請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/97812完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 王兆麟 | zh_TW |
| dc.contributor.advisor | Jaw-Lin Wang | en |
| dc.contributor.author | 宋瑾瑜 | zh_TW |
| dc.contributor.author | Chin-Yu Sung | en |
| dc.date.accessioned | 2025-07-17T16:06:22Z | - |
| dc.date.available | 2025-07-18 | - |
| dc.date.copyright | 2025-07-17 | - |
| dc.date.issued | 2025 | - |
| dc.date.submitted | 2025-07-09 | - |
| dc.identifier.citation | 1. Dimitriou, R., et al., Bone regeneration: current concepts and future directions. BMC medicine, 2011. 9: p. 1-10.
2. Ghiasi, M.S., et al., Bone fracture healing in mechanobiological modeling: A review of principles and methods. Bone Rep, 2017. 6: p. 87-100. 3. Dimitriou, R., Jones, E., McGonagle, D. et al. , <Boneregeneration: currentconceptsandfuturedirections.pdf>. BMC Medicine, 2011. 4. Bigham‐Sadegh, A. and A. Oryan, Basic concepts regarding fracture healing and the current options and future directions in managing bone fractures. International wound journal, 2015. 12(3): p. 238-247. 5. Chu, Y.C., et al., Activation of Mechanosensitive Ion Channels by Ultrasound. Ultrasound Med Biol, 2022. 48(10): p. 1981-1994. 6. Chu, Y.C., et al., The responses of nucleus pulposus cells to pressure and ultrasound stimulation. J Acoust Soc Am, 2020. 148(4): p. EL314. 7. Lim, J., et al., Piezoelectric effect stimulates the rearrangement of chondrogenic cells and alters ciliary orientation via atypical PKCzeta. Biochem Biophys Rep, 2022. 30: p. 101265. 8. Chu, Y.C., et al., Piezoelectric stimulation by ultrasound facilitates chondrogenesis of mesenchymal stem cells. J Acoust Soc Am, 2020. 148(1): p. EL58. 9. Kalimuldina, G., et al., A Review of Piezoelectric PVDF Film by Electrospinning and Its Applications. Sensors (Basel), 2020. 20(18). 10. Gade, H., et al., Effect of electrospinning conditions on β-phase and surface charge potential of PVDF fibers. Polymer, 2021. 228. 11. Donate, R., et al., An overview of polymeric composite scaffolds with piezoelectric properties for improved bone regeneration. Materials & Design, 2023. 231. 12. Stachewicz, U., et al., Pore shape and size dependence on cell growth into electrospun fiber scaffolds for tissue engineering: 2D and 3D analyses using SEM and FIB-SEM tomography. Mater Sci Eng C Mater Biol Appl, 2019. 95: p. 397-408. 13. Chen, H., et al., Fabrication of nanofibrous scaffolds for tissue engineering applications, in Nanomaterials in Tissue Engineering. 2013. p. 158-183. 14. Jacob, J., et al., Piezoelectric smart biomaterials for bone and cartilage tissue engineering. Inflamm Regen, 2018. 38: p. 2. 15. Rosso, F., et al., From cell-ECM interactions to tissue engineering. J Cell Physiol, 2004. 199(2): p. 174-80. 16. Sisson, K., et al., Fiber diameters control osteoblastic cell migration and differentiation in electrospun gelatin. J Biomed Mater Res A, 2010. 94(4): p. 1312-20. 17. Kim, G. and W. Kim, Highly porous 3D nanofiber scaffold using an electrospinning technique. J Biomed Mater Res B Appl Biomater, 2007. 81(1): p. 104-10. 18. Gerardo-Nava, J., et al., Human neural cell interactions with orientated electrospun nanofibers in vitro. Nanomedicine (Lond), 2009. 4(1): p. 11-30. 19. D'Alessandro, D., et al., Piezoelectric Signals in Vascularized Bone Regeneration. Biomolecules, 2021. 11(11). 20. Yang, C., et al., Application of Piezoelectric Material and Devices in Bone Regeneration. Nanomaterials (Basel), 2022. 12(24). 21. Ahn, Y., et al., Enhanced Piezoelectric Properties of Electrospun Poly(vinylidene fluoride)/Multiwalled Carbon Nanotube Composites Due to High β-Phase Formation in Poly(vinylidene fluoride). The Journal of Physical Chemistry C, 2013. 117(22): p. 11791-11799. 22. Sodano, H.A., D.J. Inman, and G. Park, A Review of Power Harvesting from Vibration Using Piezoelectric Materials. The Shock and Vibration Digest, 2004. 36(3): p. 197-205. 23. Pariy, I.O., et al., Poling and annealing of piezoelectric Poly(Vinylidene fluoride) micropillar arrays. Materials Chemistry and Physics, 2020. 239. 24. He, Z., et al., Electrospun PVDF Nanofibers for Piezoelectric Applications: A Review of the Influence of Electrospinning Parameters on the beta Phase and Crystallinity Enhancement. Polymers (Basel), 2021. 13(2). 25. De Neef, A., et al., Processing of PVDF-based electroactive/ferroelectric films: Importance of PMMA and cooling rate from the melt state on the crystallization of PVDF beta-crystals. Soft Matter, 2018. 14(22): p. 4591-4602. 26. Sharma, M., G. Madras, and S. Bose, Process induced electroactive β-polymorph in PVDF: effect on dielectric and ferroelectric properties. Physical chemistry chemical physics, 2014. 16(28): p. 14792-14799. 27. Carter, A., et al., Enhancement of Bone Regeneration Through the Converse Piezoelectric Effect, A Novel Approach for Applying Mechanical Stimulation. Bioelectricity, 2021. 3(4): p. 255-271. 28. Wu, H., et al., Electrical stimulation of piezoelectric BaTiO3 coated Ti6Al4V scaffolds promotes anti-inflammatory polarization of macrophages and bone repair via MAPK/JNK inhibition and OXPHOS activation. Biomaterials, 2023. 293: p. 121990. 29. Fukada, E. and I. Yasuda, On the piezoelectric effect of bone. Journal of the physical society of Japan, 1957. 12(10): p. 1158-1162. 30. Khare, D., B. Basu, and A.K. Dubey, Electrical stimulation and piezoelectric biomaterials for bone tissue engineering applications. Biomaterials, 2020. 258: p. 120280. 31. MCELHANEY, J.H., The Charge Distribution on the Human Femur Due to Load. JBJS, 1967. 49(8): p. 1561-1571. 32. Duck, F.A., A.C. Baker, and H.C. Starritt, Ultrasound in medicine. 2020: CRC Press. 33. Guo, H.F., et al., Piezoelectric PU/PVDF electrospun scaffolds for wound healing applications. Colloids Surf B Biointerfaces, 2012. 96: p. 29-36. 34. Kubin, M., et al., Effects of nano-sized BaTiO3 on microstructural, thermal, mechanical and piezoelectric behavior of electrospun PVDF/BaTiO3 nanocomposite mats. Polymer Testing, 2023. 126. 35. Mahboubizadeh, S., S.T. Dilamani, and S. Baghshahi, Piezoelectricity performance and beta-phase analysis of PVDF composite fibers with BaTiO(3) and PZT reinforcement. Heliyon, 2024. 10(3): p. e25021. 36. Megdich, A., M. Habibi, and L. Laperrière, Modeling and optimization of piezoelectric and dielectric properties of poled PVDF/BT nanocomposites. Polymer Bulletin, 2024. 81(10): p. 9181-9201. 37. Kabir, E., et al., Pureβ-phase formation in polyvinylidene fluoride (PVDF)-carbon nanotube composites. Journal of Physics D: Applied Physics, 2017. 50(16). 38. Motamedi, A.S., et al., Effect of electrospinning parameters on morphological properties of PVDF nanofibrous scaffolds. Prog Biomater, 2017. 6(3): p. 113-123. 39. Zhu, F., et al., Electric/Magnetic Intervention for Bone Regeneration: A Systematic Review and Network Meta-Analysis. Tissue Eng Part B Rev, 2023. 29(3): p. 217-231. 40. Tai, G., M. Tai, and M. Zhao, Electrically stimulated cell migration and its contribution to wound healing. Burns Trauma, 2018. 6: p. 20. 41. Damaraju, S.M., et al., Structural changes in PVDF fibers due to electrospinning and its effect on biological function. Biomed Mater, 2013. 8(4): p. 045007. 42. Mellon, S.J. and K.E. Tanner, Bone and its adaptation to mechanical loading: a review. International Materials Reviews, 2013. 57(5): p. 235-255. 43. Meakin, L.B., J.S. Price, and L.E. Lanyon, The Contribution of Experimental in vivo Models to Understanding the Mechanisms of Adaptation to Mechanical Loading in Bone. Front Endocrinol (Lausanne), 2014. 5: p. 154. 44. <Improved Bone Structure and Strength After Long-Term.pdf>. 45. Selleri, G., et al., Study on the polarization process for piezoelectric nanofibrous layers, in 2021 IEEE Conference on Electrical Insulation and Dielectric Phenomena (CEIDP). 2021. p. 61-64. 46. Ren, K., et al., Electrospun PCL/gelatin composite nanofiber structures for effective guided bone regeneration membranes. Mater Sci Eng C Mater Biol Appl, 2017. 78: p. 324-332. 47. Badami, A.S., et al., Effect of fiber diameter on spreading, proliferation, and differentiation of osteoblastic cells on electrospun poly(lactic acid) substrates. Biomaterials, 2006. 27(4): p. 596-606. 48. Mhatre, A., et al., Chitosan/gelatin/PVA membranes for mammalian cell culture. Carbohydrate Polymer Technologies and Applications, 2021. 2. 49. Dawson, N.M., P.M. Atencio, and K.J. Malloy, Facile deposition of high quality ferroelectric poly(vinylidene fluoride) thin films by thermally modulated spin coating. Journal of Polymer Science Part B: Polymer Physics, 2016. 55(3): p. 221-227. 50. Yilgor, P., et al., Incorporation of a sequential BMP-2/BMP-7 delivery system into chitosan-based scaffolds for bone tissue engineering. Biomaterials, 2009. 30(21): p. 3551-9. 51. Yilgor, P., et al., Effect of scaffold architecture and BMP-2/BMP-7 delivery on in vitro bone regeneration. Journal of Materials Science: Materials in Medicine, 2010. 21: p. 2999-3008. 52. Gao, J., et al., A biodegradable antibiotic-eluting PLGA nanofiber-loaded deproteinized bone for treatment of infected rabbit bone defects. J Biomater Appl, 2016. 31(2): p. 241-9. 53. Martins, A., et al., Osteogenic induction of hBMSCs by electrospun scaffolds with dexamethasone release functionality. Biomaterials, 2010. 31(22): p. 5875-5885. 54. Alves, P.E., et al., Controlled delivery of dexamethasone and betamethasone from PLA electrospun fibers: A comparative study. European Polymer Journal, 2019. 117: p. 1-9. 55. Liu, J., et al., Anticancer and bone-enhanced nano-hydroxyapatite/gelatin/polylactic acid fibrous membrane with dual drug delivery and sequential release for osteosarcoma. Int J Biol Macromol, 2023. 240: p. 124406. 56. Ma, G., et al., Paclitaxel loaded electrospun porous nanofibers as mat potential application for chemotherapy against prostate cancer. Carbohydrate polymers, 2011. 86(2): p. 505-512. 57. Mao, Y., et al., Electrospun fibers: an innovative delivery method for the treatment of bone diseases. Expert Opinion on Drug Delivery, 2020. 17(7): p. 993-1005. 58. Ji, W., et al., Incorporation of stromal cell-derived factor-1α in PCL/gelatin electrospun membranes for guided bone regeneration. Biomaterials, 2013. 34(3): p. 735-745. | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/97812 | - |
| dc.description.abstract | 骨折癒合作為一項複雜且多重階段的過程,臨床常面臨癒合遲緩與大範圍骨缺損等挑戰。本研究開發具壓電特性的聚偏二氟乙烯(PVDF)奈米纖維支架,透過靜電紡絲與極化處理,使其兼具仿細胞結構與壓電響應,探討其於靜態生理條件下促進骨再生的潛力。所得支架具中比例 β 相結晶,展現良好材料特性,包括拉伸強度約 25 MPa、接觸角約115°、與壓電係數 d₃₃ 約 60 pC/N,並呈多孔三維纖維網絡,有助於細胞貼附與營養交換。細胞實驗顯示,壓電支架能顯著提升前成骨細胞遷移能力(p = 0.002),並促進礦化表現;觀察動物實驗結果亦顯示,PVDF處理組於三點力學測試表現出優於對照組的修復趨勢。整體而言,本研究所建構之壓電支架在無外力刺激下即展現生物相容性與骨癒合潛力,具體顯示其於骨折修復與骨內固定裝置塗層開發之應用前景。 | zh_TW |
| dc.description.abstract | Bone fracture healing is a complex, multi-phase process that often faces clinical challenges such as delayed union and large segmental bone defects. In this study, a piezoelectric nanofibrous scaffold composed of polyvinylidene fluoride (PVDF) was developed via electrospinning and poling treatment to mimic extracellular matrix structure while providing intrinsic piezoelectric responsiveness. The resulting scaffold exhibited a moderate proportion of β-phase crystallinity and favorable material characteristics, including a tensile strength of approximately 25 MPa, water contact angle of 115°, and a piezoelectric coefficient (d₃₃) of around 60 pC/N. Its highly porous three-dimensional fibrous network supported cell adhesion and nutrient exchange.
In vitro experiments demonstrated that the piezoelectric scaffold significantly enhanced preosteoblast migration (p = 0.002) and promoted mineralization. Furthermore, animal studies revealed a favorable trend of improved bone healing in the PVDF-treated group, as evidenced by superior performance in three-point bending mechanical tests compared to the control group. Overall, the piezoelectric scaffold developed in this study exhibited excellent biocompatibility and bone-regenerative potential under static conditions, highlighting its promising application in bone fracture repair and as a coating material for internal fixation devices. | en |
| dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2025-07-17T16:06:22Z No. of bitstreams: 0 | en |
| dc.description.provenance | Made available in DSpace on 2025-07-17T16:06:22Z (GMT). No. of bitstreams: 0 | en |
| dc.description.tableofcontents | 口試委員審定書 I
致謝 II 摘要 III Abstract IV 目次 V 圖次 VII 表次 IX 第一章 緒論 1 1.1研究背景 1 1.2靜電紡絲技術簡介 2 1.3壓電效應簡介 4 1.3.1正壓電效應 4 1.3.2逆壓電效應 4 1.4壓電材料簡介 5 1.4.1聚偏二氟乙烯(PVDF) 5 1.5骨質新生與生物壓電性簡介 7 1.6超音波簡介 8 1.7研究目的 10 第二章 材料與方法 11 2.1研究方法介紹 11 2.2 PVDF壓電薄膜製備與極化裝置 13 2.3壓電薄膜材料試驗 19 2.3.1壓電薄膜表面分析 19 2.3.2壓電薄膜FTIR分析 19 2.3.3壓電薄膜孔隙率分析 20 2.3.4壓電薄膜機械力拉伸試驗 20 2.3.5壓電薄膜水觸角測試 22 2.3.6壓電薄膜壓電係數測試 22 2.4前成骨細胞培養 23 2.4.1繼代 23 2.5 PVDF壓電薄膜前成骨細胞癒合實驗 24 2.5.1前成骨細胞培養 24 2.5.2壓電骨針樣品準備 24 2.5.3壓電骨針超音波刺激裝置 25 2.5.4癒合實驗觀察方法 27 2.6 PVDF壓電薄膜前成骨細胞增殖實驗 28 2.6.1 PVDF紡絲薄膜準備 28 2.6.2前成骨細胞培養 28 2.6.3細胞增殖實驗白光觀察 29 2.6.4免疫螢光染色 29 2.6.5細胞鈣化染鈣分析 32 2.7 大鼠傷害治療實驗 35 2.7.1大鼠傷害治療模型 35 第三章 實驗結果與討論 40 3.1壓電薄膜製造 40 3.2壓電薄膜材料試驗 40 3.2.1壓電薄膜表面分析 40 3.2.2壓電薄膜FTIR分析 44 3.2.3壓電薄膜孔隙率分析 45 3.2.4壓電薄膜機械力拉伸試驗 46 3.2.5壓電薄膜水接觸角分析 48 3.2.6壓電薄膜壓電係數測試 49 3.3 PVDF壓電薄膜前成骨細胞癒合實驗 51 3.4 PVDF壓電薄膜前成骨細胞增殖實驗 53 3.4.1 前成骨細胞增生與存活率 53 3.4.2壓電紡絲細胞鈣化分析 56 3.5大鼠傷害治療實驗 60 3.5.1大鼠股骨機械力分析 60 3.6壓電骨釘壓電電場分析 64 第四章 結論 67 4.1 PVDF壓電薄膜的製程設計 67 4.2 奈米壓電紡絲薄膜對於前成骨細胞的生長潛力 67 4.3第一批大鼠實驗結論 68 第五章 未來展望 70 5.1 PVDF壓電薄膜的製程優化 70 5.2壓電薄膜對於再生醫學之應用潛力 70 5.3壓電醫材商業化 71 第六章 參考文獻 73 | - |
| dc.language.iso | zh_TW | - |
| dc.subject | 壓電奈米纖維 | zh_TW |
| dc.subject | 骨癒合促進 | zh_TW |
| dc.subject | 生物相容性支架 | zh_TW |
| dc.subject | PVDF靜電紡絲 | zh_TW |
| dc.subject | Biocompatible Scaffold | en |
| dc.subject | Enhanced Bone Healing | en |
| dc.subject | Electrospinning PVDF | en |
| dc.subject | Piezoelectric Nanofibers | en |
| dc.title | 增進骨生長之壓電薄膜開發與應用 | zh_TW |
| dc.title | Development and Application of Piezoelectric Thin Films for Enhancing Bone Growth | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 113-2 | - |
| dc.description.degree | 碩士 | - |
| dc.contributor.oralexamcommittee | 張志豪;程育人;陳文翔;黃育熙 | zh_TW |
| dc.contributor.oralexamcommittee | Chih-Hao Chang;Yuh-Jen Cheng;Wen-Shiang Chen;Yu-Hsi Huang | en |
| dc.subject.keyword | 壓電奈米纖維,PVDF靜電紡絲,生物相容性支架,骨癒合促進, | zh_TW |
| dc.subject.keyword | Piezoelectric Nanofibers,Electrospinning PVDF,Biocompatible Scaffold,Enhanced Bone Healing, | en |
| dc.relation.page | 77 | - |
| dc.identifier.doi | 10.6342/NTU202501624 | - |
| dc.rights.note | 同意授權(限校園內公開) | - |
| dc.date.accepted | 2025-07-11 | - |
| dc.contributor.author-college | 工學院 | - |
| dc.contributor.author-dept | 醫學工程學系 | - |
| dc.date.embargo-lift | 2025-07-18 | - |
| 顯示於系所單位: | 醫學工程學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-113-2.pdf 授權僅限NTU校內IP使用(校園外請利用VPN校外連線服務) | 3.96 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
