Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 機械工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/97795
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor黃育熙zh_TW
dc.contributor.advisorYu-Hsi Huangen
dc.contributor.author張淳期zh_TW
dc.contributor.authorChun-Chi Changen
dc.date.accessioned2025-07-16T16:17:19Z-
dc.date.available2025-07-17-
dc.date.copyright2025-07-16-
dc.date.issued2024-
dc.date.submitted2025-07-03-
dc.identifier.citation參考文獻
[1] Mudry A, Tjellstrom A. “Historical background of bone conduction hearing devices and bone conduction hearing aids.” Adv Otorhinolaryngol 2011;71:1-9.
[2] Ad Snik, M Agterberg. “The history of bone-conduction devices.” ENT & Audiology News Volume 32 Issue 5 November/December 2023
[3] Tjellström A, Håkansson B. “The bone-anchored hearing aid. Design principles, indications, and long-term clinical results.” Otolaryngol Clin North Am 1995;28(1):53-72.
[4] Stenfelt, S., “Model predictions for bone conduction perception in the human”, Hearing Research 340 (2016): 135-143.
[5] Stanley A. Gelfand, “Essentials of Audiology 4th Edition.” Thieme 2016
[6] Lundgren, H. “Bone Conduction Transducers and Output Variability: Lumped-parameter modelling of state variables”, Master’s Thesis. Göteborg, Sweden: Chalmers University of Technology. 2010
[7] Fujise, A. (2018). “ Lumped parameter model for practical compensation of the sound with bone conduction headphones,” in Proceedings of the IEEE 7th Global Conference on Consumer Electronics, October 9–12, Nara, Japan, pp. 649–651.
[8] J. Curie, a. C. P., “Development by pressure of polar electricity in hemihedral crystals with inclined faces.”, Bull. soc. min. de France, pp. 90-102, 1880.
[9] W. G. Cady, “Piezoelectricity.”, McGraw-Hill Book Company, Inc., New York, 1946.
[10] W. P. Mason, “Piezoelectric crystals and their applications to ultrasonics.”, New York: Can Nostrand, 1950.
[11] H. F. Tiersten, “Linear piezoelectric plate vibrations: elements of the linear theory of piezoelectricity and the vibrations piezoelectric plates.”, Springer, 2013.
[12] R. Mindlin, “High frequency vibrations of piezoelectric crystal plates.”, International Journal of Solids and Structures, vol. 8(7), pp. 895-906, 1972.
[13] IEEE Ultrasonics Ferroelectrics and Frequency Control Society, in ANSI/IEEE Std 176, 1987.
[14] N. N. Rogacheva, “The theory of piezoelectric shells and plates.”, CRC press, 2020.
[15] S. Y. Wang, “A finite element model for the static and dynamic analysis of a piezoelectric bimorph.”, International Journal of Solids and Structures, 41(15), pp. 4075-4096, 2004
[16] C. C. Ma, Y. C. Lin, Y. H. Huang, and H. Y. Lin, “Experimental measurement and numerical analysis on resonant characteristics of cantilever plates for piezoceramic bimorphs.”, IEEE transactions on ultrasonics, ferroelectrics, and frequency control, 54(2), pp. 227-239, 2007.
[17] A. Erturk, D. J. Inman, “An experimentally validated bimorph cantilever model for piezoelectric energy harvesting from base excitations.”, Smart Materials and Structures, 18(2), 025009, 2009.
[18] Y. H. Huang, C. C. Ma, “Experimental and numerical investigations of vibration characteristics for parallel-type and series-type triple-layered piezoceramic bimorphs.”, IEEE transactions on ultrasonics, ferroelectrics, and frequency control, 56(12), pp. 2598-2611, 2009.
[19] W. Ritz, “Theorie der Transversalschwingungen einer quadratischen Platte mit freien Randern.” Annalen der Physik 333(4), pp. 737-786, 1909
[20] D. Young, “Vibration of rectangular plates by the Ritz method.” Journal of Applied Mechanics-Transactions of the ASME 17(4),pp. 448-453, 1950.
[21] G.B. Warburton, “The vibration of rectangular plates.” Proceedings of the Institution of Mechanical Engineers 168(1), pp.371-384,1954
[22] A. W. Leissa, “Vibration of plates, NASA SP-160,(1969).” US Washington. W. Leissa. J Sound and Vibration 56, pp. 313,1978
[23] G. B. Warbuton, and S. L. Edney, “Vibrations of rectangular plates with elastically restrained edges.” Journal of Sound and Vibration, 95(4), pp. 537-552,1984.
[24] C. C. Liang, C. C. Liao, Y. S. Tai, and W. H. Lai, “The free vibration analysis of submerged cantilever plates.” Ocean Engineering 28(9), pp. 1225-1245,2001.
[25] 徐雪維, 馬劍清, “流-固耦合問題之流場中長方形薄板振動特性理論分析與數值探討”, 國立台灣大學機械工程研究所碩士論文, 2015.
[26] 廖展誼, 馬劍清, “矩形平板於流固耦合問題的振動特性與暫態波傳之理論分析、數值計算與實驗量測” 國立台灣大學機械工程研究所博士論文, 2018.
[27] 王惠儀, “應用樑函數法於壓電平板撓性邊界之振動特性分析”, 國立臺灣科技大學機械工程所碩士論文, 2019.
[28] Neubert H K P, “Instrument Transducers 2nd edn” (Oxford: Clarendon) 1975.
[29] Rossi M, “Acoustics and Electroacoustics” (Norwood,MA: Artech) 1988.
[30] Johnson R A, “Mechanical Filters in Electronics” (NewYork: Wiley) 1983.
[31] Skudrzyk E J, “Vibrations of a systems with a finite or an infinite number of resonances J. Acoust. Soc. Am. 30 1140–52” 1958.
[32] Mason, W. P. “Electromechanical Transducers and Wave Filters.” New York, NY: Van Nostrand. 1942.
[33] Krimholtz, R., Leedom, D. A., and Matthaei, G. L. “New equivalent circuits for elementary piezoelectric transducers.” Electr. Lett. 6, 398–399. doi: 10.1049/ el:19700280, 1970.
[34] Kim, G., Hwang, Y.-I., Seo, M.-K., and Kim, K.-B. “Electrical tuning for sensitivity enhancement of a piezo-electric ultrasonic transducer: Simulation and fabrication.” J. Mech. Sci. Technol. 34, 3155–3164. doi: 10.1007/s12206-020- 0707-1, 2020.
[35] Leach, W. M. “Controlled-source analogous circuits and spice models for piezoelectric transducers.” IEEE T Ultrason. Ferr. 41, 60–66. doi: 10.1109/58. 265821, 1994.
[36] Tilmans H A C “Equivalent circuit representation of electromechanical transducers—part I: lumped-parameter systems” J. Micromech. Microeng. 6 157–76, 1996.
[37] Tilmans H A C “Equivalent circuit representation of electromechanical transducers: II. Distributed-parameter systems” J. Micromech. Microeng. Submitted, 1996.
[38] Yeh Y, Cummins H Z, Localized flow measurements with a He-Ne laser pectrometer. Appl Phys Letters, 4, 176. 1964
[39] 黃至偉, “壓電陶瓷雙晶片於雙邊固定邊界之能量擷取及雷射都卜勒自動化陣列式量測模組” 國立臺灣科技大學機械工程所碩士論文, 2014.
[40] 江信遠, “靜電和壓電揚聲器之圓形振膜振動與聲壓研究” 國立台灣科技大學機械工程研究所博士論文, 2017.
[41] 連振原, “雷射都卜勒振動儀之自動化全場聲振量測系統開發” 國立臺灣科技大學機械工程所碩士論文, 2023.
[42] R. P. Shimpi, H. G. Patel, “ A two variable refined plate theory for orthotropic plate analysis.” International Journal of Solids and Structures, 43(22-23), pp. 6783-6799, 2006.
[43] Heidari A.A., Mirjalili S., Faris H., Aljarah I., Mafarja M., Chen “H. Harris hawks optimization: Algorithm and applications Future Gener.” Comput. Syst., 97, pp. 849-872, 2019.
[44] SHOKZ OPENRUN PRO website, “https://shokz.com/products/openrunpro”
[45] “B71 Bone Transducers Datasheet”, RadioEar
[46] “Artificial Mastoid Type 4930 Datasheet”, HOTTINGER BRÜEL & KJÆR
[47] “OFV-5000 Modular Vibrometer Product Brochure”, Polytec
[48] cDAQ-SV1101 Bundle, National Instruments, “https://www.ni.com/pl-pl/shop/model/cdaq-sv1101-bundle.html” 
[49] “33500B and 33600A Series Trueform Waveform Generators Data Sheet”, Keysight Technologies
[50] “MINISCAN III-10 Data Sheet”, Raylase
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/97795-
dc.description.abstract本論文首先討論了人體聽覺系統,整理了骨傳導聽力的原理,並以設計一款骨傳導耳機為出發點,探討使用壓電薄板作為骨傳導耳機發聲元件的理論與方法。本文採用等效電路的方法對壓電平板進行建模,並進一步利用該模型分析壓電平板在不同邊界條件下的振動響應。
首先,參考前人基於機械—電路類比系統推導出的壓電材料等效電路理論,擴展建立了二維壓電平板的等效電路理論,分別探討了壓電懸臂板和壓電雙邊固定板的邊界條件。在推導過程中,導入樑函數法,計算不同邊界條件下壓電平板的模態振型。另外,利用有限元素法軟體建立相應的壓電平板模型,計算相同條件下的振動響應;同時,使用阻抗分析儀、雷射都卜勒測振儀等量測儀器,對實際的壓電試片進行測量,提供模型化過程中的數據,並驗證模型的準確性。本研究在建立等效電路模型的過程中還使用了系統識別和群體智慧演算法等方法來獲取參數值,這是一種結合理論、實驗與模擬數據的模型建構方法。
最後,以實驗和模擬驗證所建立的壓電致動器模型在施加不同負載情況下的模態、共振頻率、速度和作用力等振動特性的響應表現。本研究特別將人體乳突阻抗以質量—彈簧—阻尼系統的形式建立在有限元素軟體中,藉以模擬在此情況下壓電平板與乳突之間耦合後的作用結果,以便與電路模型進行比較和討論。本文所建立的理論模型與實驗和模擬結果之間呈現出良好的相似性,提供了一種模型化壓電致動器的方法,也提供了一種設計骨傳導耳機的新途徑。
zh_TW
dc.description.abstractThis study first discusses the human auditory system, summarizes the principles of bone conduction hearing, and explores the theory and methods of using piezoelectric plates as sound-producing elements in bone-conduction headphones. The equivalent circuit method is used to model the piezoelectric plates, and this model is further employed to analyze the vibration response of the piezoelectric plates under different boundary conditions.
Firstly, the equivalent circuit theory for piezoelectric materials, derived from the mechanical-electrical analogy system, is referenced and expanded to establish a two-dimensional equivalent circuit theory for piezoelectric plates. The boundary conditions of cantilever plates and clamped-clamped plates are investigated separately. The beam function method is introduced during the derivation process to calculate the modal shapes of the piezoelectric plates under different boundary conditions. Additionally, finite element method (FEM) software is used to establish corresponding piezoelectric plate models to calculate the vibration responses under the same conditions. Impedance analyzers, laser Doppler vibrometers, and other measurement instruments are employed to measure actual piezoelectric samples, providing data for the modeling process and verifying the model's accuracy. In establishing the equivalent circuit model, system identification and the HHO (Harris Hawks Optimization) algorithm are used to obtain parameter values. This is a model construction method that integrates theory, experimental data, and simulation results.
Finally, experiments and simulations are conducted to verify the response performance of the established piezoelectric actuator model under different load conditions, focusing on modal shapes, resonance frequencies, velocities, and forces. This study particularly establishes the impedance of the human mastoid in the form of a mass-spring-damper system within FEM software to simulate the interaction between the plate and the mastoid under these conditions, allowing for comparison and discussion with the equivalent circuit model. The theoretical model established in this thesis shows good correspondence with the experimental and simulation results, providing a method for modeling piezoelectric actuators and a new approach for designing bone conduction headphones.
en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2025-07-16T16:17:19Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2025-07-16T16:17:19Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontents目次
口試委員會審定書 I
誌謝 II
中文摘要 IV
Abstract V
目次 VII
圖次 XI
表次 XVI
第一章 緒論 1
1.1 研究動機 1
1.2 文獻回顧 2
1.3 論文內容簡介 6
第二章 聽力原理 8
2.1 聽覺之聲音傳遞原理 8
2.2 骨傳導耳機 10
2.3 聽力檢查 11
第三章 實驗原理與儀器架設 16
3.1 雷射督卜勒測振儀 16
3.2 全域振動量測系統 19
3.3 阻抗分析儀 22
第四章 壓電薄板理論 29
4.1 壓電陶瓷雙晶片介紹 29
4.2 壓電薄板之本構方程式 33
4.3 力學假設 34
4.4 電學假設 38
4.5 壓電薄板受軸向力作用下之統御方程式推導 41
第五章 壓電樑之等效電路模型 50
5.1 壓電樑等效電路理論 50
5.1.1 長度方向振動壓電片 50
5.1.2 彎曲振動壓電片 54
5.2 壓電懸臂樑等效電路建構 60
5.2.1 雙層壓電樑的電路模型 60
5.2.2 三層壓電樑的電路模型 63
5.3 理論模型與有限元素法之結果比較 64
5.3.1 有限元素法軟體之設置 65
5.3.2 雙層壓電樑電路模型與有限元素法之結果比較 66
5.3.3 三層壓電樑電路模型與有限元素法之結果比較 70
第六章 壓電懸臂板之等效電路模型 73
6.1 實驗量測之結果 73
6.1.1 測試之元件 73
6.1.2 阻抗分析儀 74
6.1.3 全域振動量測 76
6.1.4 雷射都卜勒測振儀量測 76
6.2 有限元素法之結果 78
6.2.1 有限元素法軟體之設定 78
6.2.2 有限元素法之模態 78
6.2.3 有限元素法之阻抗 79
6.2.4 有限元素法之速度 80
6.3 壓電懸臂板之等效電路 81
6.3.1 樑函數法理論 81
6.3.2 等效電路理論 83
6.3.3 等效電路建構 86
6.3.4 阻尼參數計算 88
6.3.5 機電轉換係數修正 92
6.4 壓電懸臂板等效電路模型之驗證 95
6.4.1 模態之比較 95
6.4.2 理論模型與有限元素法之結果比較 99
6.4.3 理論模型與實驗量測之結果比較 118
第七章 壓電懸雙邊固定板之等效電路模型 127
7.1 實驗量測之結果 127
7.1.1 測試之元件 127
7.1.2 阻抗分析儀 128
7.1.3 全域振動量測 130
7.1.4 雷射都卜勒測振儀量測 130
7.2 有限元素法之結果 131
7.2.1 有限元素法軟體之設定 131
7.2.2 有限元素法之模態 132
7.2.3 有限元素法之阻抗 132
7.2.4 有限元素法之速度 133
7.3 壓電雙邊固定板之等效電路 134
7.3.1 樑函數法理論 134
7.3.2 等效電路理論 135
7.3.3 等效電路建構 135
7.3.4 阻尼參數計算 137
7.3.5 機電轉換係數修正 140
7.4 壓電雙邊固定板等效電路模型之驗證 141
7.4.1 模態之比較 141
7.4.2 理論模型與有限元素法之結果比較 145
7.4.3 理論模型與實驗量測之結果比較 154
第八章 耦合乳突阻抗 161
8.1 有限元素模型與乳突阻抗耦合 161
8.1.1 乳突阻抗之機械—電路類比轉換 161
8.1.2 有限元素軟體設置 165
8.2 電路模型與乳突阻抗耦合 165
8.3 電路模型與模擬軟體之結果比較 166
8.3.1 壓電懸臂板 166
8.3.2 壓電雙邊固定板 175
8.4 B71骨導致動器與乳突耦合 184
第九章 結論與未來展望 186
9.1 本文成果 186
9.2 未來展望 191
參考文獻 192
附錄 197
-
dc.language.isozh_TW-
dc.subject壓電致動器zh_TW
dc.subject等效電路zh_TW
dc.subject骨傳導耳機zh_TW
dc.subject有限元素法zh_TW
dc.subject樑函數法zh_TW
dc.subject雷射都卜勒測振儀zh_TW
dc.subject壓電平板zh_TW
dc.subjectlaser Doppler vibrometersen
dc.subjectpiezoelectric plateen
dc.subjectpiezoelectric actuatorsen
dc.subjectequivalent circuiten
dc.subjectbone-conduction headphoneen
dc.subjectfinite element methoden
dc.subjectbeam funciton theoryen
dc.title壓電薄板之等效電路模型建構: 一種設計骨傳導耳機發聲元件的方法zh_TW
dc.titleConstructing Equivalent Circuit of Piezoelectric Plate: a Bone Conduction Headphone Design Methoden
dc.typeThesis-
dc.date.schoolyear113-2-
dc.description.degree碩士-
dc.contributor.oralexamcommittee張弘岳;劉建豪zh_TW
dc.contributor.oralexamcommitteeHung-Yue Chang;Chien-Hao Liuen
dc.subject.keyword壓電平板,壓電致動器,等效電路,骨傳導耳機,有限元素法,樑函數法,雷射都卜勒測振儀,zh_TW
dc.subject.keywordpiezoelectric plate,piezoelectric actuators,equivalent circuit,bone-conduction headphone,finite element method,beam funciton theory,laser Doppler vibrometers,en
dc.relation.page199-
dc.identifier.doi10.6342/NTU202402161-
dc.rights.note同意授權(限校園內公開)-
dc.date.accepted2025-07-04-
dc.contributor.author-college工學院-
dc.contributor.author-dept機械工程學系-
dc.date.embargo-lift2025-07-17-
顯示於系所單位:機械工程學系

文件中的檔案:
檔案 大小格式 
ntu-113-2.pdf
授權僅限NTU校內IP使用(校園外請利用VPN校外連線服務)
10.56 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved