請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/97803完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 周必泰 | zh_TW |
| dc.contributor.advisor | Pi-Tai Chou | en |
| dc.contributor.author | 鄭靜暄 | zh_TW |
| dc.contributor.author | Ching-Hsuan Cheng | en |
| dc.date.accessioned | 2025-07-17T16:04:34Z | - |
| dc.date.available | 2025-07-18 | - |
| dc.date.copyright | 2025-07-17 | - |
| dc.date.issued | 2025 | - |
| dc.date.submitted | 2025-07-08 | - |
| dc.identifier.citation | (1) E. I. A. U.S. power generation from renewables. 2023.
(2) Brusso, B. C. A Brief History of the Energy Conversion of Light. IEEE Ind. Appl. Mag. 2019, 25 (4), 8-13. (3) Enrichi, F.; Righini, G. Solar cells and light management: Materials, strategies and sustainability; Elsevier 2019. (4) Fraas, L. M.; O’Neill, M. J. History of solar cell development. In Low-cost solar electric power, Springer 2023, 1-12. (5) Miles, R. W.; Hynes, K. M.; Forbes, I. Photovoltaic solar cells: An overview of state-of-the-art cell development and environmental issues. Prog. Cryst. Growth Charact. Mater. 2005, 51 (1-3), 1-42. (6) Nayak, P. K.; Mahesh, S.; Snaith, H. J.; Cahen, D. Photovoltaic solar cell technologies: analysing the state of the art. Nat. Rev. Mater. 2019, 4 (4), 269-285. (7) N. E. R. L. 2025. (8) Gan, J.; Qiao, L. Colloidal Quantum Dots for Highly Efficient Photovoltaics. Q. D. Opt. Electron. Devices 2020, 49-82. (9) Shah, N.; Shah, A. A.; Leung, P. K.; Khan, S.; Sun, K.; Zhu, X.; Liao, Q. A Review of Third Generation Solar Cells. Processes 2023; Vol. 11. (10) Devadiga, D.; Selvakumar, M.; Shetty, P.; Santosh, M. S. The integration of flexible dye-sensitized solar cells and storage devices towards wearable self-charging power systems: A review. Renew. Sust. Energ. Rev. 2022, 159, 112252. (11) Tonui, P.; Oseni, S. O.; Sharma, G.; Yan, Q.; Tessema Mola, G. Perovskites photovoltaic solar cells: An overview of current status. Renew. Sust. Energ. Rev. 2018, 91, 1025-1044. (12) Wali, Q.; Elumalai, N. K.; Iqbal, Y.; Uddin, A.; Jose, R. Tandem perovskite solar cells. Renew. Sust. Energ. Rev. 2018, 84, 89-110. (13) Wang, D.; Wright, M.; Elumalai, N. K.; Uddin, A. Stability of perovskite solar cells. Sol. Energ. Mat. Sol. C. 2016, 147, 255-275. (14) Bawendi, M. G.; Steigerwald, M. L.; Brus, L. E. The Quantum Mechanics of Larger Semiconductor Clusters ("Quantum Dots"). Annu. Rev. Phys. Chem. 1990, 41, 477-496. (15) Dhall, S.; Nathawat, R.; Sood, K. Chapter 1 - Carbon-based nanomaterials. Carbon Nanomaterials and their Nanocomposite-Based Chemiresistive Gas Sensors, Dhall, S. Ed.; Elsevier, 2023, 3-39. (16) Frenzel, J.; Joswig, J.-O.; Seifert, G. Optical excitations in cadmium sulfide nanoparticles. J. Phys. Chem. C 2007, 111 (29), 10761-10770. (17) Yoffe, A. D. Semiconductor quantum dots and related systems: electronic, optical, luminescence and related properties of low dimensional systems. Adv. Phys. 2001, 50 (1), 1-208. (18) Reimann, S. M.; Manninen, M. Electronic structure of quantum dots. Rev. Mod. Phys. 2002, 74 (4), 1283-1342. (19) Kim, M. R.; Ma, D. Quantum-Dot-Based Solar Cells: Recent Advances, Strategies, and Challenges. J. Phys. Chem. Lett. 2015, 6 (1), 85-99. (20) Singhal, V. K.; Verma, U. K.; Joshi, M.; Kumar, B. Optimizing High-Efficiency Multiple Exciton Generation-Enabled Quantum Dot Solar Cells. IEEE Trans. Electron Device 2024, 71 (2), 1109-1114. (21) Smith, C.; Binks, D. Multiple Exciton Generation in Colloidal Nanocrystals. Nanomater. 2014, 4, 19-45. (22) Wang, C.; Wang, Y.; Jia, Y.; Wang, H.; Li, X.; Liu, S.; Liu, X.; Zhu, H.; Wang, H.; Liu, Y.; et al. Precursor Chemistry Enables the Surface Ligand Control of PbS Quantum Dots for Efficient Photovoltaics. Adv. Sci. 2023, 10 (4), 2204655. (23) Yin, X.; Zhang, C.; Guo, Y.; Yang, Y.; Xing, Y.; Que, W. PbS QD-based photodetectors: future-oriented near-infrared detection technology. J. Mater. Chem. C 2021, 9 (2), 417-438. (24) Zhang, J.; Crisp, R. W.; Gao, J.; Kroupa, D. M.; Beard, M. C.; Luther, J. M. Synthetic Conditions for High-Accuracy Size Control of PbS Quantum Dots. J. Phys. Chem. Lett. 2015, 6 (10), 1830-1833. (25) Zhou, S.; Liu, Z.; Wang, Y.; Lu, K.; Yang, F.; Gu, M.; Xu, Y.; Chen, S.; Ling, X.; Zhang, Y. Towards scalable synthesis of high-quality PbS colloidal quantum dots for photovoltaic applications. J. Mater. Chem. C 2019, 7 (6), 1575-1583. (26) Aftab, S.; Iqbal, M. Z.; Hussain, S.; Kabir, F.; Al-Kahtani, A. A.; Hegazy, H. H. Quantum Junction Solar Cells: Development and Prospects. Adv. Funct.Mater. 2023, 33 (38), 2303449. (27) Sun, B.; Johnston, A.; Xu, C.; Wei, M.; Huang, Z.; Jiang, Z.; Zhou, H.; Gao, Y.; Dong, Y.; Ouellette, O.; et al. Monolayer Perovskite Bridges Enable Strong Quantum Dot Coupling for Efficient Solar Cells. Joule 2020, 4 (7), 1542-1556. (28) Zhang, Y.; Wu, G.; Liu, F.; Ding, C.; Zou, Z.; Shen, Q. Photoexcited carrier dynamics in colloidal quantum dot solar cells: insights into individual quantum dots, quantum dot solid films and devices. Chem. Soc. Rev. 2020, 49 (1), 49-84. (29) Oseni, S.; Osifeko, O.; Boyo, A.; Mola, G. T. Tri‐metallic quantum dot under the influence of solvent additive for improved performance of polymer solar cells. J. Appl. Polym. Sci. 2022, 140. (30) Schaller, R. D.; Sykora, M.; Pietryga, J. M.; Klimov, V. I. Seven Excitons at a Cost of One: Redefining the Limits for Conversion Efficiency of Photons into Charge Carriers. Nano Lett. 2006, 6 (3), 424-429. (31) Maity, P.; Ghosh, H. N. Strategies for extending charge separation in colloidal nanostructured quantum dot materials. Phys. Chem. Chem. Phys. 2019, 21 (42), 23283-23300. (32) Kwon, S. G.; Piao, Y.; Park, J.; Angappane, S.; Jo, Y.; Hwang, N.-M.; Park, J.-G.; Hyeon, T. Kinetics of Monodisperse Iron Oxide Nanocrystal Formation by “Heating-Up” Process. J. Am. Chem. Soc. 2007, 129 (41), 12571-12584. (33) Moreels, I.; Justo, Y.; De Geyter, B.; Haustraete, K.; Martins, J. C.; Hens, Z. Size-Tunable, Bright, and Stable PbS Quantum Dots: A Surface Chemistry Study. ACS Nano 2011, 5 (3), 2004-2012. (34) Carey, G. H.; Abdelhady, A. L.; Ning, Z.; Thon, S. M.; Bakr, O. M.; Sargent, E. H. Colloidal Quantum Dot Solar Cells. Chem. Rev. 2015, 115 (23), 12732-12763. (35) Moreels, I.; Lambert, K.; Smeets, D.; De Muynck, D.; Nollet, T.; Martins, J. C.; Vanhaecke, F.; Vantomme, A.; Delerue, C.; Allan, G.; et al. Size-Dependent Optical Properties of Colloidal PbS Quantum Dots. ACS Nano 2009, 3 (10), 3023-3030. (36) Xie, Q.; Ming, S.; Chen, L.; Wu, Y.; Zhang, W.; Liu, X.; Cao, M.; Wang, H.-Q.; Fang, J. Parameters in planar quantum dot-polymer solar cell: Tuned by QD Eg, ligand exchange and fabrication process. Org. Electron. 2019, 69, 1-6. (37) Brown, P. R.; Kim, D.; Lunt, R. R.; Zhao, N.; Bawendi, M. G.; Grossman, J. C.; Bulović, V. Energy Level Modification in Lead Sulfide Quantum Dot Thin Films through Ligand Exchange. ACS nano 2014, 8 (6), 5863-5872. (38) Cao, Y.; Stavrinadis, A.; Lasanta, T.; So, D.; Konstantatos, G. The role of surface passivation for efficient and photostable PbS quantum dot solar cells. Nat. Energy 2016, 1 (4), 16035. (39) Gu, M.; Wang, Y.; Yang, F.; Lu, K.; Xue, Y.; Wu, T.; Fang, H.; Zhou, S.; Zhang, Y.; Ling, X. Stable PbS quantum dot ink for efficient solar cells by solution-phase ligand engineering. J. Mater. Chem. A 2019, 7 (26), 15951-15959. (40) Hu, L.; Lei, Q.; Guan, X.; Patterson, R.; Yuan, J.; Lin, C.-H.; Kim, J.; Geng, X.; Younis, A.; Wu, X.; et al. Optimizing Surface Chemistry of PbS Colloidal Quantum Dot for Highly Efficient and Stable Solar Cells via Chemical Binding. Adv. Sci. 2021, 8 (2), 2003138. (41) Huang, T.; Wu, C.; Yang, J.; Hu, P.; Qian, L.; Sun, T.; Xiang, C. Reducing the Open-Circuit Voltage Loss of PbS Quantum Dot Solar Cells via Hybrid Ligand Exchange Treatment. ACS Appl. Mater. Interfaces. 2024, 16 (1), 915-923. (42) Liu, M.; Voznyy, O.; Sabatini, R.; García de Arquer, F. P.; Munir, R.; Balawi, Ahmed H.; Lan, X.; Fan, F.; Walters, G.; Kirmani, Ahmad R.; et al. Hybrid organic–inorganic inks flatten the energy landscape in colloidal quantum dot solids. Nat. Mater. 2017, 16 (2), 258-263. (43) Xia, Y.; Ji, T.; Lu, Y.; Xiang, P.; Wu, Z.; Yang, X.; Deng, H. High-Efficiency Infrared Sulfide Lead Quantum Dot Solar Cells via Mixed Halide Ions Ligand Engineering. Sol. RRL 2024, 8 (2), 2300804. (44) You, H. R.; Park, J. Y.; Lee, D. H.; Kim, Y.; Choi, J. Recent Research Progress in Surface Ligand Exchange of PbS Quantum Dots for Solar Cell Application. Appl. Sci., 2020; Vol. 10. (45) Zhang, C.; Han, D.; Zhang, X. PbS Colloidal Quantum Dots: Ligand Exchange in Solution. Coat., 2024; Vol. 14. (46) Chang, J.; Ogomi, Y.; Ding, C.; Zhang, Y. H.; Toyoda, T.; Hayase, S.; Katayama, K.; Shen, Q. Ligand-dependent exciton dynamics and photovoltaic properties of PbS quantum dot heterojunction solar cells. Phys. Chem. Chem. 2017, 19 (9), 6358-6367. (47) Hartley, C. L.; Kessler, M. L.; Dones Lassalle, C. Y.; Camp, A. M.; Dempsey, J. L. Effects of Ligand Shell Composition on Surface Reduction in PbS Quantum Dots. Chem. Mat. 2021, 33 (22), 8612-8622. (48) Kennehan, E. R.; Munson, K. T.; Doucette, G. S.; Marshall, A. R.; Beard, M. C.; Asbury, J. B. Dynamic Ligand Surface Chemistry of Excited PbS Quantum Dots. J. Phys. Chem. Lett. 2020, 11 (6), 2291-2297. (49) Xu, F.; Gerlein, L. F.; Ma, X.; Haughn, C. R.; Doty, M. F.; Cloutier, S. G. Impact of Different Surface Ligands on the Optical Properties of PbS Quantum Dot Solids. Mater. 2015, 8, 1858-1870. (50) You, H. R.; Park, J. Y.; Lee, D. H.; Kim, Y.; Choi, J. Recent Research Progress in Surface Ligand Exchange of PbS Quantum Dots for Solar Cell Application. Appl. Sci. 2020, 10 (3), 975. (51) Johnston, K. W.; Pattantyus-Abraham, A. G.; Clifford, J. P.; Myrskog, S. H.; MacNeil, D. D.; Levina, L.; Sargent, E. H. Schottky-quantum dot photovoltaics for efficient infrared power conversion. Appl. Phys. Lett. 2008, 92 (15). (52) Luther, J. M.; Gao, J.; Lloyd, M. T.; Semonin, O. E.; Beard, M. C.; Nozik, A. J. Stability assessment on a 3% bilayer PbS/ZnO quantum dot heterojunction solar cell. Adv. Mater. 2010, 22 (33), 3704-3707. (53) Zhang, C.; Han, D.; Zhang, X. PbS Colloidal Quantum Dots: Ligand Exchange in Solution. Coatings 2024, 14 (6), 761. (54) Ning, Z.; Dong, H.; Zhang, Q.; Voznyy, O.; Sargent, E. H. Solar Cells Based on Inks of n-Type Colloidal Quantum Dots. ACS Nano 2014, 8 (10), 10321-10327. (55) Herron, J. A.; Kim, J.; Upadhye, A. A.; Huber, G. W.; Maravelias, C. T. A general framework for the assessment of solar fuel technologies. EES. 2015, 8 (1), 126-157. (56) Rodziewicz, T.; Rajfur, M. Numerical procedures and their practical application in PV modules analyses. Part I: air mass. Opto-Electronics Rev. 2019, 27 (1), 39-57. (57) Introduction to Solar Radiation. (58) Hossain, M. F. Transforming dark photons into sustainable energy. Int. J. Energy Environ. Eng. 2018, 9 (1), 99-110. (59) Nozik, A. J.; Beard, M. C.; Luther, J. M.; Law, M.; Ellingson, R. J.; Johnson, J. C. Semiconductor quantum dots and quantum dot arrays and applications of multiple exciton generation to third-generation photovoltaic solar cells. Chem. Rev. 2010, 110 (11), 6873-6890. (60) Gan, J.; Qiao, L. Colloidal quantum dots for highly efficient photovoltaics. Q. D. Opt. Electron. Devices 2020, 49-82. (61) Kamel, M. S.; Al-Jumaili, A.; Oelgemöller, M.; Jacob, M. V. Inorganic nanoparticles to overcome efficiency inhibitors of organic photovoltaics: An in-depth review. Renew. Sust. Energ. Rev. 2022, 166, 112661. (62) Shah, N.; Shah, A. A.; Leung, P. K.; Khan, S.; Sun, K.; Zhu, X.; Liao, Q. A Review of Third Generation Solar Cells. Processes 2023, 11 (6), 1852. (63) Jiao, S.; Wang, J.; Shen, Q.; Li, Y.; Zhong, X. Surface engineering of PbS quantum dot sensitized solar cells with a conversion efficiency exceeding 7%. J. Mater. Chem. A. 2016, 4 (19), 7214-7221. (64) McDonald, S. A.; Konstantatos, G.; Zhang, S.; Cyr, P. W.; Klem, E. J. D.; Levina, L.; Sargent, E. H. Solution-processed PbS quantum dot infrared photodetectors and photovoltaics. Nat. Mater. 2005, 4 (2), 138-142. (65) Piliego, C.; Protesescu, L.; Bisri, S. Z.; Kovalenko, M. V.; Loi, M. A. 5.2% efficient PbS nanocrystal Schottky solar cells. EES. 2013, 6 (10), 3054-3059. (66) Jeong, K. S.; Tang, J.; Liu, H.; Kim, J.; Schaefer, A. W.; Kemp, K.; Levina, L.; Wang, X.; Hoogland, S.; Debnath, R.; et al. Enhanced Mobility-Lifetime Products in PbS Colloidal Quantum Dot Photovoltaics. ACS Nano 2012, 6 (1), 89-99. (67) Liu, H.; Tang, J.; Kramer, I. J.; Debnath, R.; Koleilat, G. I.; Wang, X.; Fisher, A.; Li, R.; Brzozowski, L.; Levina, L. Electron acceptor materials engineering in colloidal quantum dot solar cells. Adv. Mater. 2011, 23 (33), 3832-3837. (68) Willis, S. M.; Cheng, C.; Assender, H. E.; Watt, A. A. R. The Transitional Heterojunction Behavior of PbS/ZnO Colloidal Quantum Dot Solar Cells. Nano Lett. 2012, 12 (3), 1522-1526. (69) Etgar, L.; Moehl, T.; Gabriel, S.; Hickey, S. G.; Eychmüller, A.; Grätzel, M. Light Energy Conversion by Mesoscopic PbS Quantum Dots/TiO2 Heterojunction Solar Cells. ACS Nano 2012, 6 (4), 3092-3099. (70) Etgar, L.; Yanover, D.; Čapek, R. K.; Vaxenburg, R.; Xue, Z.; Liu, B.; Nazeeruddin, M. K.; Lifshitz, E.; Grätzel, M. Core/shell PbSe/PbS QDs TiO2 heterojunction solar cell. Adv. Funct. Mater. 2013, 23 (21), 2736-2741. (71) Pattantyus-Abraham, A. G.; Kramer, I. J.; Barkhouse, A. R.; Wang, X.; Konstantatos, G.; Debnath, R.; Levina, L.; Raabe, I.; Nazeeruddin, M. K.; Grätzel, M.; et al. Depleted-Heterojunction Colloidal Quantum Dot Solar Cells. ACS Nano 2010, 4 (6), 3374-3380. (72) Tang, J.; Kemp, K. W.; Hoogland, S.; Jeong, K. S.; Liu, H.; Levina, L.; Furukawa, M.; Wang, X.; Debnath, R.; Cha, D. Colloidal-quantum-dot photovoltaics using atomic-ligand passivation. Nat. Mater. 2011, 10 (10), 765-771. (73) Ning, Z.; Zhitomirsky, D.; Adinolfi, V.; Sutherland, B.; Xu, J.; Voznyy, O.; Maraghechi, P.; Lan, X.; Hoogland, S.; Ren, Y. Graded doping for enhanced colloidal quantum dot photovoltaics. Adv. Mater. 2013, 25 (12), 1719-1723. (74) Chuang, C.-H. M.; Brown, P. R.; Bulović, V.; Bawendi, M. G. Improved performance and stability in quantum dot solar cells through band alignment engineering. Nat. Mater. 2014, 13 (8), 796-801. (75) Lan, X.; Voznyy, O.; Kiani, A.; García de Arquer, F. P.; Abbas, A. S.; Kim, G. H.; Liu, M.; Yang, Z.; Walters, G.; Xu, J. Passivation using molecular halides increases quantum dot solar cell performance. Adv. Mater. 2016, 28 (2), 299-304. (76) Lan, X.; Voznyy, O.; García de Arquer, F. P.; Liu, M.; Xu, J.; Proppe, A. H.; Walters, G.; Fan, F.; Tan, H.; Liu, M.; et al. 10.6% Certified Colloidal Quantum Dot Solar Cells via Solvent-Polarity-Engineered Halide Passivation. Nano Lett. 2016, 16 (7), 4630-4634. (77) Carsten, B.; Szarko, J. M.; Son, H. J.; Wang, W.; Lu, L.; He, F.; Rolczynski, B. S.; Lou, S. J.; Chen, L. X.; Yu, L. Examining the Effect of the Dipole Moment on Charge Separation in Donor–Acceptor Polymers for Organic Photovoltaic Applications. J. Am. Chem. Soc. 2011, 133 (50), 20468-20475. (78) Kim, B.; Baek, S.-W.; Kim, C.; Kim, J.; Lee, J.-Y. Mediating Colloidal Quantum Dot/Organic Semiconductor Interfaces for Efficient Hybrid Solar Cells. Adv. Energy Mater. 2022, 12 (2), 2102689. (79) Mubarok, M. A.; Aqoma, H.; Wibowo, F. T. A.; Lee, W.; Kim, H. M.; Ryu, D. Y.; Jeon, J.-W.; Jang, S.-Y. Molecular Engineering in Hole Transport π-Conjugated Polymers to Enable High Efficiency Colloidal Quantum Dot Solar Cells. Adv. Energy Mater. 2020, 10 (8), 1902933. (80) Xue, Y.; Yang, F.; Yuan, J.; Zhang, Y.; Gu, M.; Xu, Y.; Ling, X.; Wang, Y.; Li, F.; Zhai, T.; et al. Toward Scalable PbS Quantum Dot Solar Cells Using a Tailored Polymeric Hole Conductor. ACS Energy Lett. 2019, 4 (12), 2850-2858. (81) Zhang, X.; Justo, Y.; Maes, J.; Walravens, W.; Zhang, J.; Liu, J.; Hens, Z.; Johansson, E. M. Slow recombination in quantum dot solid solar cell using p–i–n architecture with organic p-type hole transport material. J. Mater. Chem. A 2015, 3 (41), 20579-20585. (82) Aqoma, H.; Mubarok, M. A.; Lee, W.; Hadmojo, W. T.; Park, C.; Ahn, T. K.; Ryu, D. Y.; Jang, S.-Y. Improved Processability and Efficiency of Colloidal Quantum Dot Solar Cells Based on Organic Hole Transport Layers. Adv. Energy Mater. 2018, 8 (23), 1800572. (83) Zhang, Y.; Kan, Y.; Gao, K.; Gu, M.; Shi, Y.; Zhang, X.; Xue, Y.; Zhang, X.; Liu, Z.; Zhang, Y.; et al. Hybrid Quantum Dot/Organic Heterojunction: A Route to Improve Open-Circuit Voltage in PbS Colloidal Quantum Dot Solar Cells. ACS Energy Lett. 2020, 5 (7), 2335-2342. (84) Baek, S.-W.; Jun, S.; Kim, B.; Proppe, A. H.; Ouellette, O.; Voznyy, O.; Kim, C.; Kim, J.; Walters, G.; Song, J. H.; et al. Efficient hybrid colloidal quantum dot/organic solar cells mediated by near-infrared sensitizing small molecules. Nat. Energy 2019, 4 (11), 969-976. (85) Zhang, L.; Wang, S.; Shi, Y.; Xu, J.; Cao, S.; Deng, Z.; Chen, Y.; Zhang, J.; Yang, X.; Meng, Z. Organic hole transport materials for high performance PbS quantum dot solar cells. Chem. Commun. 2024, 60 (40), 5294-5297. (86) Armin, A.; Li, W.; Sandberg, O. J.; Xiao, Z.; Ding, L.; Nelson, J.; Neher, D.; Vandewal, K.; Shoaee, S.; Wang, T. A history and perspective of non‐fullerene electron acceptors for organic solar cells. Adv. Energy Mater. 2021, 11 (15), 2003570. (87) Hou, J.; Inganäs, O.; Friend, R. H.; Gao, F. Organic solar cells based on non-fullerene acceptors. Nat. Mater. 2018, 17 (2), 119-128. (88) Nielsen, C. B.; Holliday, S.; Chen, H.-Y.; Cryer, S. J.; McCulloch, I. Non-Fullerene Electron Acceptors for Use in Organic Solar Cells. Acc. Chem. Res. 2015, 48 (11), 2803-2812. (89) Yuan, J.; Zou, Y. The history and development of Y6. Org. Electron. 2022, 102, 106436. (90) Zhu, L.; Zhang, M.; Zhong, W.; Leng, S.; Zhou, G.; Zou, Y.; Su, X.; Ding, H.; Gu, P.; Liu, F. Progress and prospects of the morphology of non-fullerene acceptor based high-efficiency organic solar cells. EES. 2021, 14 (8), 4341-4357. (91) Lin, Y.; Wang, J.; Zhang, Z. G.; Bai, H.; Li, Y.; Zhu, D.; Zhan, X. An electron acceptor challenging fullerenes for efficient polymer solar cells. Adv. Mater. 2015, 27 (7), 1170-1174. (92) Lin, Y.; Zhao, F.; He, Q.; Huo, L.; Wu, Y.; Parker, T. C.; Ma, W.; Sun, Y.; Wang, C.; Zhu, D.; et al. High-Performance Electron Acceptor with Thienyl Side Chains for Organic Photovoltaics. J. Am. Chem. Soc. 2016, 138 (14), 4955-4961. (93) Yang, Y.; Zhang, Z.-G.; Bin, H.; Chen, S.; Gao, L.; Xue, L.; Yang, C.; Li, Y. Side-Chain Isomerization on an n-type Organic Semiconductor ITIC Acceptor Makes 11.77% High Efficiency Polymer Solar Cells. J. Am. Chem. Soc. 2016, 138 (45), 15011-15018. (94) Zhao, W.; Li, S.; Yao, H.; Zhang, S.; Zhang, Y.; Yang, B.; Hou, J. Molecular Optimization Enables over 13% Efficiency in Organic Solar Cells. J. Am. Chem. Soc. 2017, 139 (21), 7148-7151. (95) Yuan, J.; Zhang, Y.; Zhou, L.; Zhang, G.; Yip, H.-L.; Lau, T.-K.; Lu, X.; Zhu, C.; Peng, H.; Johnson, P. A. Single-junction organic solar cell with over 15% efficiency using fused-ring acceptor with electron-deficient core. Joule 2019, 3 (4), 1140-1151. (96) He, Q.; Ufimkin, P.; Aniés, F.; Hu, X.; Kafourou, P.; Rimmele, M.; Rapley, C. L.; Ding, B. Molecular engineering of Y-series acceptors for nonfullerene organic solar cells. SusMat. 2022, 2 (5), 591-606. (97) Kupgan, G.; Chen, X.-K.; Brédas, J.-L. Molecular packing of non-fullerene acceptors for organic solar cells: Distinctive local morphology in Y6 vs. ITIC derivatives. Mater. Today Adv. 2021, 11, 100154. (98) Kong, X.; Zhu, C.; Zhang, J.; Meng, L.; Qin, S.; Zhang, J.; Li, J.; Wei, Z.; Li, Y. The effect of alkyl substitution position of thienyl outer side chains on photovoltaic performance of A–DA′ D–A type acceptors. EES. 2022, 15 (5), 2011-2020. (99) Hong, L.; Yao, H.; Wu, Z.; Cui, Y.; Zhang, T.; Xu, Y.; Yu, R.; Liao, Q.; Gao, B.; Xian, K. Eco‐compatible solvent‐processed organic photovoltaic cells with over 16% efficiency. Adv. mater. 2019, 31 (39), 1903441. (100) Gao, W.; Fu, H.; Li, Y.; Lin, F.; Sun, R.; Wu, Z.; Wu, X.; Zhong, C.; Min, J.; Luo, J. Asymmetric acceptors enabling organic solar cells to achieve an over 17% efficiency: conformation effects on regulating molecular properties and suppressing nonradiative energy loss. Adv. Energy Mater. 2021, 11 (4), 2003177. (101) Lin, F.; Jiang, K.; Kaminsky, W.; Zhu, Z.; Jen, A. K.-Y. A non-fullerene acceptor with enhanced intermolecular π-core interaction for high-performance organic solar cells. J. Am. Chem. Soc. 2020, 142 (36), 15246-15251. (102) Liu, S.; Yuan, J.; Deng, W.; Luo, M.; Xie, Y.; Liang, Q.; Zou, Y.; He, Z.; Wu, H.; Cao, Y. High-efficiency organic solar cells with low non-radiative recombination loss and low energetic disorder. Nat. Photonics 2020, 14 (5), 300-305. (103) Wang, L.; An, Q.; Yan, L.; Bai, H.-R.; Jiang, M.; Mahmood, A.; Yang, C.; Zhi, H.; Wang, J.-L. Non-fullerene acceptors with hetero-dihalogenated terminals induce significant difference in single crystallography and enable binary organic solar cells with 17.5% efficiency. EES. 2022, 15 (1), 320-333. (104) Hai, J.; Zhao, W.; Luo, S.; Yu, H.; Chen, H.; Lu, Z.; Li, L.; Zou, Y.; Yan, H. Vinylene π-bridge: a simple building block for ultra-narrow bandgap nonfullerene acceptors enable 14.2% efficiency in binary organic solar cells. Dyes and Pigm. 2021, 188, 109171. (105) Yang, J.; Sharma, A.; Yoon, J. W.; Paritmongkol, W.; Lee, S.; Ahn, H.; Lee, W.; Song, H.; Jeong, W. H.; Lee, B. R. Structurally driven ultrafast charge funneling in organic bulk heterojunction hole transport layer for efficient colloidal quantum dot photovoltaics. Adv. Energy Mater. 2023, 13 (20), 2203749. (106) Yu, R.; Yao, H.; Hou, J. Recent Progress in Ternary Organic Solar Cells Based on Nonfullerene Acceptors. Adv. Energy Mater. 2018, 8 (28), 1702814. (107) Nam, M.; Kang, J.-h.; Shin, J.; Na, J.; Park, Y.; Cho, J.; Kim, B.; Lee, H. H.; Chang, R.; Ko, D.-H. Ternary Organic Blend Approaches for High Photovoltaic Performance in Versatile Applications. Adv. Energy Mater. 2019, 9 (38), 1901856. (108) Heydari Gharahcheshmeh, M.; Gleason, K. K. Texture and nanostructural engineering of conjugated conducting and semiconducting polymers. Mater. Today Adv. 2020, 8, 100086. (109) Razeghi, M. Solar Energy Harvesting. In Fundamentals of Solid State Engineering. Springer Int. Publ. 2019; pp 409-419. (110) Kwan, C.-P.; Street, M.; Mahmood, A.; Echtenkamp, W.; Randle, M.; He, K.; Nathawat, J.; Arabchigavkani, N.; Barut, B.; Yin, S.; et al. Space-charge limited conduction in epitaxial chromia films grown on elemental and oxide-based metallic substrates. AIP Adv. 2019, 9 (5). (111) Jia, Z.; Ma, Q.; Chen, Z.; Meng, L.; Jain, N.; Angunawela, I.; Qin, S.; Kong, X.; Li, X.; Yang, Y.; et al. Near-infrared absorbing acceptor with suppressed triplet exciton generation enabling high performance tandem organic solar cells. Nat. Commun. 2023, 14 (1), 1236. (112) Jia, Z.; Qin, S.; Meng, L.; Ma, Q.; Angunawela, I.; Zhang, J.; Li, X.; He, Y.; Lai, W.; Li, N.; et al. High performance tandem organic solar cells via a strongly infrared-absorbing narrow bandgap acceptor. Nat. Commun. 2021, 12 (1), 178. (113) Liu, T.; Jia, Z.; Song, Y.; Yu, N.; Lin, Q.; Li, C.; Jia, Y.; Chen, H.; Wang, S.; Wei, Y.; et al. Near Infrared Self-Powered Organic Photodetectors with a Record Responsivity Enabled by Low Trap Density. Adv. Funct. Mater. 2023, 33 (25), 2301167. (114) Yuan, J.; Zhang, Y.; Zhou, L.; Zhang, G.; Yip, H.-L.; Lau, T.-K.; Lu, X.; Zhu, C.; Peng, H.; Johnson, P. A.; et al. Single-Junction Organic Solar Cell with over 15% Efficiency Using Fused-Ring Acceptor with Electron-Deficient Core. Joule 2019, 3 (4), 1140-1151. (115) Huang, X.; Xia, D.; Xie, Q.; Wang, D.; Li, Q.; Zhao, C.; Yin, J.; Cao, F.; Su, Z.; Zeng, Z.; et al. Supramolecular force-driven non-fullerene acceptors as an electron-transporting layer for efficient inverted perovskite solar cells. Nat. Commun. 2025, 16 (1), 1626. (116) Hung, C.-M.; Chih, C.-J.; Huang, K.-H.; Xue, Y.-J.; Chu, H.-C.; Tseng, C.-C.; Li, C.-H.; Chen, J.-Y.; Chen, B.-H.; Yang, S.-D.; et al. Perovskite-Coupled NIR Organic Hybrid Solar Cells Achieving an 84.2% Fill Factor and a 25.2% Efficiency: A Comprehensive Mechanistic Exploration. Angew. Chem., Int. Ed. 2025, n/a (n/a), e202501375. (117) Sun, X.; Zhang, C.; Gao, D.; Yu, X.; Li, B.; Wu, X.; Zhang, S.; He, Y.; Yu, Z.; Qian, L.; et al. Enhancing Efficiency and Stability of Inverted Perovskite Solar Cells through Solution-Processed and Structurally Ordered Fullerene. Angew. Chem., Int. Ed. 2025, 64 (1), e202412819. (118) Greenham, N. C.; Peng, X.; Alivisatos, A. P. Charge separation and transport in conjugated-polymer/semiconductor-nanocrystal composites studied by photoluminescence quenching and photoconductivity. Phys. Rev. B 1996, 54 (24), 17628-17637. (119) Kim, H. I.; Baek, S.-W.; Cheon, H. J.; Ryu, S. U.; Lee, S.; Choi, M.-J.; Choi, K.; Biondi, M.; Hoogland, S.; de Arquer, F. P. G.; et al. A Tuned Alternating D–A Copolymer Hole-Transport Layer Enables Colloidal Quantum Dot Solar Cells with Superior Fill Factor and Efficiency. Adv. Mater. 2020, 32 (48), 2004985. (120) Nguyen, D.-T.; Sharma, S.; Chen, S.-A.; Komarov, P. V.; Ivanov, V. A.; Khokhlov, A. R. Polymer–quantum dot composite hybrid solar cells with a bi-continuous network morphology using the block copolymer poly(3-hexylthiophene)-b-polystyrene or its blend with poly(3-hexylthiophene) as a donor. Mater. Adv. 2021, 2 (3), 1016-1023. (121) Yoshida, K.; Chang, J.-F.; Chueh, C.-C.; Higashihara, T. Hybridization of an n-type semiconducting polymer with PbS quantum dots and their photovoltaic investigation. Polym. J. 2022, 54 (3), 323-333. (122) Ding, C.; Wang, D.; Liu, D.; Li, H.; Li, Y.; Hayase, S.; Sogabe, T.; Masuda, T.; Zhou, Y.; Yao, Y.; et al. Over 15% Efficiency PbS Quantum-Dot Solar Cells by Synergistic Effects of Three Interface Engineering: Reducing Nonradiative Recombination and Balancing Charge Carrier Extraction. Adv. Energy Mater. 2022, 12 (35), 2201676. (123) Kennehan, E. R.; Munson, K. T.; Grieco, C.; Doucette, G. S.; Marshall, A. R.; Beard, M. C.; Asbury, J. B. Influence of Ligand Structure on Excited State Surface Chemistry of Lead Sulfide Quantum Dots. J. Am. Chem. Soc. 2021, 143 (34), 13824-13834. (124) Zhang, L.; Chen, Y.; Cao, S.; Yuan, D.; Tang, X.; Wang, D.; Gao, Y.; Zhang, J.; Zhao, Y.; Yang, X.; et al. Interfacial Heterojunction Enables High Efficient PbS Quantum Dot Solar Cells. Adv. Sci. 2024, 11 (26), 2402756. (125) Hung, C.-M.; Wu, C.-C.; Yang, Y.-H.; Chen, B.-H.; Lu, C.-H.; Chu, C.-C.; Cheng, C.-H.; Yang, C.-Y.; Lin, Y.-D.; Cheng, C.-H.; et al. Repairing Interfacial Defects in Self-Assembled Monolayers for High-Efficiency Perovskite Solar Cells and Organic Photovoltaics through the SAM@Pseudo-Planar Monolayer Strategy. Adv. Sci. 2024, 11 (36), 2404725. (126) Meng, Y.; Liu, C.; Cao, R.; Zhang, J.; Xie, L.; Yang, M.; Xie, L.; Wang, Y.; Yin, X.; Liu, C.; et al. Pre-Buried ETL with Bottom-Up Strategy Toward Flexible Perovskite Solar Cells with Efficiency Over 23%. Adv. Funct. Mater. 2023, 33 (28), 2214788. | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/97803 | - |
| dc.description.abstract | 本論文探討在硫化鉛膠體量子點 (PbS CQD) 太陽能電池中,導入兩種結構相似的近紅外光 (NIR) 非富勒烯受體 (NFA) —BTPV-4F 與 BATPV-4F,並結合非富勒烯供體 PTB7-Th 及富勒烯受體PC71BM組成本體異質結型電洞傳輸層 (BHJ-HTL)。NFAs 除了能擴展太陽光譜的NIR吸收範圍,亦可形成三維電荷傳輸通道,提升裝置的光電流(JSC)。GIWAXS 與 AFM/KPFM 結果顯示,於 HTL 中引入 NFAs 並經由溶劑蒸氣退火 (SVA) 後處理,可有效縮短 π–π 堆疊距離並延長晶體干涉長度(CCL),使 NFA 分子排列呈現長程有序的 face-on 堆疊,來縮短分子間電荷跳躍距離以促進電洞傳輸。此外,由X 射線光電子能譜 (XPS) 推測,PbS CQD 表面缺陷的鈍化主要來自於 Pb–S (BTPV-4F) 及 Pb–O ( BATPV-4F) 之間的相互作用。基態螢光光譜 (PL) 與飛秒瞬態吸收光譜 (fs-TA) 結果亦驗證NFAs 的導入可顯著提升 PbS CQD 激子解離並抑制非輻射複合,以達成 PbS/BHJ-HTL 界面鈍化,進而有效提升元件之開路電壓 (VOC) 與填充因子 (FF)。最終,採用 BTPV-4F NFA BHJ-HTL的 PbS CQD太陽能電池展現出高達 14.02 % 的光電轉換效率,亦具備優異的環境穩定性與熱穩定性。 | zh_TW |
| dc.description.abstract | This study investigates the bulk heterojunction (BHJ)-type hole-transporting layer (HTL) of lead sulfide colloidal quantum dot (PbS CQD) solar cells via incorporating two structurally similar near-infrared (NIR) non-fullerene acceptors (NFAs), BTPV-4F and BATPV-4F, blended with non-fullerene polymer donor PTB7-Th and fullerene acceptor PC71BM as hole-transporting materials (HTMs). In addition to broadening the NIR absorption range of the solar spectrum, NFAs could also construct three-dimensional charge transport channels that enhance the photocurrent (JSC) of the devices. Results from the Grazing-Incidence Wide-Angle X-ray Scattering (GIWAXS) and the Atomic Force Microscopy / Kelvin Probe Force Microscopy (AFM/KPFM) reveal that incorporating NFAs into the HTL, followed by the solvent vapor annealing (SVA) treatment, effectively reduces the π–π stacking distance and increases the crystal coherence length (CCL). SVA treatment promotes the NFA molecules’ long-range ordered face-on orientation, thereby shortening intermolecular charge hopping distances and facilitating hole transport. Moreover, we suggest that the passivation of surface defects on PbS CQDs is primarily achieved through Pb–S (with BTPV-4F) and Pb–O (with BATPV-4F) interactions through X-ray Photoelectron Spectroscopy (XPS) analysis. Steady-state photoluminescence (PL) spectrum and Femtosecond-Transient Absorption Spectroscopy (fs-TA) further confirm that the incorporation of NFAs significantly enhances exciton dissociation of PbS CQDs and suppresses non-radiative recombination, contributing to interfacial defect passivation at the PbS/BHJ-HTL interface. The above evidence shows noteworthy improvements in the open-circuit voltage (VOC) and fill factor (FF) of devices. As a result, the PbS CQD solar cell employing BTPV-4F NFA for BHJ-HTL achieves a high power conversion efficiency (PCE) of 14.02 %, along with excellent environmental and thermal stability. | en |
| dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2025-07-17T16:04:34Z No. of bitstreams: 0 | en |
| dc.description.provenance | Made available in DSpace on 2025-07-17T16:04:34Z (GMT). No. of bitstreams: 0 | en |
| dc.description.tableofcontents | 口試委員議定書 i
致謝 ii 中文摘要 iii Abstract iv Content v List of Figures vii List of Tables xi Chapter 1. Introduction 1 1.1 Energy Crisis 1 1.2 Evolution of Solar Cell Technologies 3 1.2.1 First Generation: Crystalline Silicon Solar Cells 3 1.2.2 Second Generation: Thin-Film Solar Cells 3 1.2.3 Third Generation: Emerging Photovoltaic Technologies 4 1.3 Quantum Dot Properties and Synthesis Control 6 1.3.1 Size and Quantum Confinement Effects of Quantum Dots 6 1.3.2 Mechanism of Multiple Exciton Generation (MEG) 8 1.3.3 Synthesis Control of Quantum Dots 10 1.4 Quantum Dots Ligand Exchange Engineering 14 1.4.1 Solid-State Ligand Exchange 14 1.4.2 Solution-Phase Ligand Exchange 16 1.5 The Principle of Solar Cell 18 1.5.1 Solar Spectrum 18 1.5.2 Solar Cell Parameters 21 1.5.3 Working Principles of Quantum Dot Solar Cells 23 1.6 Quantum Dot Solar Cell Architectures Evolution 27 1.6.1 Quantum-Dot-Sensitized Solar Cell (QDSSCs) 27 1.6.2 Schottky CQD Solar Cells 28 1.6.3 Heterojunction CQD Solar Cells 31 1.6.4 Homojunction-like CQD Solar cells 34 1.7 Development of Polymer-Based Hole Transport Layers 40 1.8 The Development of Non-fullerene Acceptors 48 1.8.1 IDIC-Based NFAs 49 1.8.2 ITIC-based NFA 49 1.8.3 Y6-based NFA 51 1.9 Ternary Organic Solar Cells (OSCs) 60 1.10 Motivation 63 Chapter 2. Experiment Part 65 2.1 Experiment Materials 65 2.2 PbS Quantum Dots Synthesis 66 2.3 PbS CQD Active Layer Ligand Exchange 67 2.4 Synthesis of IZO Films 68 2.5 Device Fabrication of PbS QD Solar Cell 69 2.6 Analysis Instruments 71 2.6.1 PbS QD & HTL Thin Films Analysis 71 2.6.2 Solar Cell Device Measurement 75 Chapter 3. Result and Discussion 81 3.1 Non-fullerene Electron Acceptors 81 3.1.1 Synthesis of Non-fullerene Electron Acceptors 82 3.1.2 Non-fullerene Electron Acceptors: Properties and Characterization 84 3.2 Lead Sulfide Colloidal Quantum Dots (PbS CQD) Properties and Characterization 87 3.3 Bulk Heterojunction-type Hole Transport Layer, BHJ-HTL 89 3.3.1 Absorption Spectra and Band Alignment Design of BHJ-HTL 89 3.3.2 2D-GIWAXS Analysis of BHJ-HTL 93 3.3.3 AFM/KPFM Analysis of BHJ-HTL 98 3.3.4 XPS Analysis of BHJ-HTL Interactions 102 3.4 PbS CQD BHJ-HTL Solar Cell Device Performance and Spectral Dynamic Analysis 109 3.4.1 Photovoltaic Performance 109 3.4.2 External Quantum Efficiency Improvement 112 3.4.3 Space-charge-limited-current (SCLC) Analysis 114 3.4.4 Electrochemical Impedance Spectroscopy (EIS) Analysis 116 3.4.5 Photoluminescence of PbS CQD with Different BHJ-HTL Effect 118 3.4.6 Femto-second Transient Absorption (fs-TA) Analysis 121 3.4.7 Device Stability 131 Chapter 4. Conclusion 132 Reference 134 | - |
| dc.language.iso | en | - |
| dc.subject | 非富勒烯受體 | zh_TW |
| dc.subject | 電荷轉移 | zh_TW |
| dc.subject | 飛秒瞬態吸收光譜 | zh_TW |
| dc.subject | 掠入射廣角 X 射線散射 | zh_TW |
| dc.subject | 電洞傳輸層 | zh_TW |
| dc.subject | 硫化鉛膠體量子點太陽能電池 | zh_TW |
| dc.subject | femtosecond transient absorption spectroscopy | en |
| dc.subject | hole-transporting layer | en |
| dc.subject | non-fullerene acceptors | en |
| dc.subject | PbS CQDs solar cells | en |
| dc.subject | GIWAXS analysis | en |
| dc.subject | charge transfer | en |
| dc.title | 透過在電洞傳輸層中引入近紅外光非富勒烯受體以實現對硫化鉛量子點本體異質接面太陽能電池的協同鈍化 | zh_TW |
| dc.title | Synergistic Passivation of PbS Quantum Dot Bulk-heterojunction Solar Cell via Incorporating NIR Non-fullerene Acceptors into Hole-transporting Layer | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 113-2 | - |
| dc.description.degree | 碩士 | - |
| dc.contributor.oralexamcommittee | 吳典霖;陳協志 | zh_TW |
| dc.contributor.oralexamcommittee | Tien-Lin Wu;Hsieh-Chih Chen | en |
| dc.subject.keyword | 硫化鉛膠體量子點太陽能電池,非富勒烯受體,電洞傳輸層,掠入射廣角 X 射線散射,飛秒瞬態吸收光譜,電荷轉移, | zh_TW |
| dc.subject.keyword | PbS CQDs solar cells,non-fullerene acceptors,hole-transporting layer,GIWAXS analysis,femtosecond transient absorption spectroscopy,charge transfer, | en |
| dc.relation.page | 143 | - |
| dc.identifier.doi | 10.6342/NTU202501544 | - |
| dc.rights.note | 未授權 | - |
| dc.date.accepted | 2025-07-08 | - |
| dc.contributor.author-college | 理學院 | - |
| dc.contributor.author-dept | 化學系 | - |
| dc.date.embargo-lift | N/A | - |
| 顯示於系所單位: | 化學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-113-2.pdf 未授權公開取用 | 9.25 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
