Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 工程科學及海洋工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/97813
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor吳文中zh_TW
dc.contributor.advisorWen-Jong Wuen
dc.contributor.author李佳螢zh_TW
dc.contributor.authorChia-Ying Leeen
dc.date.accessioned2025-07-17T16:06:33Z-
dc.date.available2025-07-18-
dc.date.copyright2025-07-17-
dc.date.issued2025-
dc.date.submitted2025-07-14-
dc.identifier.citation[1]S. Roundy, P. K. Wright, J. Rabaey, “A study of low level vibrations as a power source for wireless sensor nodes,” Computer Communications, vol. 26, no. 11, pp. 991-1001, 2003.
[2]G. K. Ottman, H. F. Hofmann, A. C. Bhatt, and G. A. Lesieutre, “Adaptive piezoelectric energy harvesting circuit for wireless remote power supply,” IEEE Transactions on power electronics, vol. 17, no. 5, pp. 669-676, 2002.
[3]Y. K. Ramadass, “Energy processing circuits for low-power applications,” Massachusetts Institute of Technology, 2009.
[4]W. Wu, A. Wickenheiser, T. Reissman, E. J. S. M. Garcia, and Structures, “Modeling and experimental verification of synchronized discharging techniques for boosting power harvesting from piezoelectric transducers,” vol. 18, no. 5, p. 055012, 2009.
[5]Y. K. Ramadass and A. P. J. I. j. o. s.-s. c. Chandrakasan, “An Efficient Piezoelectric Energy Harvesting Interface Circuit Using a Bias-Flip Rectifier and Shared Inductor,” vol. 45, no. 1, pp. 189-204, 2009.
[6]E. Lefeuvre, A. Badel, C. Richard, D. J. J. o. I. M. S. Guyomar, and Structures, “Piezoelectric energy harvesting device optimization by synchronous electric charge extraction,” vol. 16, no. 10, pp. 865-876, 2005.
[7]M. Lallart, W.-J. Wu, Y. Hsieh and L. Yan, “Synchronous inversion and charge extraction (SICE): a hybrid switching interface for efficient vibrational energy harvesting,” Smart Materials and Structures, vol. 26, no. 11, p. 115012, 2017.
[8]K.-R. Cheng, H.-S. Chen, M. Lallart, W.-J. Wu, “A 0.25μm HV-CMOS Synchronous Inversion and Charge Extraction (SICE) Interface Circuit for Piezoelectric Energy Harvesting,” IEEE Int. Symposium on Circuits and Systems (ISCAS),” in Proc. IEEE Int. Symp. Circuits Syst., 2018, pp. 1–4.
[9]C.-C. Chen, W. Zeng Pranoto, H.-S. Chen, W.-J. Wu, “A 0.25-μm HV-CMOS Synchronous Inversion and Charge Extraction Interface Circuit with a Single Inductor for Piezoelectric Energy Harvesting,” IEEE Trans. on Power Electron., vol. 38, no. 12, pp. 15707-15718, 2023
[10]J. C. a. P. Curie, “Development by pressure of polar electricity in hemihedral crystals with inclined faces,” Bull. soc. min. de France, vol. 3, p. 90, 1880.
[11]Y. F. C. Chen, W. Tang, S. Lin, and W. Wu, “The output power improvement and durability with different shape of MEMS piezoelectric energy harvester,” presented at the Structures and NDE for Industry 4.0, 2018.
[12]D. G. a. M. Lallart, “Recent Progress in Piezoelectric Conversion and Energy Harvesting Using Nonlinear Electronic Interfaces and Issues in Small Scale Implementation,” Micromachines, vol. 2, pp. 274-294, 2011.
[13]C. W. a. R. B. Yates, “Analysis Of a micro-electric generator for microsystems,” Sensors and Actuators A: Physical, vol. 52, pp. 8-11, 1996.
[14]M. Shim, J. Kim, J. Jeong, S. Park, C. Kim “Self-Powered 30 μW to 10 mW Piezoelectric Energy Harvesting System With 9.09 ms/V Maximum Power Point Tracking Time,” IEEE Journal of Solid-State Circuit, vol. 50, no. 10, pp.2367-2379, 2015.
[15]J. Liang, “Synchronized bias-flip interface circuits for piezoelectric energy harvesting enhancement: A general model and prospects,” Intelligent Material Systems and Structures vol. 28, pp. 339-356, 2017.
[16]S. Stanzione, C. van Liempd, R. van Schaijk, Y. Naito, R. F. Yazicioglu and C. van Hoof, “A self-biased 5-to-60V input voltage and 25-to-1600µW integrated DC-DC buck converter with fully analog MPPT algorithm reaching up to 88% end-to-end efficiency,” IEEE Int. Solid-State Circuits Conf. (ISSCC) Dig. Tech. Papers, 2013, pp. 74-75.
[17]B. Razavi, “Design of Analog CMOS Integrated Circuits”: McGraw-Hill Series in Electrical and Computer Engineering, 2001.
[18]S. Sankar, P. H. Chen, and M. S. Baghini, “An Efficient Inductive Rectifier Based Piezo-Energy Harvesting Using Recursive Pre-Charge and Accumulation Operation,” IEEE Journal of Solid-State Circuits, vol. 57, no. 8, pp. 2404–2417, 2022.
[19]S. Li, A. Roy, and B. H. Calhoun, “A Piezoelectric Energy-Harvesting System with Parallel-SSHI Rectifier and Integrated MPPT Achieving 417% Energy-Extraction Improvement and 97% Tracking Efficiency,” in Proc. Symp. VLSI Circuits, Jun. 2019, pp. C324–C325.
[20]A. Morel et al., “32.2 Self-Tunable Phase-Shifted SECE Piezoelectric Energy-Harvesting IC with a 30nW MPPT Achieving 446% Energy-Bandwidth Improvement and 94% Efficiency,” in IEEE Int. Solid-State Circuits Conf. (ISSCC) Dig. Tech. Papers, Feb. 2020, pp. 488–490.
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/97813-
dc.description.abstract物聯網的興起大幅改變了現代人的生活,而無線低功耗傳感器在物聯網中扮演著至關重要的角色,透過無線傳感器偵測分析物體周邊的資訊並傳遞分享出去,得以讓物聯網中的物體可以彼此溝通交流資訊,不需仰賴任何人機互動,達成現實世界的數位化。然而無線傳感器的供電是一大問題,若是透過傳統電池來供電的話,人力維護及環境污染的成本會過高。為了解決此問題,因此有了從環境中擷取能源供傳感器使用的研究出現。
壓電能源作為擷取環境能源的一種,相較其他能源,具有能量密度高的優勢,因此很適合用來作為傳感器的電能供應來源。使用壓電材料製成之壓電片,當其處於振動環境中,可透過壓電效應產生交流電源。然而實際應用需透過介面電路將交流電源整流後,才可供電給傳感器做使用。傳統上最簡單的介面電路為使用全橋整流器,優點為架構簡單、不需額外控制電路即可運作,缺點則是輸出功率不高,因為全橋整流器包含四顆二極體,會導致有大量能量被浪費。
同步電壓反轉與電荷擷取介面電路(Synchronous Inversion and Charge Extraction, SICE)就是因應此問題而被提出,然而若要將此介面電路操作在輸出功率最大值,需要透過手動量測、計算寄生電容與外接電感的LC共振路徑上之電壓反轉因子(Voltage inversion factor),大幅增加操作上的困難度。因此本論文提出應用於同步電壓反轉與電荷擷取介面電路之最大功率點追蹤控制電路,讓控制電路可以自動根據介面電路之電壓反轉因子設定最佳電壓反轉次數,大幅降低將介面電路操作在高功率點的操作複雜度。
本論文之設計晶片是使用台積電180 nm 高壓BCD製程,根據量測結果,在電壓反轉因子為0.804時,輸出功率增益為632%,透過最大功率點追蹤控制電路讓電壓反轉次數操作在4次;在電壓反轉因子0.645時,輸出功率增益為491%,透過最大功率點追蹤控制電路讓電壓反轉次數操作在2次。最大功率點追蹤演算法於電壓反轉因子超過0.6時,最大功率點追蹤效率可超過92%;於電壓反轉因子超過0.8時,最大功率點追蹤效率可超過98%。
zh_TW
dc.description.abstractThe rise of the Internet of Things (IoT) has significantly changed modern life, and wireless low-power sensors play a crucial role in the IoT ecosystem. By detecting and analyzing information from the surrounding environment, wireless sensors enable the communication and exchange of data between IoT devices. This process requires no human-machine interaction, thereby facilitating the digitalization of the physical world. However, the power supply for wireless sensors remains a significant challenge. If traditional batteries are used, the maintenance efforts and environmental pollution costs become prohibitively high. To address this issue, research into energy harvesting from the environment to power sensors has emerged.
Piezoelectric energy, as a form of energy harvesting, has the advantage of high energy density compared to other energy sources, making it an ideal candidate for powering sensors. When piezoelectric materials are used to create piezoelectric plates, they can generate an AC power source through the piezoelectric effect when subjected to vibrations. However, in practical applications, an interface circuit is required to rectify the AC power before it can be used to power the sensors. Traditionally, the simplest interface circuit is the full-bridge rectifier. The advantage of this approach is its simple structure and the fact that it operates without the need for additional control circuits. However, the downside is that the output power is not very high because the full-bridge rectifier, which includes four diodes, results in significant energy loss.
To address this issue, the Synchronous Inversion and Charge Extraction (SICE) interface circuit was proposed. However, in order to operate this interface circuit at its maximum output power, the voltage inversion factor in the LC resonance path involving parasitic capacitance and external inductance needs to be manually measured and calculated, which greatly increases the complexity of operation. Therefore, this paper proposes a Maximum Power Point Tracking (MPPT) control circuit for SICE, which allows the control circuit to automatically set the optimal number of voltage inversions based on the voltage inversion factor of the interface circuit. The proposed MPPT control circuit significantly reduces the complexity of operating the interface circuit at high output power point.
The chip designed in this paper was fabricated using TSMC 180 nm high-voltage BCD process. According to the measurement results, when the voltage inversion factor was 0.804, the output power gain was 632%, and the voltage inversion was optimized to 4 times through the MPPT control circuit. When the voltage inversion factor was 0.645, the output power gain was 491%, and the voltage inversion was optimized to 2 times using the MPPT control circuit. The MPPT algorithm can achieve a tracking efficiency exceeding 92% when the voltage inversion factor is greater than 0.6, and exceeds 98% when it is greater than 0.8.
en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2025-07-17T16:06:33Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2025-07-17T16:06:33Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontents致謝 i
中文摘要 ii
Abstract iii
目次 v
圖次 vii
表次 xi
第1章 緒論 1
第2章 壓電能量擷取系統 4
2.1 壓電材料與壓電效應 4
2.2 壓電能量擷取器 6
2.3 壓電元件等效電路模型 7
第3章 壓電能量擷取介面電路 10
3.1 標準能量擷取介面電路 10
3.2 電感並聯式同步切換介面電路 15
3.3 同步電荷擷取介面電路 20
3.4 同步電壓反轉與電荷擷取介面電路 22
3.5 同步電壓反轉與電荷擷取介面電路之能量循環圖 27
3.6 介面電路比較與討論 30
第4章 同步電壓反轉與電荷擷取介面電路 32
4.1 電路設計目標與考量 32
4.2 全電路架構 32
4.3 最大功率點追蹤演算法 34
4.4 控制電路 39
4.4.1 功率級開關與驅動電路 39
4.4.2 負電壓轉換器 40
4.4.3 峰值檢測器 41
4.4.4 延遲脈波產生器 42
4.4.5 連續時間比較器 43
4.4.6 功率計算電路 44
4.5 模擬與量測結果 45
4.5.1 晶片模擬結果 45
4.5.2 晶片量測結果 51
4.5.3 晶片效能比較 61
第5章 結論與未來展望 65
5.1 結論 65
5.2 未來展望 65
參考文獻 66
-
dc.language.isozh_TW-
dc.subject最大功率點追蹤zh_TW
dc.subject電壓反轉效率zh_TW
dc.subject同步電壓反轉與電荷擷取介面電路zh_TW
dc.subject壓電能量擷取zh_TW
dc.subject物聯網zh_TW
dc.subjectVoltage Inversion Efficiencyen
dc.subjectIoTen
dc.subjectPiezoelectric Energy Harvestingen
dc.subjectSynchronous Inversion and Charge Extraction (SICE)en
dc.subjectMaximum Power Point Tracking (MPPT)en
dc.title應用於壓電能量擷取系統之具最大功率點追蹤的同步電壓反轉與電荷擷取介面電路zh_TW
dc.titleA Synchronous Inversion and Charge Extraction Interface Circuit with Maximum Power Point Tracking (MPPT) for Piezoelectric Energy Harvestingen
dc.typeThesis-
dc.date.schoolyear113-2-
dc.description.degree碩士-
dc.contributor.oralexamcommittee陳信樹;李坤彥;林致廷zh_TW
dc.contributor.oralexamcommitteeHsin-Shu Chen;Kung-Yen Lee;Chih-Ting Linen
dc.subject.keyword物聯網,壓電能量擷取,同步電壓反轉與電荷擷取介面電路,最大功率點追蹤,電壓反轉效率,zh_TW
dc.subject.keywordIoT,Piezoelectric Energy Harvesting,Synchronous Inversion and Charge Extraction (SICE),Maximum Power Point Tracking (MPPT),Voltage Inversion Efficiency,en
dc.relation.page68-
dc.identifier.doi10.6342/NTU202501683-
dc.rights.note未授權-
dc.date.accepted2025-07-15-
dc.contributor.author-college工學院-
dc.contributor.author-dept工程科學及海洋工程學系-
dc.date.embargo-liftN/A-
顯示於系所單位:工程科學及海洋工程學系

文件中的檔案:
檔案 大小格式 
ntu-113-2.pdf
  未授權公開取用
5.29 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved