and Stable Nanostructured Halide Perovskite Inks and 3D Composites Fabricated by Additive Manufacturing. Adv. Funct. Mater. 2023, 33, 2210802.
(322) Yang, X.; Valenzuela, C.; Zhang, X.; Chen, Y.; Yang, Y.; Wang, L.; Feng, W. Robust Integration of Polymerizable Perovskite Quantum Dots with Responsive Polymers Enables 4D-Printed Self-Deployable Information Display. Matter 2023, 6, 1278-1294.
(323) Zheng, Y.; Duan, Y.; Ye, Y.; Zheng, X.; Du, A.; Chen, E.; Xu, S.; Guo, T. Effect of Polymethyl Methacrylate on In Situ Patterning of Perovskite Quantum Dots by Inkjet Printing. Luminescence 2024, 39, e4691.
(324) Roy, D.; Guha, S.; Acharya, S. Fabrication of Water-Resistant Fluorescent Ink Using the Near-Unity Photoluminescence Quantum Yield of CsPbBr3 Doped with NiBr2. Nanoscale 2024, 16, 9811–9818, 10.1039/D4NR00668B.
(325) Li, Y.; Alam, A.; Zhou, T.; Wang, C.; Wang, Y.; Li, T. Functional Ligand-Modified Perovskite Quantum Dots for Stable Full-Color Microarrays via Photopolymerization. Adv. Funct. Mater. 2025, 35, 2413963.
(326) Gao, A.; Yan, J.; Wang, Z.; Liu, P.; Wu, D.; Tang, X.; Fang, F.; Ding, S.; Li, X.; Sun, J.; Cao, M.; Wang, L.; Li, L.; Wang, K.; Sun, X. W. Printable CsPbBr3 Perovskite Quantum Dot Ink for Coffee Ring-Free Fluorescent Microarrays Using Inkjet Printing. Nanoscale 2020, 12, 2569–2577.
(327) Jiang, C.; Zhong, Z.; Liu, B.; He, Z.; Zou, J.; Wang, L.; Wang, J.; Peng, J.; Cao, Y. Coffee-Ring-Free Quantum Dot Thin Film Using Inkjet Printing from a Mixed-Solvent System on Modified ZnO Transport Layer for Light-Emitting Devices. ACS Appl. Mater. Interfaces 2016, 8, 26162–26168.
(328) Sun, C.; Su, S.; Gao, Z.; Liu, H.; Wu, H.; Shen, X.; Bi, W. Stimuli-Responsive Inks Based on Perovskite Quantum Dots for Advanced Full-Color Information Encryption and Decryption. ACS Appl. Mater. Interfaces 2019, 11, 8210–8216.
(329) Choi, S.; Lee, S. Y.; Park, H.-K.; Ko, M. J.; Cho, K. H.; Choi, J. The Synthesis and Characterisation of the Highly Stable Perovskite Nano Crystals and their Application to Inkjet-Printed Colour Conversion Layers. J. Ind. Eng. Chem. 2020, 85, 226–239.
(330) Mathies, F.; List-Kratochvil, E. J. W.; Unger, E. L. Advances in Inkjet-Printed Metal Halide Perovskite Photovoltaic and Optoelectronic Devices. Energy Technol. 2020, 8, 1900991.
(331) Schröder, V. R. F.; Hermerschmidt, F.; Helper, S.; Rehermann, C.; Ligorio, G.; Näsström, H.; Unger, E. L.; List-Kratochvil, E. J. W. Using Combinatorial Inkjet Printing for Synthesis and Deposition of Metal Halide Perovskites in Wavelength-Selective Photodetectors. Adv. Eng. Mater. 2022, 24, 2101111.
(332) Deegan, R. D.; Bakajin, O.; Dupont, T. F.; Huber, G.; Nagel, S. R.; Witten, T. A. Capillary Flow as the Cause of Ring Stains from Dried Liquid Drops. Nature 1997, 389, 827–829.
(333) Shimoda, T.; Morii, K.; Seki, S.; Kiguchi, H. Inkjet Printing of Light-Emitting Polymer Displays. MRS Bull. 2003, 28, 821–827.
(334) Liu, Y.; Gao, W.; Ran, C.; Dong, H.; Sun, N.; Ran, X.; Xia, Y.; Song, L.; Chen, Y.; Huang, W. All-inorganic Sn-based Perovskite Solar Cells: Status, Challenges, and Perspectives. ChemSusChem 2020, 13, 6477–6497.
(335) Huang, H.; Polavarapu, L.; Sichert, J. A.; Susha, A. S.; Urban, A. S.; Rogach, A. L. Colloidal Lead Halide Perovskite Nanocrystals: Synthesis, Optical Properties and Applications. NPG Asia Mater. 2016, 8, e328−e328.
(336) Kovalenko, M. V.; Protesescu, L.; Bodnarchuk, M. I. Properties and Potential Optoelectronic Applications of Lead Halide Perovskite Nanocrystals. Science 2017, 358, 745−750.
(337) Tong, G.; Ono, L. K.; Qi, Y. Recent Progress of All-Bromide Inorganic Perovskite Solar Cells. Energy Technol. 2020, 8, 1900961.
(338) Yuan, H.; Zhao, Y.; Duan, J.; Wang, Y.; Yang, X.; Tang, Q. All-Inorganic CsPbBr3 Perovskite Solar Cell with 10.26% Efficiency by Spectra Engineering. J. Mater. Chem. A 2018, 6, 24324−24329.
(339) Kumar, N.; Rani, J.; Kurchania, R. Advancement in CsPbBr3 Inorganic Perovskite Solar Cells: Fabrication, Efficiency and Stability. Sol. Energy 2021, 221, 197−205.
(340) Wu, Z.; Chen, J.; Mi, Y.; Sui, X.; Zhang, S.; Du, W.; Wang, R.; Shi, J.; Wu, X.; Qiu, X.; Qin, Z.; Zhang, Q.; Liu, X. All-Inorganic CsPbBr3 Nanowire Based Plasmonic Lasers. Adv. Opt. Mater. 2018, 6, 1800674.
(341) Wang, T.; Yang, W.; Li, B.; Bian, R.; Jia, X.; Yu, H.; Wang, L.; Li, X.; Xie, F.; Zhu, H.; Yang, J.; Gao, Y.; Zhou, Q.; He, C.; Liu, X.; Ye, Y. Radiation-Resistant CsPbBr3 Nanoplate-Based Lasers. ACS Appl. Nano Mater. 2020, 3, 12017−12024.
(342) Tian, J.; Weng, G.; Liu, Y.; Chen, S.; Cao, F.; Zhao, C.; Hu, X.; Luo, X.; Chu, J.; Akiyama, H.; Chen, S. Gain-Switching in CsPbBr3 Microwire Lasers. Commun. Phys. 2022, 5, 160.
(343) Du, X.; Wu, G.; Cheng, J.; Dang, H.; Ma, K.; Zhang, Y. W.; Tan, P. F.; Chen, S. High-Quality CsPbBr3 Perovskite Nanocrystals for Quantum Dot Light-Emitting Diodes. RSC Adv. 2017, 7, 10391−10396.
(344) Vescio, G.; Frieiro, J. L.; Gualdrón Reyes, A. F.; Hernández, S.; Mora Seró, I.; Garrido, B.; Cirera, A. High Quality Inkjet Printed‐Emissive Nanocrystalline Perovskite CsPbBr3 Layers for Color Conversion Layer and LEDs Applications. Adv. Mater. Technol. 2022, 7, 2101525.
(345) Benmessaoud, I. R.; Mahul Mellier, A. L.; Horváth, E.; Maco, B.; Spina, M.; Lashuel, H. A.; Forró, L. Health Hazards of Methylammonium Lead Iodide Based Perovskites: Cytotoxicity Studies. Toxicol. Res. 2016, 5, 407–419.
(346) Babayigit, A.; Duy Thanh, D.; Ethirajan, A.; Manca, J.; Muller, M.; Boyen, H. G.; Conings, B. Assessing the Toxicity of Pb- and Sn-Based Perovskite Solar Cells in Model Organism Danio rerio. Sci. Rep. 2016, 6, 18721.
(347) Quaroni, L.; Benmessaoud, I.; Vileno, B.; Horváth, E.; Forró, L. Infrared and 2-Dimensional Correlation Spectroscopy Study of the Effect of CH3NH3PbI3 and CH3NH3SnI3 Photovoltaic Perovskites on Eukaryotic Cells. Molecules 2020, 25, 336.
(348) Bae, S. Y.; Lee, S. Y.; Kim, J. W.; Umh, H. N.; Jeong, J.; Bae, S.; Yi, J.; Kim, Y.; Choi, J. Hazard Potential of Perovskite Solar Cell Technology for Potential Implementation of “Safe-By-Design” Approach. Sci. Rep. 2019, 9, 4242.
(349) Wang, G.; Zhai, Y.; Zhang, S.; Diomede, L.; Bigini, P.; Romeo, M.; Cambier, S.; Contal, S.; Nguyen, N. H. A.; Rosická, P.; Ševců, A.; Nickel, C.; Vijver, M. G.; Peijnenburg, W. J. G. M. An Across-Species Comparison of The Sensitivity of Different Organisms to Pb-Based Perovskites Used in Solar Cells. Sci. Total Environ. 2020, 708, 135134.
(350) Li, J.; Cao, H. L.; Jiao, W. B.; Wang, Q.; Wei, M.; Cantone, I.; Lü, J.; Abate, A. Biological Impact of Lead from Halide Perovskites Reveals the Risk of Introducing a Safe Threshold. Nat. Commun. 2020, 11, 310.
(351) Chan, K. K.; Giovanni, D.; He, H.; Sum, T. C.; Yong, K. T. Water-Stable All-Inorganic Perovskite Nanocrystals with Nonlinear Optical Properties for Targeted Multiphoton Bioimaging. ACS Appl. Nano Mater. 2021, 4, 9022–9033.
(352) Kumar, P.; Patel, M.; Park, C.; Han, H.; Jeong, B.; Kang, H.; Patel, R.; Koh, W. G.; Park, C. Highly Luminescent Biocompatible CsPbBr3@SiO2 Core–Shell Nanoprobes for Bioimaging and Drug Delivery. J. Mater. Chem. B 2020, 8, 10337–10345.
(353) Yang, Z.; Zong, S.; Yang, K.; Zhu, K.; Li, N.; Wang, Z.; Cui, Y. Wavelength Tunable Aqueous CsPbBr3-Based Nanoprobes with Ultrahigh Photostability for Targeted Super-Resolution Bioimaging. ACS Appl. Mater. Interfaces 2022, 14, 17109–17118.
(354) Yang, Z.; Dong, Y.; Zong, S.; Li, L.; Yang, K.; Wang, Z.; Zeng, H.; Cui, Y. Water-Dispersed CsPbBr3 Nanocrystals for Single Molecule Localization Microscopy with High Location Accuracy for Targeted Bioimaging. Nanoscale 2022, 14, 6392−6401.
(355) Sanjayan, C.; Jyothi, M.; Balakrishna, R. G. Stabilization of CsPbBr3 Quantum Dots for Photocatalysis, Imaging and Optical Sensing in Water and Biological Medium: A Review. J. Mater. Chem. C 2022, 10, 6935−6956.
(356) Ruszkiewicz, J. A.; Pinkas, A.; Miah, M. R.; Weitz, R. L.; Lawes, M. J. A.; Akinyemi, A. J.; Ijomone, O. M.; Aschner, M. C. elegans as a Model in Developmental Neurotoxicology. Toxicol. Appl. Pharmacol. 2018, 354, 126−135.
(357) Sinis, S. I.; Gourgoulianis, K. I.; Hatzoglou, C.; Zarogiannis, S. G. Mechanisms of Engineered Nanoparticle Induced Neurotoxicity in Caenorhabditis elegans. Environ. Toxicol. Pharmacol. 2019, 67, 29−34.
(358) White, J. G.; Southgate, E.; Thomson, J. N.; Brenner, S. The Structure of the Nervous System of the Nematode Caenorhabditis elegans. Philos. Trans. R. Soc. Lond. B Biol. Sci. 1986, 314, 1−340.
(359) Zhao, Y.; Wang, X.; Wu, Q.; Li, Y.; Tang, M.; Wang, D. Quantum Dots Exposure Alters Both Development and Function of D-type GABAergic Motor Neurons in Nematode Caenorhabditis elegans. Toxicol. Res. 2015, 4, 399−408.
(360) Zhao, Y.; Wang, X.; Wu, Q.; Li, Y.; Wang, D. Translocation and Neurotoxicity of CdTe Quantum Dots in RMEs Motor Neurons in Nematode Caenorhabditis elegans. J. Hazard. Mater. 2015, 283, 480−489.
(361) Akinyemi, A. J.; Miah, M. R.; Ijomone, O. M.; Tsatsakis, A.; Soares, F. A. A.; Tinkov, A. A.; Skalny, A. V.; Venkataramani, V.; Aschner, M. Lead (Pb) Exposure Induces Dopaminergic Neurotoxicity in Caenorhabditis elegans: Involvement of The Dopamine Transporter. Toxicol. Rep. 2019, 6, 833−840.
(362) Wu, T.; He, K.; Zhan, Q.; Ang, S.; Ying, J.; Zhang, S.; Zhang, T.; Xue, Y.; Tang, M. MPA-Capped CdTe Quantum Dots Exposure Causes Neurotoxic Effects in Nematode Caenorhabditis elegans by Affecting the Transporters and Receptors of Glutamate, Serotonin and Dopamine at the Genetic Level, or by Increasing ROS, or Both. Nanoscale 2015, 7, 20460−20473.
(363) Liang, X.; Wang, X.; Cheng, J.; Zhang, X.; Wu, T. Ag2Se Quantum Dots Damage the Nervous System of Nematode Caenorhabditis elegans. Bull Environ. Contam. Toxicol. 2022, 109, 279−285.
(364) Li, Y.; Yu, S.; Wu, Q.; Tang, M.; Wang, D. Transmissions of Serotonin, Dopamine, and Glutamate Are Required for the Formation of Neurotoxicity from Al2O3-NPs in Nematode Caenorhabditis elegans. Nanotoxicology 2013, 7, 1004−1013.
(365) How, C. M.; Huang, C. W. Dietary Transfer of Zinc Oxide Nanoparticles Induces Locomotive Defects Associated with GABAergic Motor Neuron Damage in Caenorhabditis elegans. Nanomaterials 2023, 13, 289.
(366) Stiernagle, T. Maintenance of C. elegans; 1999.
(367) Hart, A. WormBook; The C. elegans Research Community, 2006.
(368) Sarasija, S.; Norman, K. R. Measurement of ROS in Caenorhabditis elegans Using a Reduced Form of Fluorescein. Bio-protocol 2018, 8, e2800−e2800.
(369) Poupet, C.; Veisseire, P.; Bonnet, M.; Camarès, O.; Gachinat, M.; Dausset, C.; Chassard, C.; Nivoliez, A.; Bornes, S. Curative Treatment of Candidiasis by the Live Biotherapeutic Microorganism Lactobacillus rhamnosus Lcr35® in the Invertebrate Model Caenorhabditis elegans: First Mechanistic Insights. Microorganisms 2019, 8, 34.
(370) Kumar, S.; Randhawa, J. K. Solid Lipid Nanoparticles of Stearic Acid for the Drug Delivery of Paliperidone. RSC Adv. 2015, 5, 68743−68750.
(371) Shah, R. M.; Rajasekaran, D.; Ludford-Menting, M.; Eldridge, D. S.; Palombo, E. A.; Harding, I. H. Transport of Stearic Acid-Based Solid Lipid Nanoparticles (SLNs) into Human Epithelial Cells. Colloids Surf. B 2016, 140, 204−212.
(372) Qu, Y.; Li, W.; Zhou, Y.; Liu, X.; Zhang, L.; Wang, L.; Li, Y. F.; Iida, A.; Tang, Z.; Zhao, Y.; Chai, Z.; Chen, C. Full Assessment of Fate and Physiological Behavior of Quantum Dots Utilizing Caenorhabditis elegans as a Model Organism. Nano Lett. 2011, 11, 3174−43183.
(373) Contreras, E. Q.; Cho, M.; Zhu, H.; Puppala, H. L.; Escalera, G.; Zhong, W.; Colvin, V. L. Toxicity of Quantum Dots and Cadmium Salt to Caenorhabditis elegans After Multigenerational Exposure. Environ. Sci. Technol. 2013, 47, 1148−1154.
(374) Kim, M.; Eom, H. J.; Choi, I.; Hong, J.; Choi, J. Graphene Oxide-Induced Neurotoxicity on Neurotransmitters, AFD Neurons and Locomotive Behavior in Caenorhabditis elegans. Neurotoxicology 2020, 77, 30−39.
(375) Ijomone, O. M.; Miah, M. R.; Akingbade, G. T.; Bucinca, H.; Aschner, M. Nickel-Induced Developmental Neurotoxicity in C. elegans Includes Cholinergic, Dopaminergic and GABAergic Degeneration, Altered Behaviour, and Increased SKN-1 Activity. Neurotox. Res. 2020, 37, 1018−1028.
(376) Zheng, F.; Chen, C.; Aschner, M. Neurotoxicity Evaluation of Nanomaterials Using C. elegans: Survival, Locomotion Behaviors, and Oxidative Stress. Curr. Protoc. 2022, 2, e496.
(377) McKay, J. P.; Raizen, D. M.; Gottschalk, A.; Schafer, W. R.; Avery, L. eat-2 and eat-18 Are Required for Nicotinic Neurotransmission in the Caenorhabditis elegans Pharynx. Genetics 2004, 166, 161−169.
(378) Bany, I. A.; Dong, M. Q.; Koelle, M. R. Genetic and Cellular Basis for Acetylcholine Inhibition of Caenorhabditis elegans Egg-Laying Behavior. J. Neurosci. 2003, 23, 8060−8069.
(379) Leiser, S. F.; Jafari, G.; Primitivo, M.; Sutphin, G. L.; Dong, J.; Leonard, A.; Fletcher, M.; Kaeberlein, M. Age-Associated Vulval Integrity is an Important Marker of Nematode Healthspan. Age 2016, 38, 419−431.
(380) Sternberg, P. W. Vulval Development. WormBook: The Online Review of C. elegans Biology 2005, 1–28.
(381) Pluskota, A.; Horzowski, E.; Bossinger, O.; von Mikecz, A. In Caenorhabditis elegans Nanoparticle-Bio-Interactions Become Transparent: Silica-Nanoparticles Induce Reproductive Senescence. PloS One 2009, 4, e6622.
(382) Park, S. K.; Tedesco, P. M.; Johnson, T. E. Oxidative Stress and Longevity in Caenorhabditis elegans as Mediated by SKN‐1. Aging Cell 2009, 8, 258−269.
(383) Lidsky, T. I.; Schneider, J. S. Lead Neurotoxicity in Children: Basic Mechanisms and Clinical Correlates. Brain 2003, 126, 5−19.
(384) Bressler, J. P.; Goldstein, G. W. Mechanisms of Lead Neurotoxicity. Biochem. Pharmacol. 1991, 41, 479−484.
(385) Li, Y.; Yu, S.; Wu, Q.; Tang, M.; Pu, Y.; Wang, D. Chronic Al2O3-Nanoparticle Exposure Causes Neurotoxic Effects on Locomotion Behaviors by Inducing Severe ROS Production and Disruption of ROS Defense Mechanisms in Nematode Caenorhabditis elegans. J. Hazard. Mater. 2012, 219, 221−230.
(386) VanDuyn, N.; Settivari, R.; Wong, G.; Nass, R. SKN-1/Nrf2 Inhibits Dopamine Neuron Degeneration in a Caenorhabditis elegans Model of Methylmercury Toxicity. Toxicol. Sci. 2010, 118, 613−624.
(387) Benedetto, A.; Au, C.; Avila, D. S.; Milatovic, D.; Aschner, M. Extracellular Dopamine Potentiates Mn-Induced Oxidative Stress, Lifespan Reduction, and Dopaminergic Neurodegeneration in a BLI-3–Dependent Manner in Caenorhabditis elegans. PLoS Genet. 2010, 6, e1001084.
(388) Wu, Q.; Wang, W.; Li, Y.; Li, Y.; Ye, B.; Tang, M.; Wang, D. Small Sizes of TiO2-NPs Exhibit Adverse Effects at Predicted Environmental Relevant Concentrations on Nematodes in a Modified Chronic Toxicity Assay System. J. Hazard. Mater. 2012, 243, 161−168.
(389) Stohs, S. J.; Bagchi, D. Oxidative Mechanisms in the Toxicity of Metal Ions. Free Radic. Biol. Med. 1995, 18, 321−336.
(390) Sharma, P.; Chambial, S.; Shukla, K. K. Lead and Neurotoxicity. Indian J. Clin. Biochem. 2015, 30, 1−2.
(391) Flora, G.; Gupta, D.; Tiwari, A. Toxicity of Lead: A Review with Recent Updates. Interdiscip. Toxicol. 2012, 5, 47−58.
(392) Sharifi, S.; Behzadi, S.; Laurent, S.; Forrest, M. L.; Stroeve, P.; Mahmoudi, M. Toxicity of Nanomaterials. Chem. Soc. Rev. 2012, 41, 2323−2343.
(393) Liu, Q.; Chen, C.; Li, M.; Ke, J.; Huang, Y.; Bian, Y.; Guo, S.; Wu, Y.; Han, Y.; Liu, M. Neurodevelopmental Toxicity of Polystyrene Nanoplastics in Caenorhabditis elegans and the Regulating Effect of Presenilin. ACS omega 2020, 5, 33170−33177.
(394) Charão, M. F.; Souto, C.; Brucker, N.; Barth, A.; Jornada, D. S.; Fagundez, D.; Ávila, D. S.; Eifler-Lima, V. L.; Guterres, S. S.; Pohlmann, A. R.; Garcia, S. C. Caenorhabditis elegans as an Alternative In Vivo Model to Determine Oral Uptake, Nanotoxicity, and Efficacy of Melatonin-Loaded Lipid-Core Nanocapsules on Paraquat Damage. Int. J. Nanomedicine 2015, 10, 5093−5106.
(395) Sanyal, S.; Wintle, R. F.; Kindt, K. S.; Nuttley, W. M.; Arvan, R.; Fitzmaurice, P.; Bigras, E.; Merz, D. C.; Hébert, T. E.; van der Kooy, D.; Schafer, W. R.; Culotti, J. G.; Van Tol, H. H. M. Dopamine Modulates the Plasticity of Mechanosensory Responses in Caenorhabditis elegans. EMBO J. 2004, 23, 473−482.
(396) Sawin, E. R.; Ranganathan, R.; Horvitz, H. R. C. elegans Locomotory Rate is Modulated by the Environment Through a Dopaminergic Pathway and by Experience Through a Serotonergic Pathway. Neuron 2000, 26, 619−631.
(397) Hills, T.; Brockie, P. J.; Maricq, A. V. Dopamine and Glutamate Control Area-Restricted Search Behavior in Caenorhabditis elegans. J. Neurosci. 2004, 24, 1217−1225.
(398) Jiang, Y.; Gaur, U.; Cao, Z.; Hou, S. T.; Zheng, W. Dopamine D1-and D2-Like Receptors Oppositely Regulate Lifespan Via a Dietary Restriction Mechanism in Caenorhabditis elegans. BMC Biol. 2022, 20, 71.
(399) Sze, J. Y.; Victor, M.; Loer, C.; Shi, Y.; Ruvkun, G. Food and Metabolic Signalling Defects in a Caenorhabditis elegans Serotonin-Synthesis Mutant. Nature 2000, 403, 560−564.
(400) Zhang, Y.; Lu, H.; Bargmann, C. I. Pathogenic Bacteria Induce Aversive Olfactory Learning in Caenorhabditis elegans. Nature 2005, 438, 179−184.
(401) Vidal Gadea, A.; Topper, S.; Young, L.; Crisp, A.; Kressin, L.; Elbel, E.; Maples, T.; Brauner, M.; Erbguth, K.; Axelrod, A.; Gottschalk, A.; Siegel, D.; Pierce Shimomura, J. T. Caenorhabditis elegans Selects Distinct Crawling and Swimming Gaits via Dopamine and Serotonin. Proc. Natl. Acad. Sci. U.S.A. 2011, 108, 17504−17509.
(402) Horvitz, H. R.; Chalfie, M.; Trent, C.; Sulston, J. E.; Evans, P. D. Serotonin and Octopamine in the Nematode Caenorhabditis elegans. Science 1982, 216, 1012−1014.
(403) Loer, C. M.; Kenyon, C. J. Serotonin-Deficient Mutants and Male Mating Behavior in the Nematode Caenorhabditis elegans. J. Neurosci. Res. 1993, 13, 5407−5417.
(404) Chalasani, S. H.; Chronis, N.; Tsunozaki, M.; Gray, J. M.; Ramot, D.; Goodman, M. B.; Bargmann, C. I. Dissecting a Circuit for Olfactory Behaviour in Caenorhabditis elegans. Nature 2007, 450, 63−70.
(405) Yu, C. Y.; Chang, H. C. Glutamate Signaling Mediates C. elegans Behavioral Plasticity to Pathogens. Iscience 2022, 25, 103919.
(406) Serrano-Saiz, E.; Poole, R. J.; Felton, T.; Zhang, F.; De La Cruz, E. D.; Hobert, O. Modular Control of Glutamatergic Neuronal Identity in C. elegans by Distinct Homeodomain Proteins. Cell 2013, 155, 659−673.
(407) Maricq, A. V.; Peckol, E.; Driscoll, M.; Bargmann, C. I. Mechanosensory Signalling in C. elegans Mediated by the GLR-1 Glutamate Receptor. Nature 1995, 378, 78−81.
(408) Brockie, P. J.; Madsen, D. M.; Zheng, Y.; Mellem, J.; Maricq, A. V. Differential Expression of Glutamate Receptor Subunits in the Nervous System of Caenorhabditis elegans and their Regulation by the Homeodomain Protein UNC-42. J. Neurosci. 2001, 21, 1510−1522.
(409) Ferraguti, F.; Shigemoto, R. Metabotropic Glutamate Receptors. Cell Tissue Res. 2006, 326, 483−504.
(410) Ranganathan, R.; Cannon, S. C.; Horvitz, H. R. MOD-1 is a Serotonin-Gated Chloride Channel That Modulates Locomotory Behaviour in C. elegans. Nature 2000, 408, 470−475.
(411) Chen, P.; Martinez-Finley, E. J.; Bornhorst, J.; Chakraborty, S.; Aschner, M. Metal-Induced Neurodegeneration in C. elegans. Front. Aging Neurosci. 2013, 5, 18.
(412) Zhao, Y.; Wu, Q.; Tang, M.; Wang, D. The In Vivo Underlying Mechanism for Recovery Response Formation in Nano-Titanium Dioxide Exposed Caenorhabditis elegans After Transfer to the Normal Condition. Nanomed.: Nanotechnol. Biol. Med. 2014, 10, 89−98.
(413) Tellez, R.; Gómez-Víquez, L.; Meneses, A. GABA, Glutamate, Dopamine and Serotonin Transporters Expression on Memory Formation and Amnesia. Neurobiol. Learn. Mem. 2012, 97, 189−201.
(414) Masoud, S.; Vecchio, L.; Bergeron, Y.; Hossain, M.; Nguyen, L.; Bermejo, M.; Kile, B.; Sotnikova, T.; Siesser, W.; Gainetdinov, R. Increased Expression of the Dopamine Transporter Leads to Loss of Dopamine Neurons, Oxidative Stress and L-DOPA Reversible Motor Deficits. Neurobiol. Dis. 2015, 74, 66−75.
(415) Yin, J. A.; Liu, X. J.; Yuan, J.; Jiang, J.; Cai, S. Q. Longevity Manipulations Differentially Affect Serotonin/Dopamine Level and Behavioral Deterioration in Aging Caenorhabditis elegans. J. Neurosci. 2014, 34, 3947−3958.
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/97814-
dc.description.abstract鈣鈦礦奈米晶體(PeNC)已為一值得注意且具發展性之材料,具卓越之光學性能,使其為光電應用之理想選擇。然而,基於 PeNC 之設備之商業化具關鍵挑戰之阻礙,其涵蓋毒性、穩定性及可發展性。本研究全面探討金屬鹵化鉛鈣鈦礦奈米晶體(PeNC)相關之挑戰,並提出解決此些問題之方案,並強調其多樣化應用,例如白光發光二極體(WLED)與微型發光二極體(μLED)。
第一部分為保護 CsPb(Br,I)3 與 CsPbBr3 PeNC,使用有機矽樹脂和聚甲基丙烯酸甲酯基質合成高效穩定之紅色與綠色 PeNC薄膜。紅色及綠色薄膜均實現高 PLQY(紅色高於 43%,綠色高於 94%),且改善其熱穩定性。此保護策略有效抑制鹵化物離子之擴散與未配位之鉛,使此些PeNC薄膜可應用於WLED,且具143.4% National Television Standards Committee (NTSC)寬色域。
第二部分研究則致力於開發無溶劑 PeQD 墨水,用於高效率之綠光與紅光 LED 背光與微型 LED 顯示。經由流體系統,首先製得 PLQY 極高之PeQDs(紅光 CsPb(Br,I)3 達 92%,綠光 CsPbBr3 接近 100%)。再於三甲氧基矽烷與 3-(三甲氧基矽基)丙基甲基丙烯酸酯之協同作用下,成功將 PeQDs 均勻分散於可光固化之1,6-己二醇二丙烯酸酯單體中,製得無溶劑 PeQD 墨水。此策略不僅解決墨水生產中有毒溶劑之使用問題,亦改善 PeQDs 之穩定性。此無溶劑 PeQD 墨水展現穩定且明亮之紅光與綠光,長期穩定性亦表現優異:CsPb(Br)3維持 100% 螢光強度長達 115 天,CsPb(Br,I)3則達 78 天。此外,此無溶劑墨水可噴墨列印,製備均勻且高亮度之 PeQD 薄膜,並於柔性顯示應用中展現出色彩坐標接近標準值之 100.28% ITU-R Recommendation BT.2020 (Rec. 2020) 色域表現。
於第三部分研究中,使用線蟲 Caenorhabditis elegans 作為模型生物,全面評估 CsPbBr3 PeNCs 的神經毒性。研究結果顯示,PeNCs 將於腸道系統與頭部累積,導致運動能力下降、咽部泵作用受損、生殖異常及壽命縮短。神經毒性反應與過量活性氧(ROS)產生及基因表現變化有關,突顯需開發無毒材料或加強保護機制以降低金屬鉛鹵化物鈣鈦礦材料之潛在風險。
經由此些研究,本論文旨於推動鈣鈦礦奈米晶體技術之發展,並促進其於光電應用中之廣泛實施。藉解決毒性、穩定性及可擴展性等關鍵挑戰,本研究期望為 PeNC 基礎裝置之安全與永續發展奠定堅實基礎。
zh_TW
dc.description.abstractPerovskite nanocrystals (PeNCs) have emerged as a noteworthy and promising group of materials with exceptional optical properties, making them ideal candidates for various optoelectronic applications. However, the commercialization of PeNC-based devices is hindered by several critical challenges, including toxicity, stability, and scalability. This doctoral thesis offers a comprehensive exploration of the challenges associated with metal lead halide perovskite nanocrystals (PeNCs) and proposes solutions to address these issues while also highlighting their diverse applications, such as white light-emitting diode (WLED) and micro light-emitting diode (μLED).
The first project is carried out to protect both CsPb(Br,I)3 and CsPbBr3 PeQDs for producing highly efficient and stable red and green PeQD films using silicone resin and poly(methyl methacrylate) matrices. Both red and green films achieve high photoluminescence quantum yield (PLQY) (above 43% for red and 94% for green) with improved thermal stability. The protective strategy effectively suppressed halide ion diffusion and uncoordinated lead, allowing these PeQD films to be applied in WLEDs with a broad color gamut of 143.4% National Television Standards Committee (NTSC).
The second study aimed to fabricate a solvent-free PeQD ink with high-efficiency green and red PeQD inks for LED backlighting and micro-LED displays. Herein, by using a fluidic system, we first obtained super-high PLQY PeQDs (92% for red CsPb(Br,I)3, and nearly 100% for green CsPbBr3 PeQDs). Then the non-solvent PeQD ink is uniformly obtained in curable 1,6-hexanediol diacrylate monomer thanks to the assistance of the mixture of trimethoxysilane and 3-(trimethoxysilyl)propyl methacrylate. This strategy solves the challenges of using toxic solvents in ink production as well as addressing the problems of the instability of PeQDs. Our solvent-free PeQD ink also exhibits bright and stable green and red emissions with long-term stability, retaining 100% PL intensity after 115 days for CsPbBr3 and 78 days for CsPb(Br,I)3. The nonsolvent ink enables uniform, bright PeQD films with inkjet compatibility for flexible displays, achieving a 100.28% ITU-R Recommendation BT.2020 (Rec. 2020) color gamut with red and green coordinates near reference values.
In the third work, the comprehensive neurotoxicity of CsPbBr3 PeNCs using the nematode Caenorhabditis elegans as a model organism is performed. Our findings show that PeNCs accumulate in the alimentary system and head, leading to reduced locomotion, impaired pharyngeal pumping, reproductive issues, and shortened lifespan. The neurotoxic effects are linked to excessive reactive oxygen species (ROS) formation and gene expression changes, highlighting the need for the development of nontoxic materials or greater protection methods for metal lead halide perovskite.
Through these studies, this thesis aims to propel the progress of perovskite nanocrystal technology and encourage its widespread implementation in optoelectronic applications. By addressing the critical challenges of toxicity, stability, and scalability, this research aims to ensure the safe and sustainable development of PeNC-based devices.
en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2025-07-17T16:06:43Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2025-07-17T16:06:43Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontentsOral Defense Approval Form i
Acknowledgments ii
摘要 iv
Abstract vi
Table of Contents viii
Figure Contents xiv
Table Contents xxvii
Abbreviations List xxix
Chapter 1. Introduction 1
1.1 Nanomaterials 1
1.2 Nanomaterials Synthesis 3
1.2.1 Top-down method 3
1.2.2 Bottom-up method 4
1.3 Nanomaterials Properties 5
1.4 Quantum Dots 5
1.4.1 Optical properties of quantum dots 7
1.4.2 Quantum dot classification 8
1.5 Perovskite Quantum Dots 14
1.6 Perovskite Classification 15
1.7 Halide Perovskite Nanocrystals 16
1.7.1 Different phases of perovskite nanocrystals 17
1.7.2 Synthesis of perovskite nanocrystals 18
1.8 Perovskite Defect and Stability of Perovskite Nanocrystals 25
1.8.1 PeNC defects 25
1.8.2 Goldschmidt factor 27
1.8.3 Octahedral factor (μ) 28
1.8.4 Environmental stability of perovskite nanocrystals 29
1.8.5 Strategies for perovskite stabilization 31
1.9 Application of Perovskite Nanocrystals 49
1.9.1 Solar cells 49
1.9.2 Light-emitting diodes 50
1.9.3 Photodetectors 53
1.9.4 Bioimaging 55
1.9.5 Lasers 56
1.10 Application Summary 56
1.10.1 LED backlighting 58
1.10.2 Micro-LED 61
1.11 Research Motivation 64
Chapter 2. Experimental Approaches and Techniques 67
2.1 Chemicals and Materials 67
2.2 Synthesis of Water-Soluble Lead Halide Perovskite Quantum Dots Using Microfluidic Method 70
2.2.1 Synthesis of CsPbBr3 quantum dots 70
2.3 Synthesis of High Quantum Efficiency of Perovskite Nanocrystal Using Microfluidic System 72
2.3.1 CsPbBr3 nanocrystals 72
2.3.2 EA-CsPbBr3 perovskite quantum dots synthesis 73
2.3.3 Synthesis of CsPb(Br,I)3 NCs 74
2.4 Instruments for Material Characterization 75
2.4.1 X-ray diffractometer 75
2.4.2 Transmission electron microscopy 80
2.4.3 X-ray absorption spectroscopy 82
2.4.4 Dynamic light scattering and zeta potential 84
2.4.5 Fourier transform infrared spectrometer 87
2.4.6 Photoluminescence spectrometer 89
2.4.7 X-ray photoelectron spectroscopy 93
2.4.8 Quantum yield spectrometer 96
2.4.9 Confocal microscopy 98
Chapter 3. Hybrid-Protected Perovskite Quantum Dot Films with Ultra-High Efficiency and Stability for LED Backlighting 101
3.1 Introduction 101
3.2 Experimental Section 104
3.2.1 Synthesis of all-inorganic lead halide perovskite quantum dots by using a microfluidic system 104
3.2.2 Hybrid film fabrication (HP: silicone/PMMA) 106
3.2.3 Single film fabrication (PMMA) 107
3.2.4 Computational methods 107
3.3 Results and Discussion 108
3.3.1 Film preparation scheme 108
3.3.2 Film characterization 110
3.3.3 Effects of silicone resin and PMMA ratios on the films 115
3.3.4 Stability test 118
3.3.5 Stability mechanism 123
3.3.6 Theoretical calculation 130
3.3.7 Optical density 132
3.3.8 Optical characteristics of all-inorganic PeQD films in white light emitting diode (WLED) 135
3.4 Summary 136
Chapter 4. High-Efficiency and Ultrastable Solvent-Free Curable Perovskite Quantum Dot Inks for MicroLED and LED Backlighting Applications 137
4.1 Introduction 138
4.2 Experimental Section 140
4.2.1 Synthesis of CsPbBr3 140
4.2.2 Fabrication of solvent-free CsPbBr3 ink 141
4.2.3 Synthesis of CsPb(Br,I)3 142
4.2.4 Fabrication of solvent-free CsPb(Br,I)3 ink 142
4.2.5 Computational methods 143
4.2.6. Fabrication of PeQDs-converted micro-LED pattern 144
4.3 Results and Discussion 144
4.3.1 Scheme for solvent-free ink fabrication 144
4.3.2 Optimization of silane coupling agents for PeQD ink 146
4.3.3 Ink characterization 154
4.3.4 Stability test 164
4.3.5 Stability mechanism 173
4.3.6 Physical and rheological properties of the ink 176
4.3.7 Device performance 179
4.4 Summary 181
Chapter 5. Comprehensive Neurotoxicity of Lead Halide Perovskite Nanocrystals in Nematode Caenorhabditis elegans 183
5.1 Introduction 183
5.2 Experimental Section 188
5.2.1 Synthesis of cesium lead bromide perovskite quantum dots by using the microfluidic system 188
5.2.2 Operation of the microfluidic machine for the synthesis of CsPbBr3 PeQDs 189
5.2.3 Synthesis of SA-encapsulated CsPbBr3 composite 189
5.2.4 C. elegans strains and maintenance 190
5.2.5 Neurobehavior assays 190
5.2.6 C. elegans treatment with SA-CsPbBr3 PeQDs, Cs(CH3COO), Pb(CH3COO)2, and KBr for elemental toxicity evaluation 193
5.2.7 Real-time quantitative reverse transcription polymerase chain reaction (qRT-PCR) 194
5.2.8 Data analysis 195
5.2.9 Imaging analysis and elemental analysis 195
5.3 Results and Discussion 196
5.3.1 Synthesis and characterization of CsPbBr3 and SA-CsPbBr3 PeQDs 196
5.3.2 In vivo imaging of SA-CsPbBr3 PeQD distribution in C. elegans 200
5.3.3 Effects of SA-CsPbBr3 PeQDs on behaviors and pharyngeal pumping in C. elegans 203
5.3.5 Synchrotron XANES analysis 211
5.3.6 ROS production 214
5.3.7 Genetic toxicity mechanism 218
5.4 Summary 223
Chapter 6 Conclusions 225
References 227
Publications in International Scientific Journals 282
Patents 284
-
dc.language.isoen-
dc.subject量產zh_TW
dc.subject鉛鹵化物鈣鈦礦zh_TW
dc.subject大量製造zh_TW
dc.subject流體系統zh_TW
dc.subject矽膠zh_TW
dc.subjectPMMA 高分子zh_TW
dc.subject無溶劑zh_TW
dc.subject噴墨列印zh_TW
dc.subject鈣鈦礦量子點墨水zh_TW
dc.subjectLED 背光zh_TW
dc.subject微型 LEDzh_TW
dc.subject神經毒性zh_TW
dc.subject秀麗隱桿線蟲(C. elegans)zh_TW
dc.subjectnon-solventen
dc.subjectC. elegansen
dc.subjectneurotoxicityen
dc.subjectmicro-LEDen
dc.subjectLED backlightingen
dc.subjectperovskite quantum dot inken
dc.subjectlead halide perovskiteen
dc.subjectinkjet printingen
dc.subjectmass productionen
dc.subjectfluidic systemen
dc.subjectsiliconeen
dc.subjectPMMA polymeren
dc.title金屬鉛鹵化物鈣鈦礦:穩定性、發光二極體應用及神經毒性評估zh_TW
dc.titleMetal Lead Halide Perovskite: Stability, Light-Emitting Diode Applications and Neurotoxicity Evaluationen
dc.typeThesis-
dc.date.schoolyear113-2-
dc.description.degree博士-
dc.contributor.oralexamcommittee廖尉斯;林建中 ;吳春桂 ;郭宗枋 ;魏大華;方彥翔;曾勝茂zh_TW
dc.contributor.oralexamcommitteeWei-Ssu Liao;Chien Chung Lin;Chun-Gui Wu;Tzung Fang Guo;Da Hua Wei;Yen-Hsiang Fang;Sheng Mao Tsengen
dc.subject.keyword鉛鹵化物鈣鈦礦,量產,大量製造,流體系統,矽膠,PMMA 高分子,無溶劑,噴墨列印,鈣鈦礦量子點墨水,LED 背光,微型 LED,神經毒性,秀麗隱桿線蟲(C. elegans),zh_TW
dc.subject.keywordlead halide perovskite,mass production,fluidic system,silicone,PMMA polymer,non-solvent,inkjet printing,perovskite quantum dot ink,LED backlighting,micro-LED,neurotoxicity,C. elegans,en
dc.relation.page284-
dc.identifier.doi10.6342/NTU202501789-
dc.rights.note同意授權(全球公開)-
dc.date.accepted2025-07-15-
dc.contributor.author-college理學院-
dc.contributor.author-dept化學系-
dc.date.embargo-lift2025-07-18-
顯示於系所單位:化學系

文件中的檔案:
檔案 大小格式 
ntu-113-2.pdf27.29 MBAdobe PDF檢視/開啟
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved