Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 土木工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/97796
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor韓仁毓zh_TW
dc.contributor.advisorJen-Yu Hanen
dc.contributor.author羅伊宸zh_TW
dc.contributor.authorYi-Chen Loen
dc.date.accessioned2025-07-16T16:17:30Z-
dc.date.available2025-07-17-
dc.date.copyright2025-07-16-
dc.date.issued2025-
dc.date.submitted2025-07-08-
dc.identifier.citationAlbert, S., Aswani, S., Fisher, P. L., and Albert, J. (2009). Coral reef economic valuation and conservation in the solomon islands. Ocean Coastal Management, 52(3–4):157–165.
Anelli, R., Gratton, L. M., Oss, S., and Polesello, P. (2019). Structure-from-motion pho- togrammetry for coral reef 3d reconstruction using underwater camera systems. ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, IV-2/W5:37–44.
Aronson, R. B. and Precht, W. F. (2001). White-band disease and the changing face of caribbean coral reefs. Hydrobiologia, 460:25–38.
Aronson, R. B. and Swanson, D. W. (1994). Video transect analyses of coral reef ben- thos: applications for resource assessment and monitoring. Bulletin of Marine Science, 54(3):1180–1188.
Asner, G. P., Martin, R. E., and Knapp, D. E. (2020). Coral reef composition and zonation with airborne imaging spectroscopy. Nature Geoscience, 13:282–287.
Backscatter (2023). Underwater camera setup guide for scientific imaging. Available at: https://www.backscatter.com.
Bell, J. D. and Galzin, R. (1984). Influence of live coral cover on coral-reef fish commu- nities. Marine Ecology Progress Series, 15:265–274.
Bellwood, D. R., Hughes, T. P., Folke, C., and Nyström, M. (2004). Confronting the coral reef crisis. Nature, 429:827–833.
Benayahu, Y. and Loya, Y. (1997). Soft corals of the red sea: ecology, phylogeny and taxonomy. Marine Ecology Progress Series, 147:115–123.
Benayahu, Y., Schleyer, M. H., Perkol-Finkel, S., and Shashar, N. (2004). Coral reef phase shifts and the role of soft corals. Marine Pollution Bulletin, 49(1–2):24–28.
Benkwitt, C. E., Williamson, D. H., and Graham, N. A. J. (2023). Thermal stress threatens persistence of coral reef fish assemblages. Nature Climate Change, 13:165–172.
Boström-Einarsson, L., Babcock, R. C., Bayraktarov, E., Ceccarelli, D. M., Cook, N., and Ferse, S. C. A. (2020). Coral restoration –a systematic review of current methods, successes, failures and future directions. PLOS ONE, 15(1):e0226631.
Bruno, J. F. and Selig, E. R. (2007). Regional decline of coral cover in the indo-pacific: timing, extent, and subregional comparisons. PLoS One, 2(8):e711.
Bryson, M., Ferrari, R., Figueira, W., and Pizarro, O. (2017). Automated registration for multi-year 3d mapping of benthic habitats. Remote Sensing, 9(7):715.
Burns, J. H., Delparte, D., Gates, R. D., and Takabayashi, M. (2015). Integrating structure- from-motion photogrammetry with geospatial software as a novel technique for quan- tifying 3d ecological characteristics of coral reefs. PeerJ, 3:e1077.
Carleton, J. H. and Done, T. J. (1995). Coral bleaching: the pattern and timing of events on the great barrier reef. Coral Reefs, 14(1):43–52.
Casella, E., Ferrari, M., Montefalcone, M., and Rovere, A. (2022). Structure-from-motion photogrammetry as a tool for monitoring coral reef structural complexity. Remote Sensing, 14(7):1635.
Chen, L. C., Zhu, Y., Papandreou, G., Schroff, F., and Adam, H. (2018). Encoder-decoder with atrous separable convolution for semantic image segmentation. ECCV, pages 833– 851.
Cornwall, C. E., Eddy, T. D., Boyd, P. W., Currie, K. I., and Pilditch, C. A. (2021). Global declines in coral reef ecosystems under ocean acidification and warming. Nature Climate Change, 11:557–563.
Dinesen, Z. D. (1983). Patterns in the distribution of soft corals across the central great barrier reef. Coral Reefs, 1:229–236.
Dubinsky, Z. and Stambler, N. (1996). Marine pollution and coral reefs. Global Change Biology, 2(6):511–526.
English, S., Wilkinson, C., and Baker, V. (1997). Survey manual for tropical marine resources. Australian Institute of Marine Science.
Fabricius, K. E., Logan, M., Weeks, S., and Brodie, J. (2013). The effects of river runoff on water clarity across the central great barrier reef. Marine Pollution Bulletin, 65:108– 123.
Ferrari, R., McKinnon, D., He, H., Smith, R. N., Corke, P., Gonzalez-Rivero, M., and Up- croft, B. (2016). Quantifying habitat structural complexity using 3d photogrammetry. Remote Sensing, 8(6):479.
Ferrari, R., McKinnon, D., He, H., Smith, R. N., Corke, P., Gonzalez-Rivero, M., and Up- croft, B. (2021). Quantifying multiscale habitat structural complexity: A cost-effective framework for underwater 3d modelling. Remote Sensing, 8(2):113.
Gardner, T. A., Cote, I. M., Gill, J. A., Grant, A., and Watkinson, A. R. (2003). Long-term region-wide declines in caribbean corals. Science, 301:958–960.
Hannah, L., Roehrdanz, P. R., Ikegami, M., Shepard, A. V., Shaw, M. R., Tabor, G., and Zhi, L. (2019). Climate change, wine, and conservation. Proceedings of the National Academy of Sciences, 106(7):832–833.
Hill, J. and Wilkinson, C. (2004). Methods for Ecological Monitoring of Coral Reefs. Australian Institute of Marine Science, Townsville, Australia.
Hoegh-Guldberg, O., Mumby, P. J., Hooten, A. J., Steneck, R. S., Greenfield, P., and Gomez, E. (2007). Coral reefs under rapid climate change and ocean acidification. Science, 318(5857):1737–1742.
Hughes, T. P., Baird, A. H., Bellwood, D. R., Card, M., and Connolly, S. R. (2003). Cli- mate change, human impacts, and the resilience of coral reefs. Science, 301(5635):929–933.
Hughes, T. P., Barnes, M. L., Bellwood, D. R., Cinner, J. E., Cumming, G. S., and Jackson, J. B. C. (2017). Coral reefs in the anthropocene. Nature, 546:82–90.
Hughes, T. P., Graham, N. A. J., Jackson, J. B. C., Mumby, P. J., and Steneck, R. S. (2010). Rising to the challenge of sustaining coral reef resilience. Trends in Ecology Evolution, 25(11):633-642.
Intergovernmental Panel on Climate Change (IPCC) (2022). Sixth assessment report: Impacts, adaptation and vulnerability. Available at: https://www.ipcc.ch.
Islam, M. J., Xia, Y., and Sattar, J. (2020). Fast underwater image enhancement for im- proved visual perception. IEEE Robotics and Automation Letters, 5(2):3227–3234.
Jackson, J. B. C., Kirby, M. X., Berger, W. H., Bjorndal, K. A., and Botsford, L. W. (1997). Historical overfishing and the recent collapse of coastal ecosystems. Science, 293(5530):629–638.
James, M. R. and Robson, S. (2014). Straightforward reconstruction of 3D surfaces and topography with a camera: Accuracy and geoscience application, volume 119. Journal of Geophysical Research: Earth Surface.
Lange, J. and Perry, C. T. (2020). Using structure-from-motion photogrammetry to mea- sure dynamic reef structural complexity. Remote Sensing, 12(17):2832.
Lavy, A., Siegel, J., Eyal, G., Ben-Zvi, O., and Shashar, N. (2019). Structure-from-motion photogrammetry in monitoring coral reef environments. Journal of Experimental Marine Biology and Ecology, 512:82–91.
Li, M., Chan, P., and Zhou, H. (2023). Comparative analysis of cnn and fcnn architectures for coral segmentation in underwater imagery. Ecological Informatics, 72:101817.
Li, M., Wang, Y., and Zhou, H. (2021). Semantic segmentation of coral reefs using deep learning: A review. Ecological Informatics, 64:101374.
Li, M., Wang, Y., Zhou, H., and Chan, P. (2024a). Coral cover assessment in shallow reefs using shipborne remote sensing and underwater imaging technology. Remote Sensing of Environment. in press.
Li, M., Zhou, H., and Wang, Y. (2024b). Comparative analysis of shipborne and under- water coral imaging platforms. Marine Ecology Progress Series. accepted.
Liu, G., Strong, A. E., and Skirving, W. (2014). Remote sensing of sea surface tem- peratures during coral bleaching events: challenges and solutions. Remote Sensing, 6(3):11517–11546.
Logan, C. A., Dunne, J. P., Eakin, C. M., and Donner, S. D. (2021). Incorporating adaptive responses into future projections of coral bleaching. Global Change Biology, 27(1):121–132.
Lu, X., Zhang, Y., Chen, Z., and Wang, H. (2025). Projected marine biodiversity responses to ocean warming. Global Change Biology. in press.
Lyons, M. B., Roelfsema, C. M., and Phinn, S. R. (2024). Mapping coral reefs at multiple scales with remote sensing: progress, challenges, and future directions. Frontiers in Marine Science. in press.
Norström, A. V., Nyström, M., Lokrantz, J., and Folke, C. (2009). Alternative states on coral reefs: beyond coral–macroalgal phase shifts. Marine Ecology Progress Series, 376:295–306.
Obura, D. O., Grimsditch, G., and Chou, L. M. (2019). Coral reef monitoring: A practical guide. Global Coral Reef Monitoring Network.
Oceanomics (2021). 台 灣 珊 瑚 礁 白 化 監 測 報 告. Available at: https:// www.oceanomics.tw.
on Climate Change (IPCC), I. P. (2023). Sixth assessment report, summary for policy- makers. Available from: https://www.ipcc.ch/report/ar6/syr/.
Page, C. and Wilkinson, C. (2001). Monitoring the effects of dredging on the great barrier reef. Australian Institute of Marine Science Report.
Shihavuddin, A. S. M., Gracias, N., Garcia, R., and Gleason, A. (2013). Image-based coral reef classification and thematic mapping. Remote Sensing, 5(4):1809–1834.
Souter, D., Planes, S., Wicquart, J., Logan, M., Obura, D., and Staub, F. (2020). Status of Coral Reefs of the World: 2020. Global Coral Reef Monitoring Network (GCRMN).
Souter, D., Planes, S., Wicquart, J., Logan, M., Obura, D., and Staub, F. (2021). Status of coral reefs of the world: 2020. Global Coral Reef Monitoring Network.
Svea, C., Darling, E. S., and Graham, N. A. J. (2020). Social-ecological phase shifts in coral reefs: the importance of symbiotic soft corals. Ecology and Society, 25(4):1–11.
Wang, H., Liu, J., and Fang, S. (2023). Underwater image semantic segmentation for coral reef monitoring using deeplabv3+. Marine Pollution Bulletin, 192:114951.
Westoby, M. J., Brasington, J., Glasser, N. F., Hambrey, M. J., and Reynolds, J. M. (2012). `structure-from-motion'photogrammetry: A low-cost, effective tool for geoscience applications. Geomorphology, 179:300–314.
Woodhead, A. J., Hicks, C. C., Norström, A. V., Williams, G. J., and Graham, N. A. J. (2019). Coral reef ecosystem services in the anthropocene. Functional Ecology, 33(6):1015–1024.
Wooldridge, S. and Done, T. J. (2009). Improved water quality can ameliorate effects of climate change on corals. Marine Ecology Progress Series, 394:85–94.
Zhong, J., Li, M., Zhang, H., and Qin, J. (2023). Fine-grained 3d modeling and semantic mapping of coral reefs using photogrammetric computer vision and machine learning. Sensors, 23(15):Article 15.
Zhou, Y., Zhang, Y., Tang, R., and Chen, M. (2016). 3d reconstruction and mapping of coral reefs using underwater photogrammetry. Sensors, 16(4):636.
Zhou, Z., Rahman, M. M., Bhuiyan, M. Z. A., and Kaiser, M. S. (2018). Deeplab-v3+ for robust semantic segmentation of coral reef benthic substrates. Sensors, 18(7):2224.
科技大觀園 (2020). 台灣珊瑚礁監測調查成果總覽. 取自:https:// scitechvista.nat.gov.tw.
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/97796-
dc.description.abstract珊瑚覆蓋率對於維持海洋生物多樣性與氣候調節具有關鍵作用,石珊瑚與軟珊瑚的分布變化亦常反映海洋污染與環境惡化的狀況,因此同時監測兩者對評估珊瑚礁健康尤為重要。本研究針對傳統穿越線法(LIT)在監測範圍、主觀性及資料保存上的限制,並考量過往研究多聚焦於石珊瑚的不足,提出一套結合水下錄影、攝影測量與語意分割模型的整合性監測方法。透過高解析度正射影像建置與自動化分類流程,本研究能有效辨識石珊瑚與軟珊瑚的空間分布。實驗結果顯示, 僅需 18 分鐘錄影時間,即可重建約 80 平方公尺樣區;語意分割模型訓練中,石珊瑚與軟珊瑚的 IoU 均達 97% 以上;測試影像中石珊瑚與軟珊瑚覆蓋率誤差分別為 -1.06% 與 -0.77%,符合常見珊瑚監測計畫中 ±5% 的誤差容忍度。本研究成功建立一套低成本、高效率且具客觀性的珊瑚監測架構。zh_TW
dc.description.abstractCoral cover plays a vital role in maintaining marine biodiversity and regulating climate. Changes in the distribution of hard and soft corals often indicate marine pollution and environmental degradation, making the simultaneous monitoring of both essential for assessing reef health. This study addresses the limitations of traditional line-intercept transects (LIT), including restricted coverage, subjectivity, and lack of data preservation, by proposing an integrated method combining underwater video, photogrammetry, and semantic segmentation. Using high-resolution orthomosaics and automated classification, our approach effectively identifies the spatial distribution of both coral types. Field experiments show that an 18-minute video can reconstruct an 80 m2 area, with the trained model achieving IoUs over 97% for both hard and soft corals. The estimated cover errors in test images were −1.06% and −0.77%, well within the ±5% tolerance commonly accepted in coral monitoring. This study establishes a low-cost, efficient, and objective coral monitoring framework.en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2025-07-16T16:17:30Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2025-07-16T16:17:30Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontents致謝 ............................................................................................................. i
摘要 ............................................................................................................. ii
Abstract .......................................................................................................... iii
目次 ............................................................................................................. iv
圖次 .......................................................................................................... viii
表次 .......................................................................................................... ix
第一章 緒論 .............................................................................................. 1
1.1 研究背景與目的 ................................................................................ 1
1.2 論文架構 ........................................................................................... 3
第二章 文獻回顧 ..................................................................................... 4
2.1 珊瑚礁現況與生態變遷趨勢 ............................................................ 4
2.1.1 全球暖化對珊瑚礁的衝擊 ...................................................... 4
2.1.2 研究地區概況 .......................................................................... 5
2.2 珊瑚礁監測方法與技術發展 ............................................................ 6
2.2.1 人工作業調查監測方法限制 .................................................. 6
2.2.2 影像與遙感監測技術之發展與限制 ........................................ 7
2.2.3 自動化影像分類與語意分割發展 .......................................... 8
2.2.4 攝影測量與 SfM 在空間重建之應用 ...................................... 9
2.3 小結 ................................................................................................. 10
第三章 研究方法與理論 ........................................................................ 11
3.1 研究樣區與珊瑚礁環境描述 .......................................................... 12
3.2 調查區位選擇與樣區設定依據 ...................................................... 12
3.3 水下珊瑚礁調查之影像拍攝流程 .................................................. 14
3.3.1 影像擷取所用設備與參數設定 ............................................ 14
3.3.2 地面控制點影像尺度基準建立 ............................................ 15
3.3.3 三維建模之拍攝策略與規劃原則 .......................................... 15
3.3.4 潛水拍攝作業配置與流程 .................................................. 17
3.3.5 珊瑚樣區錄影資料擷取 ...................................................... 18
3.4 珊瑚影像三維建模與正射處理流程 .............................................. 18
3.4.1 SfM 初始對位與特徵點匹配 .............................................. 19
3.4.2 光束法平差與相機參數優化 .............................................. 19
3.4.3 多視角密集點雲重建 ...................................................... 20
3.4.4 三維紋理模型重建 ......................................................... 20
3.4.5 以塑膠框為基準之尺度轉換與空間校正 .............................. 21
3.4.6 珊瑚正射影像生成與輸出作業 .......................................... 22
3.5 語意分割前的珊瑚影像處理流程 ................................................ 22
3.5.1 輸入影像裁切與尺寸標準化 .............................................. 22
3.5.2 建立珊瑚標註資料 ......................................................... 23
3.6 珊瑚語意分割模型訓練與測試任務 ............................................ 24
3.6.1 DeepLabv3+ 模型結構 .................................................... 24
3.6.2 DeepLabv3+ 模型訓練參數設定 ........................................ 25
3.6.3 模型精度評估指標與選定 ................................................ 27
3.7 珊瑚影像後處理與覆蓋率分析 .................................................. 29
3.8 小結 ................................................................................................. 30
第四章 實驗結果與分析 ........................................................................ 31
4.1 珊瑚樣區水下影像調查作業 ...................................................... 31
4.2 正射影像生成與誤差評估 .......................................................... 32
4.2.1 潛水影像擷取 ....................................................................... 32
4.2.2 相機自秤定 ........................................................................... 33
4.2.3 稀疏點雲重建與視差分析 .................................................. 34
4.2.4 密集點雲與珊瑚三維紋理模型重建 ...................................... 35
4.2.5 控制尺度誤差評估 ........................................................... 36
4.2.6 珊瑚樣區正射影像生成與區塊裁切 ...................................... 37
4.2.7 裁切區塊面積估算與誤差重化 .......................................... 39
4.3 語意分割前之影像預處理工作 .................................................. 40
4.3.1 固定尺寸樣本裁切作業 .................................................. 40
4.3.2 珊瑚類別標註與資料格式轉換 .......................................... 40
4.3.3 樣本類別重分配與資料擴增處理 ...................................... 41
4.4 語意分割模型訓練與預測評估 ................................................ 41
4.4.1 訓練樣區分類表現與模型精度分析 .................................... 42
4.4.2 測試影像評估 ....................................................................... 46
4.5 本研究方法與傳統方法之效率與精度比較 .................................. 49
4.5.1 LIT 方法作業流程與限制 ................................................ 49
4.5.2 LIT 方法與本研究方法之比較 .......................................... 51
4.6 小結 ................................................................................................. 52
第五章 結論與建議 .............................................................................. 54
5.1 結論 ................................................................................................. 54
5.2 建議與未來工作 ............................................................................ 56
參考文獻 ................................................................................................. 58
-
dc.language.isozh_TW-
dc.subject語意分割zh_TW
dc.subject珊瑚覆蓋率zh_TW
dc.subject水下攝影測量zh_TW
dc.subject軟珊瑚zh_TW
dc.subject石珊瑚zh_TW
dc.subjectCoral coveren
dc.subjectHard coralsen
dc.subjectSoft coralsen
dc.subjectUnderwater photogrammetryen
dc.subjectSemantic segmentationen
dc.title基於深度學習的珊瑚正射影像辨識zh_TW
dc.titleDeep Learning-Based Identification of Coral Orthomosaicsen
dc.typeThesis-
dc.date.schoolyear113-2-
dc.description.degree碩士-
dc.contributor.oralexamcommittee郭重言;黃春嘉zh_TW
dc.contributor.oralexamcommitteeChung-Yen Kuo;Chun-Jia Huangen
dc.subject.keyword石珊瑚,軟珊瑚,水下攝影測量,語意分割,珊瑚覆蓋率,zh_TW
dc.subject.keywordHard corals,Soft corals,Underwater photogrammetry,Semantic segmentation,Coral cover,en
dc.relation.page64-
dc.identifier.doi10.6342/NTU202500937-
dc.rights.note同意授權(全球公開)-
dc.date.accepted2025-07-08-
dc.contributor.author-college工學院-
dc.contributor.author-dept土木工程學系-
dc.date.embargo-lift2030-06-25-
顯示於系所單位:土木工程學系

文件中的檔案:
檔案 大小格式 
ntu-113-2.pdf
  此日期後於網路公開 2030-06-25
29.82 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved