Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 理學院
  3. 化學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/97804
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor周必泰zh_TW
dc.contributor.advisorPi-Tai Chouen
dc.contributor.author洪頡茗zh_TW
dc.contributor.authorChieh-Ming Hungen
dc.date.accessioned2025-07-17T16:04:45Z-
dc.date.available2025-07-18-
dc.date.copyright2025-07-17-
dc.date.issued2025-
dc.date.submitted2025-07-09-
dc.identifier.citation[1] J. Min, Y. Choi, D. Kim, T. Park, Advanced Energy Materials 2024, 14, 2302659.
[2] W.-J. Yin, T. Shi, Y. Yan, Advanced Materials 2014, 26, 4653.
[3] A. Buin, P. Pietsch, J. Xu, O. Voznyy, A. H. Ip, R. Comin, E. H. Sargent, Nano Letters 2014, 14, 6281.
[4] R. E. Brandt, J. R. Poindexter, P. Gorai, R. C. Kurchin, R. L. Z. Hoye, L. Nienhaus, M. W. B. Wilson, J. A. Polizzotti, R. Sereika, R. Žaltauskas, L. C. Lee, J. L. MacManus-Driscoll, M. Bawendi, V. Stevanović, T. Buonassisi, Chemistry of Materials 2017, 29, 4667.
[5] N. Aristidou, I. Sanchez-Molina, T. Chotchuangchutchaval, M. Brown, L. Martinez, T. Rath, S. A. Haque, Angewandte Chemie International Edition 2015, 54, 8208.
[6] E. J. Juarez-Perez, Z. Hawash, S. R. Raga, L. K. Ono, Y. Qi, Energy & Environmental Science 2016, 9, 3406.
[7] D. Li, S. A. Bretschneider, V. W. Bergmann, I. M. Hermes, J. Mars, A. Klasen, H. Lu, W. Tremel, M. Mezger, H.-J. Butt, S. A. L. Weber, R. Berger, The Journal of Physical Chemistry C 2016, 120, 6363.
[8] B. Yang, D. Bogachuk, J. Suo, L. Wagner, H. Kim, J. Lim, A. Hinsch, G. Boschloo, M. K. Nazeeruddin, A. Hagfeldt, Chemical Society Reviews 2022, 51, 7509.
[9] C. Yang, Y. Gao, H. Zhang, Z.-F. Yao, E.-L. Li, H.-H. Guan, H.-F. Zhi, Q. Yuan, M. H. Jee, H. Y. Woo, J. Min, J.-L. Wang, Angewandte Chemie International Edition 2025, n/a, e202506795.
[10] Z. Zhang, J. Liang, J. Wang, Y. Zheng, X. Wu, C. Tian, A. Sun, Y. Huang, Z. Zhou, Y. Yang, Y. Liu, C. Tang, C.-C. Chen, Advanced Energy Materials 2023, 13, 2300181.
[11] A. Halder, K.-W. Yeom, N.-G. Park, ACS Energy Letters 2023, 8, 4267.
[12] J. Song, T. Kong, Y. Zhang, X. Liu, M. Saliba, D. Bi, Advanced Functional Materials 2023, 33, 2304201.
[13] A. Yadegarifard, H. Lee, H.-J. Seok, I. Kim, B.-K. Ju, H.-K. Kim, D.-K. Lee, Nano Energy 2023, 112, 108481.
[14] J. Roe, J. G. Son, S. Park, J. Seo, T. Song, J. Kim, S. O. Oh, Y. Jo, Y. Lee, Y. S. Shin, H. Jang, D. Lee, D. Yuk, J. G. Seol, Y. S. Kim, S. Cho, D. S. Kim, J. Y. Kim, ACS Nano 2024, 18, 24306.
[15] J. Zeng, J. Wang, J. Wang, J. Li, J. Chen, F. Wei, J. Zhang, W. Song, X. Fan, ACS Nano 2024, 18, 31390.
[16] W. Zhang, H. Yuan, X. Li, X. Guo, C. Lu, A. Liu, H. Yang, L. Xu, X. Shi, Z. Fang, H. Yang, Y. Cheng, J. Fang, Advanced Materials 2023, 35, 2303674.
[17] H. Liu, Z. Zhang, W. Zuo, R. Roy, M. Li, M. M. Byranvand, M. Saliba, Advanced Energy Materials 2023, 13, 2202209.
[18] J. Liu, H. Yao, S. Wang, C. Wu, L. Ding, F. Hao, Advanced Energy Materials 2023, 13, 2300696.
[19] Q. Wang, J. Xiong, Y. Xing, X. Gan, W. Zhu, R. Xuan, X. Liu, L. Huang, Y. Zhu, J. Zhang, Advanced Science 2024, 11, 2400962.
[20] M. A. Karim, K. Matsuishi, M. E. Kayesh, Y. He, A. Islam, ACS Applied Materials & Interfaces 2023, 15, 45823.
[21] D. B. Khadka, Y. Shirai, M. Yanagida, T. Tadano, K. Miyano, Chemistry of Materials 2023, 35, 4250.
[22] Z. Zhang, J. Liu, H. Bi, L. Wang, Q. Shen, S. Hayase, Chemical Engineering Journal 2024, 483, 149345.
[23] L. Wang, Q. Miao, D. Wang, M. Chen, H. Bi, J. Liu, A. K. Baranwal, G. Kapil, Y. Sanehira, T. Kitamura, T. Ma, Z. Zhang, Q. Shen, S. Hayase, Angewandte Chemie International Edition 2023, 62, e202307228.
[24] X. He, T. Xu, J. Zhang, S. Yang, W. Song, Y. Cui, W. Zhang, ACS Applied Energy Materials 2024, 7, 7838.
[25] M.-H. Lee, M. S. Kim, Y. J. Lee, B. Kim, J.-H. Kim, C. Lee, J. Lee, D.-J. Kim, H. Ko, M. D. Ganji, K. Lee, W. Kim, J.-Y. Lee, Advanced Materials 2024, 36, 2411015.
[26] D. Nodari, L. J. F. Hart, O. J. Sandberg, F. Furlan, E. Angela, J. Panidi, Z. Qiao, M. A. McLachlan, P. R. F. Barnes, J. R. Durrant, A. Ardalan, N. Gasparini, Advanced Materials 2024, 36, 2401206.
[27] J. Sun, B. Li, L. Hu, J. Guo, X. Ling, X. Zhang, C. Zhang, X. Wu, H. Huang, C. Han, X. Liu, Y. Li, S. Huang, T. Wu, J. Yuan, W. Ma, Advanced Materials 2023, 35, 2206047.
[28] J. Yuan, Y. Zhang, L. Zhou, G. Zhang, H.-L. Yip, T.-K. Lau, X. Lu, C. Zhu, H. Peng, P. A. Johnson, M. Leclerc, Y. Cao, J. Ulanski, Y. Li, Y. Zou, Joule 2019, 3, 1140.
[29] Q. Hu, W. Chen, W. Yang, Y. Li, Y. Zhou, B. W. Larson, J. C. Johnson, Y.-H. Lu, W. Zhong, J. Xu, L. Klivansky, C. Wang, M. Salmeron, A. B. Djurišić, F. Liu, Z. He, R. Zhu, T. P. Russell, Joule 2020, 4, 1575.
[30] S. Wu, Z. Li, J. Zhang, X. Wu, X. Deng, Y. Liu, J. Zhou, C. Zhi, X. Yu, W. C. H. Choy, Z. Zhu, A. K. Y. Jen, Advanced Materials 2021, 33, 2105539.
[31] Z. Shi, D. Zhou, X. Zhuang, W. Xu, S. Liu, Y. Liao, P. Jia, G. Pan, W. Liu, J. Zhu, H. Song, Advanced Energy Materials 2024, 14, 2303735.
[32] Y. Wu, N. Ding, Y. Zhang, B. Liu, X. Zhuang, S. Liu, Z. Nie, X. Bai, B. Dong, L. Xu, D. Zhou, H. Song, Advanced Energy Materials 2022, 12, 2200005.
[33] Y.-J. Xue, Z.-Y. Lai, H.-C. Lu, J.-C. Hong, C.-L. Tsai, C.-L. Huang, K.-H. Huang, C.-F. Lu, Y.-Y. Lai, C.-S. Hsu, J.-M. Lin, J.-W. Chang, S.-Y. Chien, G.-H. Lee, U. S. Jeng, Y.-J. Cheng, Journal of the American Chemical Society 2024, 146, 833.
[34] K.-H. Huang, C.-C. Tseng, C.-L. Tsai, Y.-J. Xue, H.-C. Lu, C.-F. Lu, Y.-Y. Chang, C.-L. Huang, I. J. Hsu, Y.-Y. Lai, Y.-P. Zheng, B.-H. Jiang, C.-P. Chen, S.-Y. Chien, U. S. Jeng, C.-S. Hsu, Y.-J. Cheng, Advanced Functional Materials 2025, 35, 2419176.
[35] S. Yang, M. Wu, X. Lei, J. Wang, Y. Han, X. He, S. Liu, Z. Liu, ACS Energy Letters 2024, 9, 4817.
[36] C.-M. Hung, J.-T. Lin, Y.-H. Yang, Y.-C. Liu, M.-W. Gu, T.-C. Chou, S.-F. Wang, Z.-Q. Chen, C.-C. Wu, L.-C. Chen, C.-C. Hsu, C.-H. Chen, C.-W. Chiu, H.-C. Chen, P.-T. Chou, JACS Au 2022, 2, 1189.
[37] Z. Yi, W. Wang, R. He, J. Zhu, W. Jiao, Y. Luo, Y. Xu, Y. Wang, Z. Zeng, K. Wei, J. Zhang, S.-W. Tsang, C. Chen, W. Tang, D. Zhao, Energy & Environmental Science 2024, 17, 202.
[38] T. Yue, K. Li, X. Li, N. Ahmad, H. Kang, Q. Cheng, Y. Zhang, Y. Yue, Y. Jing, B. Wang, S. Li, J. Chen, G. Huang, Y. Li, Z. Fu, T. Wu, S. U. Zafar, L. Zhu, H. Zhou, Y. Zhang, ACS Nano 2023, 17, 14632.
[39] L. Kong, Y. Luo, Q. Wu, X. Xiao, Y. Wang, G. Chen, J. Zhang, K. Wang, W. C. H. Choy, Y.-B. Zhao, H. Li, T. Chiba, J. Kido, X. Yang, Light: Science & Applications 2024, 13, 138.
[40] L. Wu, X. Mu, D. Liu, W. Li, D. Li, J. Zhang, C. Liu, T. Feng, Y. Wu, J. Li, S.-J. Su, Z. Ge, Angewandte Chemie International Edition 2024, 63, e202409580.
[41] Y. Zhang, J. Wei, L. Wang, T. Huang, G. Meng, X. Wang, X. Zeng, M. Du, T. Fan, C. Yin, D. Zhang, L. Duan, Advanced Materials 2023, 35, 2209396.
[42] L. Zhu, M. Zhang, Z. Zhou, W. Zhong, T. Hao, S. Xu, R. Zeng, J. Zhuang, X. Xue, H. Jing, Y. Zhang, F. Liu, Nature Reviews Electrical Engineering 2024, 1, 581.
[43] H. Gao, Q. Li, B. Fan, Z. Bi, W. Jiang, S. Zhang, Q. Fan, T. Chen, F. R. Lin, B. Kan, D. Lei, W. Ma, A. K. Y. Jen, Advanced Energy Materials 2024, n/a, 2403121.
[44] O. Nahor, A. Khirbat, S. A. Schneider, M. F. Toney, N. Stingelin, G. L. Frey, ACS Materials Letters 2022, 4, 2125.
[45] M.-C. Tsai, C.-M. Hung, Z.-Q. Chen, Y.-C. Chiu, H.-C. Chen, C.-Y. Lin, ACS Applied Materials & Interfaces 2019, 11, 45991.
[46] J. Ge, L. Xie, R. Peng, Z. Ge, Advanced Materials 2023, 35, 2206566.
[47] F. Qi, B. Fan, Q. Fan, A. K. Y. Jen, InfoMat 2024, 6, e12595.
[48] H.-C. Chen, C.-M. Hung, C.-H. Kuo, ACS Applied Materials & Interfaces 2021, 13, 8595.
[49] C.-M. Hung, C.-L. Mai, C.-C. Wu, B.-H. Chen, C.-H. Lu, C.-C. Chu, M.-C. Wang, S.-D. Yang, H.-C. Chen, C.-Y. Yeh, P.-T. Chou, Angewandte Chemie International Edition 2023, 62, e202309831.
[50] Z. Dai, S. You, D. Chakraborty, S. Li, Y. Zhang, A. Ranka, S. Barlow, J. J. Berry, S. R. Marder, P. Guo, Y. Qi, K. Zhu, N. P. Padture, ACS Energy Letters 2024, 9, 1880.
[51] B. Li, D. Gao, S. A. Sheppard, W. D. J. Tremlett, Q. Liu, Z. Li, A. J. P. White, R. K. Brown, X. Sun, J. Gong, S. Li, S. Zhang, X. Wu, D. Zhao, C. Zhang, Y. Wang, X. C. Zeng, Z. Zhu, N. J. Long, Journal of the American Chemical Society 2024, 146, 13391.
[52] C.-M. Hung, C.-C. Wu, Y.-H. Yang, B.-H. Chen, C.-H. Lu, C.-C. Chu, C.-H. Cheng, C.-Y. Yang, Y.-D. Lin, C.-H. Cheng, J.-Y. Chen, I. C. Ni, C.-I. Wu, S.-D. Yang, H.-C. Chen, P.-T. Chou, Advanced Science 2024, 11, 2404725.
[53] Z. Ren, Z. Cui, X. Shi, L. Wang, Y. Dou, F. Wang, H. Lin, H. Yan, S. Chen, Joule 2023, 7, 2894.
[54] X. Jiang, C. Li, X. Wang, C. Peng, H. Jiang, H. Bu, M. Zhu, H. Yin, B. He, H. Li, S. Pang, Z. Zhou, ACS Energy Letters 2023, 8, 1068.
[55] B. Roose, K. Dey, M. R. Fitzsimmons, Y.-H. Chiang, P. J. Cameron, S. D. Stranks, ACS Energy Letters 2024, 9, 442.
[56] C.-M. Hung, C.-C. Wu, P.-H. Tsao, C.-D. Lung, C.-H. Wang, I. C. Ni, C.-C. Chu, C.-H. Cheng, W.-Y. Kuang, C.-I. Wu, H.-C. Chen, Y.-T. Chan, P.-T. Chou, Advanced Energy and Sustainability Research 2023, 4, 2300042.
[57] P. Pandey, S. Cho, J. Bahadur, S. Yoon, C.-M. Oh, I.-W. Hwang, H. Song, H. Choi, S. Hayase, J. S. Cho, D.-W. Kang, Advanced Energy Materials 2024, 14, 2401188.
[58] H. Wu, H. Lu, Y. Li, X. Zhou, G. Zhou, H. Pan, H. Wu, X. Feng, F. Liu, K. Vandewal, W. Tress, Z. Ma, Z. Bo, Z. Tang, Nature Communications 2024, 15, 2693.
[59] C.-M. Hung, S.-F. Wang, W.-C. Chao, J.-L. Li, B.-H. Chen, C.-H. Lu, K.-Y. Tu, S.-D. Yang, W.-Y. Hung, Y. Chi, P.-T. Chou, Nature Communications 2024, 15, 4664.
[60] K. Jiang, J. Zhang, C. Zhong, F. R. Lin, F. Qi, Q. Li, Z. Peng, W. Kaminsky, S.-H. Jang, J. Yu, X. Deng, H. Hu, D. Shen, F. Gao, H. Ade, M. Xiao, C. Zhang, A. K. Y. Jen, Nature Energy 2022, 7, 1076.
[61] T. Chen, X. Zheng, D. Wang, Y. Zhu, Y. Ouyang, J. Xue, M. Wang, S. Wang, W. Ma, C. Zhang, Z. Ma, S. Li, L. Zuo, H. Chen, Advanced Materials 2024, 36, 2308061.
[62] R. Wang, C. Zhang, Q. Li, Z. Zhang, X. Wang, M. Xiao, Journal of the American Chemical Society 2020, 142, 12751.
[63] M. Vasilopoulou, A. Fakharuddin, F. P. García de Arquer, D. G. Georgiadou, H. Kim, A. R. b. Mohd Yusoff, F. Gao, M. K. Nazeeruddin, H. J. Bolink, E. H. Sargent, Nature Photonics 2021, 15, 656.
[64] Y. Xiao, H. Wang, Z. Xie, M. Shen, R. Huang, Y. Miao, G. Liu, T. Yu, W. Huang, Chemical Science 2022, 13, 8906.
[65] A. Zampetti, A. Minotto, F. Cacialli, Advanced Functional Materials 2019, 29, 1807623.
[66] R. Englman, J. and Jortner, Molecular Physics 1970, 18, 145.
[67] J. W. Lichtman, J.-A. Conchello, Nature Methods 2005, 2, 910.
[68] H. Miller, Z. Zhou, J. Shepherd, A. J. M. Wollman, M. C. Leake, Reports on Progress in Physics 2018, 81, 024601.
[69] C. Adachi, S. D. Sandanayaka Atula, CCS Chemistry 2020, 2, 1203.
[70] S. Ahadzadeh, S. Brebels, W. Maes, W. Deferme, Advanced Functional Materials 2025, n/a, 2419599.
[71] K. Tuong Ly, R.-W. Chen-Cheng, H.-W. Lin, Y.-J. Shiau, S.-H. Liu, P.-T. Chou, C.-S. Tsao, Y.-C. Huang, Y. Chi, Nature Photonics 2017, 11, 63.
[72] Y.-C. Wei, S. F. Wang, Y. Hu, L.-S. Liao, D.-G. Chen, K.-H. Chang, C.-W. Wang, S.-H. Liu, W.-H. Chan, J.-L. Liao, W.-Y. Hung, T.-H. Wang, P.-T. Chen, H.-F. Hsu, Y. Chi, P.-T. Chou, Nature Photonics 2020, 14, 570.
[73] S.-F. Wang, B.-K. Su, X.-Q. Wang, Y.-C. Wei, K.-H. Kuo, C.-H. Wang, S.-H. Liu, L.-S. Liao, W.-Y. Hung, L.-W. Fu, W.-T. Chuang, M. Qin, X. Lu, C. You, Y. Chi, P.-T. Chou, Nature Photonics 2022, 16, 843.
[74] Y.-C. Wei, K.-H. Kuo, Y. Chi, P.-T. Chou, Accounts of Chemical Research 2023, 56, 689.
[75] S.-F. Wang, D.-Y. Zhou, K.-H. Kuo, C.-H. Wang, C.-M. Hung, J. Yan, L.-S. Liao, W.-Y. Hung, Y. Chi, P.-T. Chou, Angewandte Chemie International Edition 2024, 63, e202317571.
[76] A. Minotto, I. Bulut, A. G. Rapidis, G. Carnicella, M. Patrini, E. Lunedei, H. L. Anderson, F. Cacialli, Light: Science & Applications 2021, 10, 18.
[77] D. G. Congrave, B. H. Drummond, P. J. Conaghan, H. Francis, S. T. E. Jones, C. P. Grey, N. C. Greenham, D. Credgington, H. Bronstein, Journal of the American Chemical Society 2019, 141, 18390.
[78] Q. Liu, S. Smeets, S. Mertens, Y. Xia, A. Valencia, J. D’Haen, W. Maes, K. Vandewal, Joule 2021, 5, 2365.
[79] Y. Yu, H. Xing, D. Liu, M. Zhao, H. H. Y. Sung, I. D. Williams, J. W. Y. Lam, G. Xie, Z. Zhao, B. Z. Tang, Angewandte Chemie International Edition 2022, 61, e202204279.
[80] W. Liu, S. Deng, L. Zhang, C.-W. Ju, Y. Xie, W. Deng, J. Chen, H. Wu, Y. Cao, Advanced Materials 2023, 35, 2302924.
[81] C. You, D. Liu, L. Wang, W. Zheng, M. Li, P. Wang, W. Zhu, Chemical Engineering Journal 2023, 452, 138956.
[82] I. R. Gould, D. Noukakis, L. Gomez-Jahn, R. H. Young, J. L. Goodman, S. Farid, Chemical Physics 1993, 176, 439.
[83] J. S. Wilson, N. Chawdhury, M. R. A. Al-Mandhary, M. Younus, M. S. Khan, P. R. Raithby, A. Köhler, R. H. Friend, Journal of the American Chemical Society 2001, 123, 9412.
[84] C. Erker, T. Basché, Journal of the American Chemical Society 2022, 144, 14053.
[85] H. C. Friedman, E. D. Cosco, T. L. Atallah, S. Jia, E. M. Sletten, J. R. Caram, Chem 2021, 7, 3359.
[86] Z. Hu, C. Fang, B. Li, Z. Zhang, C. Cao, M. Cai, S. Su, X. Sun, X. Shi, C. Li, T. Zhou, Y. Zhang, C. Chi, P. He, X. Xia, Y. Chen, S. S. Gambhir, Z. Cheng, J. Tian, Nature Biomedical Engineering 2020, 4, 259.
[87] H.-M. Pan, C.-C. Wu, C.-Y. Lin, C.-S. Hsu, Y.-C. Tsai, P. Chowdhury, C.-H. Wang, K.-H. Chang, C.-H. Yang, M.-H. Liu, Y.-C. Chen, S.-P. Su, Y.-J. Lee, H. K. Chiang, Y.-H. Chan, P.-T. Chou, Journal of the American Chemical Society 2023, 145, 516.
[88] S. He, J. Song, J. Qu, Z. Cheng, Chemical Society Reviews 2018, 47, 4258.
[89] S. Liu, Y. Li, R. T. K. Kwok, J. W. Y. Lam, B. Z. Tang, Chemical Science 2021, 12, 3427.
[90] M. Mesta, M. Carvelli, R. J. de Vries, H. van Eersel, J. J. M. van der Holst, M. Schober, M. Furno, B. Lüssem, K. Leo, P. Loebl, R. Coehoorn, P. A. Bobbert, Nature Materials 2013, 12, 652.
[91] H.-H. Cho, S. Gorgon, H.-C. Hung, J.-Y. Huang, Y.-R. Wu, F. Li, N. C. Greenham, E. W. Evans, R. H. Friend, Advanced Materials 2023, n/a, 2303666.
[92] Y. Li, J. Yu, Nature Reviews Materials 2021, 6, 1156.
[93] D. Park, S. Kang, C. H. Ryoo, B. H. Jhun, S. Jung, T. N. Le, M. C. Suh, J. Lee, M. E. Jun, C. Chu, J. Park, S. Y. Park, Nature Communications 2023, 14, 5589.
[94] H.-H. Cho, S. Gorgon, H.-C. Hung, J.-Y. Huang, Y.-R. Wu, F. Li, N. C. Greenham, E. W. Evans, R. H. Friend, Advanced Materials 2023, 35, 2303666.
[95] Y. Cui, H. Yao, J. Zhang, K. Xian, T. Zhang, L. Hong, Y. Wang, Y. Xu, K. Ma, C. An, C. He, Z. Wei, F. Gao, J. Hou, Advanced Materials 2020, 32, 1908205.
[96] Y. Cai, Y. Li, R. Wang, H. Wu, Z. Chen, J. Zhang, Z. Ma, X. Hao, Y. Zhao, C. Zhang, F. Huang, Y. Sun, Advanced Materials 2021, 33, 2101733.
[97] Y. Li, Y. Guo, Z. Chen, L. Zhan, C. He, Z. Bi, N. Yao, S. Li, G. Zhou, Y. Yi, Y. Yang, H. Zhu, W. Ma, F. Gao, F. Zhang, L. Zuo, H. Chen, Energy & Environmental Science 2022, 15, 855.
[98] S. Ke, D. Liang, X. Nie, X. Ai, L. Li, C. Liu, W. Xu, W. Cui, X. Ye, T. Chen, X. Li, K. Fu, W. Zhu, P. Wei, W. Zhao, Q. Zhang, Energy & Environmental Science 2023.
[99] T. Yamanaka, H. Nakanotani, C. Adachi, Science Advances, 8, eabj9188.
[100] X. Xu, W. Jing, H. Meng, Y. Guo, L. Yu, R. Li, Q. Peng, Advanced Materials 2023, 35, 2208997.
[101] E. Kim, Y. Xia, G. M. Whitesides, Advanced Materials 1996, 8, 245.
[102] Y. J. Song, J.-W. Kim, H.-E. Cho, Y. H. Son, M. H. Lee, J. Lee, K. C. Choi, S.-M. Lee, ACS Nano 2020, 14, 1133.
[103] J. Park, H. Yoon, G. Kim, B. Lee, S. Lee, S. Jeong, T. Kim, J. Seo, S. Chung, Y. Hong, Advanced Functional Materials 2019, 29, 1902412.
[104] J. Yoon, S.-M. Lee, D. Kang, M. A. Meitl, C. A. Bower, J. A. Rogers, Advanced Optical Materials 2015, 3, 1313.
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/97804-
dc.description.abstract本論文旨在探討將近紅外染料整合至鈣鈦礦太陽能電池與有機發光二極管的可行性。首先,我們開發了含硒的鄰位苯二吡咯(ortho-benzodipyrrole)基染料 CB-2Se(能隙 1.35 eV),並與 PCBM 組成本體異質結(bulk-heterojunction)層。透過去除 Tz 基團,CB-2Se 能有效抑制自聚集,進而提升其與 PCBM 的相容性。採用 CB-2Se:PCBM 的鈣鈦礦太陽能電池展現了 25.18% 的光電轉換效率,不僅優於僅含 PCBM(24.35%)及 PCBM:Y6-16(24.49%)的對照器件,亦具有優秀的長期穩定性:在 1000 小時後仍能保留 88% 的初始效率。飛秒瞬態吸收光譜進一步證實了 PCBM/CB-2Se 界面上在 200 fs 以內即完成極快速的激子分離,並首次觀察到電洞由 CB-2Se 回傳至鈣鈦礦層的過程。
在 OLED 製作方面,我們透過轉印技術,將特定的近紅外(NIR)螢光染料 BTP-eC9 轉印至一層鉑(II)錯合物薄膜上。該 Pt(II) 錯合物初始發射約在 740 nm,屬於深紅磷光;BTP-eC9 則在波長大於 900 nm 的範圍內產生螢光。在此雙層結構中,Pt(II) 錯合物之三重態能量可透過三重態-單重態能量轉移傳遞至 BTP-eC9,進而產生約 925 nm 的超螢光(hyperfluorescence),其外部量子效率高達 2.24%,最大輻射亮度可達 39.97 W sr⁻¹ m⁻²。此外,我們亦成功將此方法拓展至 BTPV-eC9,獲得 1022 nm 的發光,展現了超螢光 OLEDs 在近紅外領域的廣泛應用潛力。
zh_TW
dc.description.abstractIn this work, we explore the integration of near-infrared (NIR) dyes into both perovskite solar cells (PSCs) and organic light-emitting diodes (OLEDs). First, we developed a selenium-incorporated ortho-benzodipyrrole-based dye, CB-2Se, with a bandgap of 1.35 eV to form a bulk-heterojunction layer alongside PCBM in PSCs. By removing the Tz unit, CB-2Se effectively suppresses self-aggregation, thereby improving compatibility with PCBM. The CB-2Se:PCBM-based PSC delivered a remarkable power conversion efficiency (PCE) of 25.18%, outperforming both the PCBM-only (24.35%) and the PCBM:Y6-16 (24.49%) reference devices, while also exhibiting enhanced long-term stability (retaining 88% of its initial efficiency after 1000 hours). Femtosecond transient absorption spectroscopy revealed ultrafast exciton separation at the PCBM/CB-2Se interface (within 200 fs) and, for the first time, a back-transfer of holes from CB-2Se to the perovskite layer. Meanwhile, using a transfer printing technique, we imprinted a designated NIR fluorescent dye (BTP-eC9) onto a thin layer of Pt(II) complex for OLEDs. The Pt(II) complex initially emits deep-red phosphorescence at ~740 nm, while the BTP-eC9 dye fluoresces at >900 nm. Under this imprinted bilayer architecture, Pt(II) phosphorescence undergoes triplet-to-singlet energy transfer to BTP-eC9, yielding strong hyperfluorescence at ~925 nm with an external quantum efficiency of 2.24% and a maximum radiance of 39.97 W sr⁻¹ m⁻². This approach was also successfully extended to BTPV-eC9, reaching 1022 nm emission, highlighting the broad potential of hyperfluorescent OLEDs in the NIR region.en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2025-07-17T16:04:45Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2025-07-17T16:04:45Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontents誌謝 ii
摘要 iii
Abstract iv
目次 v
圖次 vii
表次 viii
第一章: 鈣鈦礦耦合近紅外線有機雜化太陽能電池實現84.2%的填充因子和25.2%的效率:全面的機制探索 1
1-1鈣鈦礦介紹 1
1-1-1鈣鈦礦晶體結構 1
1-1-2鈣鈦礦晶體缺陷 2
1-1-3缺陷對鈣鈦礦太陽能電池之影響 4
1-1-4鈣鈦礦晶體的降解 5
1-1-4-1 光照影響(Light-Induced Degradation) 5
1-1-4-2 熱降解(Thermal Degradation) 6
1-1-4-3 濕氣影響(Moisture-Induced Degradation) 6
1-1-4-4 應變效應(Strain-Induced Degradation) 6
1-2太陽能電池參數 7
1-2-1開路電壓(Open-Circuit Voltage, Voc) 7
1-2-2短路電流密度(Short-Circuit Current Density , JSC) 8
1-2-3填充因子(fill factor, FF) 8
1-2-4能量損失(Energy loss) 8
1-3實驗目的與設計 11
1-3-1近紅外染料的分子設計 11
1-3-2近紅外染料應用於鈣鈦礦太陽能電池的困境 12
1-4 前言 13
1-4-1硒取代策略與分子性能提升 13
1-4-2元件製作與性能表現 13
1-4-3光動力學解析與載子行為 13
1-5 元件實驗方法與步驟 15
1-6結果與討論 17
1-6-1合成與分子設計 17
1-6-2器件架構與性能表現 17
1-6-3近紅外分子能階與光物理特性 17
1-6-4吸收特性與元件性能分析 19
1-6-5 VOC與FF參數下降機制探討 23
1-6-6陷阱密度與表面形貌分析 26
1-6-7低掠角廣角 X 射線散射(GIWAXS)分析 29
1-6-8 ETM 後處理對鈣鈦礦取向與載流子動力學的影響 32
1-6-9載流子動力學與作用機制 35
1-6-9-1第一步:fs TAS 熱載子冷卻與光漂白訊號衰減分析 36
1-6-9-2第二步:驗證 ETM 生成的自由載流子是否注入鈣鈦礦 39
1-6-9-3第三步:解析超快 CS 機制並驗證訊號指派 41
1-6-9-4載流子動態機制的最終驗證 42
1-6-10器件穩定性 44
1-7結論 47
第二章: 透過界面能量轉移實現 925 nm 和 1022 nm的高性能近紅外線(NIR) OLED 48
2-1 NIR-OLED介紹 48
2-1-1 OLED的發光機制 48
2-1-2 OLED的發光機制 51
2-1-3 能隙定律 51
2-2實驗設計與目的 52
2-3 前言 54
2-4 元件實驗方法與步驟 55
2-5結果與討論 57
2-5-1 材料選擇及其特性 57
2-5-2界面能量轉移機制 61
2-5-3界面、表面形貌與載流子動力學 62
2-5-4電性量測與器件性能 67
2-5-4-1 Setfos模擬方法#1 67
2-5-4-2印章轉印結構下的元件性能優化 71
2-5-4-3 Setfos模擬結果 1 72
2-5-4-4 Setfos模擬結果 2 72
2-5-4-5夾層結構進一步強化 NIR 輻射與器件性能 74
2-5-4-6 Y11 染料之對比研究 74
2-5-4-7擴展至 NIR-II OLED 76
2-5-4-7 FRET 分析 78
2-6結論 79
參考文獻 80
附錄1:實驗儀器 85
附錄2:本人歷年發表期刊(截至2025/7) 86
-
dc.language.isozh_TW-
dc.subject近紅外zh_TW
dc.subject飛秒瞬態吸收光譜zh_TW
dc.subject能量轉移zh_TW
dc.subject有機發光二極體zh_TW
dc.subject鈣鈦礦太陽能電池zh_TW
dc.subjectPerovskite Solar Cellsen
dc.subjectFemtosecond Transient Absorption Spectroscopyen
dc.subjectNear-infrareden
dc.subjectOrganic Light-Emitting Diodeen
dc.subjectEnergy transferen
dc.title應用於太陽能電池與發光二極體的近紅外染料zh_TW
dc.titleNear-Infrared Dyes for Optoelectronic Applications in Photovoltaic and Light-Emitting devicesen
dc.typeThesis-
dc.date.schoolyear113-2-
dc.description.degree博士-
dc.contributor.oralexamcommittee蔡豐羽;陳協志;姜昌明;吳典霖zh_TW
dc.contributor.oralexamcommitteeFeng-Yu Tsai;Hsieh-Chih Chen;Chang-Ming Jiang;Tien-Lin Wuen
dc.subject.keyword近紅外,鈣鈦礦太陽能電池,有機發光二極體,能量轉移,飛秒瞬態吸收光譜,zh_TW
dc.subject.keywordNear-infrared,Perovskite Solar Cells,Organic Light-Emitting Diode,Energy transfer,Femtosecond Transient Absorption Spectroscopy,en
dc.relation.page93-
dc.identifier.doi10.6342/NTU202501607-
dc.rights.note未授權-
dc.date.accepted2025-07-10-
dc.contributor.author-college理學院-
dc.contributor.author-dept化學系-
dc.date.embargo-liftN/A-
顯示於系所單位:化學系

文件中的檔案:
檔案 大小格式 
ntu-113-2.pdf
  未授權公開取用
11.15 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved