Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 應用力學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/97794
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor林哲宇zh_TW
dc.contributor.advisorChe-Yu Linen
dc.contributor.author楊益zh_TW
dc.contributor.authorYi Yangen
dc.date.accessioned2025-07-16T16:17:08Z-
dc.date.available2025-07-17-
dc.date.copyright2025-07-16-
dc.date.issued2025-
dc.date.submitted2025-07-10-
dc.identifier.citationBorresen, J., & Lambert, M. I. (2009). The quantification of training load, the training response and the effect on performance. Sports Medicine, 39(9), 779–795.
Durell, D. L., Pujol, T. J., & Barnes, J. T. (2003). A survey of the scientific data and training methods utilized by collegiate strength and conditioning coaches. The Journal of Strength & Conditioning Research, 17(2), 368–373.
Clarke, D. C., & Skiba, P. F. (2013). Rationale and resources for teaching the mathematical modeling of athletic training and performance. Advances in Physiology Education, 37(2), 134-152.
Taylor, R. E., Zheng, C., Jackson, R. P., Doll, J. C., Chen, J. C., Holzbaur, K. R. S., ... & Kuhl, E. (2009). The phenomenon of twisted growth: humeral torsion in dominant arms of high performance tennis players. Computer Methods in Biomechanics and Biomedical Engineering, 12(1), 83-93.
Seth, A., Dong, M., Matias, R., & Delp, S. (2019). Muscle contributions to upper-extremity movement and work from a musculoskeletal model of the human shoulder. Frontiers in neurorobotics, 13, 90.
Kirk, D. E. (2012). Optimal control theory: An introduction. Courier Corporation.
Hull, D. G. (2013). Optimal control theory for applications. Springer Science & Business Media.
Macki, J., & Strauss, A. (2012). Introduction to optimal control theory. Springer Science & Business Media.
Ma, Z., & Zou, S. (2021). Optimal control theory. Springer.
Prestes, J., De Lima, C., Frollini, A. B., Donatto, F. F., & Conte, M. (2009). Comparison of linear and reverse linear periodization effects on maximal strength and body composition. The Journal of Strength & Conditioning Research, 23(1), 266–274.
Issurin, V. (2008). Block periodization versus traditional training theory: A review. Journal of Sports Medicine and Physical Fitness, 48(1), 65–75.
Painter, K. B., Haff, G. G., Ramsey, M. W., McBride, J., Triplett, T., Sands, W. A., ... & Stone, M. H. (2012). Strength gains: Block versus daily undulating periodization weight training among track and field athletes. International Journal of Sports Physiology and Performance, 7(2), 161–169.
Dave, A. G., & Elite, R. (2013). Sport Performance Division.
Hawkins, M. N., Raven, P. B., Snell, P. G., Stray-Gundersen, J., & Levine, B. D. (2007). Maximal oxygen uptake as a parametric measure of cardiorespiratory capacity. Medicine & Science in Sports & Exercise, 39(1), 103–107.
Abut, F., Akay, M. F., & George, J. (2016). Developing new VO2max prediction models from maximal, submaximal and questionnaire variables using support vector machines combined with feature selection. Computers in Biology and Medicine, 79, 182–192.
Koutlianos, N., Dimitros, E., Metaxas, T., Cansiz, M., Deligiannis, A. S., & Kouidi, E. (2013). Indirect estimation of VO2max in athletes by ACSM’s equation: Valid or not? Hippokratia, 17(2), 136–140.
Akay, M. F., Shokrollahi, N., Aktürk, E., & George, J. D. (2011). Development of new VO2max prediction models by using artificial neural networks. In Kusadasi, Turkey: Intl. Symp. on Computing in Science and Engineering (pp. 39-44).
Abut, F., & Akay, M. F. (2015). Machine learning and statistical methods for the prediction of maximal oxygen uptake: Recent advances. Medical Devices: Evidence and Research, 8, 369–379.
Akay, M. F., Inan, C., Bradshaw, D. I., & George, J. D. (2009). Support vector regression and multilayer feed forward neural networks for non-exercise prediction of VO2max. Expert Systems with Applications, 36(6), 10112–10119.
Banister, E. W., Calvert, T. W., Savage, M. V., & Bach, T. (1975). A systems model of training for athletic performance. Australian Journal of Sports Medicine, 7(3), 57–61.
Calvert, T. W., Banister, E. W., Savage, M. V., & Bach, T. (1976). A systems model of the effects of training on physical performance. IEEE Transactions on Systems, Man, and Cybernetics, SMC-6(2), 94–102.
Perl, J. (2001). PerPot: A metamodel for simulation of load performance interaction. European Journal of Sport Science, 1(2), 1–13.
Busso, T. (2003). Variable dose-response relationship between exercise training and performance. Medicine & Science in Sports & Exercise, 35(7), 1188–1195.
Morton, R. H., Fitz-Clarke, J. R., & Banister, E. W. (1990). Modeling human performance in running. Journal of Applied Physiology, 69(3), 1171–1177.
Bannister, E. (1991). Modeling elite athletic performance. In Physiological Testing of the High–Performance Athlete (Ed. J. MacDougall, H. Wenger, H. Green).
Hellard, P., Avalos, M., Lacoste, L., Barale, F., Chatard, J. C., & Millet, G. P. (2006). Assessing the limitations of the Banister model in monitoring training. Journal of Sports Sciences, 24(5), 509–520.
Taha, T., & Thomas, S. G. (2003). Systems modelling of the relationship between training and performance. Sports Medicine, 33, 1061–1073.
Pfeiffer, M. (2008). Modeling the relationship between training and performance: A comparison of two antagonistic concepts. International Journal of Computer Science in Sport, 7(2), 13–32.
Turner, J. D., Mazzoleni, M. J., Little, J. A., Sequeira, D., & Mann, B. P. (2017). A nonlinear model for the characterization and optimization of athletic training and performance. Biomedical Human Kinetics, 9(1), 82–93.
Peng, K., Brodie, R. T., Swartz, T. B., & Clarke, D. C. (2024). Bayesian inference of the impulse-response model of athlete training and performance. International Journal of Performance Analysis in Sport, 24(1), 74–89.
Luteberget, L. S., Houtmeyers, K. C., Vanrenterghem, J., Jaspers, A., Brink, M. S., & Helsen, W. F. (2021). Load monitoring practice in elite women association football. Frontiers in Sports and Active Living, 3, 715122.
Lamberti, N., Piva, G., Businaro, F., Caruso, L., Crepaldi, A., López-Soto, P. J., & Manfredini, F. (2022). A fitness-fatigue model of performance in peripheral artery disease: Predicted and measured effects of a pain-free exercise program. Journal of Personalized Medicine, 12(3), 397.
Mandorino, M., Gabbett, T. J., Tessitore, A., Leduc, C., Persichetti, V., & Lacome, M. (2025). The Interaction of Fitness and Fatigue on Physical and Tactical Performance in Football. Applied Sciences, 15(7), 3574.
Jeffries, A. C., Marcora, S. M., Coutts, A. J., Wallace, L., McCall, A., & Impellizzeri, F. M. (2022). Development of a revised conceptual framework of physical training for use in research and practice. Sports Medicine, 1-16
Borrani, F., Solsona, R., Candau, R., Méline, T., & Sanchez, A. M. (2021). Modelling performance with exponential functions in elite short-track speed skaters. Journal of Sports Sciences, 39(20), 2378-2385.
Luenberger, D. G. (1979). Introduction to dynamic systems: Theory, models, and applications. John Wiley & Sons.
Kamien, M. I., & Schwartz, N. L. (2012). Dynamic optimization: The calculus of variations and optimal control in economics and management. Courier Corporation.
Lenhart, S., & Workman, J. T. (2007). Optimal control applied to biological models. Chapman and Hall/CRC.
Marchal, A., Benazieb, O., Weldegebriel, Y., Méline, T., & Imbach, F. (2025). Statistical flaws of the fitness-fatigue sports performance prediction model. Scientific Reports, 15(1), 3706.
Royden, H. L. (1968). Real analysis. Macmillan Publishing Co.
Rudin, W. (1987). Real and complex analysis. McGraw-Hill.
Stein, E. M., & Shakarchi, R. (2009). Real analysis: Measure theory, integration, and Hilbert spaces. Princeton University Press.
Pontryagin, L. S. (2018). Mathematical theory of optimal processes. Routledge.
Mason, L., Connolly, J., Devenney, L. E., Lacey, K., O’Donovan, J., & Doherty, R. (2023). Sleep, nutrition, and injury risk in adolescent athletes: A narrative review. Nutrients, 15(24), 5101.
Nobari, H., Cholewa, J. M., & Suzuki, K. (2023). Sports immunometabolism, training load, and nutrition: Effects on sports performance and psychological behavior of athletes. Frontiers in Psychology, 14, 1253502.
Vermeire, K. M., Van de Casteele, F., Gosseries, M., Bourgois, J. G., Ghijs, M., & Boone, J. (2021). The influence of different training load quantification methods on the fitness-fatigue model. International Journal of Sports Physiology and Performance, 16(9), 1261–1269.
Butcher, J. C. (1966). On the convergence of numerical solutions to ordinary differential equations. Mathematics of Computation, 20(93), 1–10.
Butcher, J. C. (1967). A multistep generalization of Runge-Kutta methods with four or five stages. Journal of the ACM, 14(1), 84–99.
Fitz-Clarke, J. R., Morton, R. H., & Banister, E. W. (1991). Optimizing athletic performance by influence curves. Journal of Applied Physiology, 71(3), 1151–1158.
Pyne, D. B., Hopkins, W. G., Batterham, A. M., Gleeson, M., & Fricker, P. A. (2005). Characterising the individual performance responses to mild illness in international swimmers. British Journal of Sports Medicine, 39(10), 752–756
Bradshaw, E. J., Hume, P. A., & Aisbett, B. (2012). Performance score variation between days at Australian national and Olympic women's artistic gymnastics competition. Journal of Sports Sciences, 30(2), 191–199.
Lim, J. J., & Kong, P. W. (2013). Effects of isometric and dynamic postactivation potentiation protocols on maximal sprint performance. The Journal of Strength & Conditioning Research, 27(10), 2730–2736.
Park, J. L., Fairweather, M. M., & Donaldson, D. I. (2015). Making the case for mobile cognition: EEG and sports performance. Neuroscience & Biobehavioral Reviews, 52, 117–130.
Currell, K., & Jeukendrup, A. E. (2008). Validity, reliability and sensitivity of measures of sporting performance. Sports Medicine, 38, 297–316.
Bellar, D., LeBlanc, N. R., & Campbell, B. (2015). The effect of 6 days of alpha glycerylphosphorylcholine on isometric strength. Journal of the International Society of Sports Nutrition, 12(1), 1–6.
Kolossa, D., Azhar, B., Rasche, C., Endler, S., Hanakam, F., Ferrauti, A., & Pfeiffer, M. (2017). Performance estimation using the fitness-fatigue model with Kalman filter feedback. International Journal of Computer Science in Sport, 16(2), 117–129.
Matabuena, M., & Rodríguez-López, R. (2019). An improved version of the classical banister model to predict changes in physical condition. Bulletin of Mathematical Biology, 81, 1867-1884.
Philippe, A. G., Borrani, F., Sanchez, A. M., Py, G., & Candau, R. (2019). Modelling performance and skeletal muscle adaptations with exponential growth functions during resistance training. Journal of Sports Sciences, 37(3), 254–261.
Imbach, F., Sutton-Charani, N., Montmain, J., Candau, R., & Perrey, S. (2022). The use of fitness-fatigue models for sport performance modelling: Conceptual issues and contributions from machine-learning. Sports Medicine - Open, 8(1), 29.
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/97794-
dc.description.abstract本研究提出一種新的方式,以最佳控制理論結合訓練-表現模型,設計個人化的最佳訓練計畫,目的在幫助運動員在競賽日達到最佳表現,同時預防過度訓練與使用傷害的可能。研究裡採用的訓練-表現模型為 Banister Impulse-Response model的概念延伸,能夠描述訓練負荷(控制變數)、體能(正向影響)、疲勞(負向影響)與表現之間的動態關係。
研究所設計的目標函數,旨在透過提升體能與減少疲勞,以在比賽當日最大化表現,同時在整個訓練期間內盡量減少總訓練負荷。為求解此最佳控制問題,本研究透過前向-後向掃描法(Forward-Backward Sweep Method),已獲得訓練負荷、體能、疲勞與表現等變數隨時間之最佳變化。結果指出,與沒有最佳控制相比,以最佳控制理論可有效降低總訓練負荷並提升比賽日的表現。此外,透過起停式控制 (Bang-Bang control),訓練負荷可在保持一段期間內恆定,僅於特定時間點進行切換,讓訓練計畫更符合實務操作,更提升效率與最終表現。
本研究奠定了結合訓練-表現模型與最佳控制理論在運動科學領域之基礎,證實其可行性與潛力。未來可導入更符合實際生理現象的非線性模型,以實驗驗證,來建立能真正協助運動員規劃訓練、提升表現並預防過度訓練的科學化系統。
zh_TW
dc.description.abstractTo support athletes in reaching peak performance on competition day meanwhile reducing the risk of overtraining and overuse injuries, this study introduces a novel method that combines optimal control theory with a training-performance model to develop individualized, optimal training programs. The performance model utilized in this work is an extended version of the Banister Impulse-Response model, capturing the dynamic interactions between training load, fitness (representing positive adaptation), fatigue (representing negative effects), and overall performance.
The aim of the developed framework for optimal control is to maximize performance at the time of competition by increasing fitness and reducing fatigue, while concurrently minimizing the total training load throughout the training period. The Forward-Backward Sweep Method is employed to address the optimal control problem, yielding time-dependent trajectories of training load, fatigue, fitness, and performance. Simulation outcomes indicate that incorporating optimal control leads to improved competition-day performance with a lower cumulative training load compared to non-optimized approaches. Additionally, the implementation of bang-bang control strategies, where training loads are held constant over specific intervals, offers practical benefits, enhancing both training efficiency and final performance outcomes.
This study lays the foundation for applying optimal control theory in sports science, providing a systematic method for developing personalized training programs tailored to individual physiological characteristics. Future work should incorporate more physiologically realistic, nonlinear performance models and validate the proposed method with experimental data to advance toward practical and science-based training optimization for athletes.
en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2025-07-16T16:17:08Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2025-07-16T16:17:08Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontents誌謝 i
中文摘要 ii
ABSTRACT iii
CONTENTS v
LIST OF FIGURES vii
LIST OF TABLES x
Chapter 1 Introduction 1
1.1 Background and Motivation 1
1.2 Literature Review 2
1.3 The Purposes of the Present Study 5
Chapter 2 Optimal Control Theory 5
2.1 The Fundamental Problem and Necessary Conditions 7
2.1.1 Definition 7
2.1.2 Objective Functional 8
2.1.3 Necessary Conditions 9
2.2 Pontryagin’s Maximum Principle 15
2.3 Bang-Bang Control 18
2.4 Payoff Terms 19
2.5 Bounded Controls 21
2.5.1 Necessary Conditions 22
Chapter 3 Materials and Methods 26
3.1 Background of Fitness-Fatigue Model 26
3.1.1 Introduction to Fitness-Fatigue Model 26
3.1.2 Definition and Measurement of Fitness, Fatigue, Performance, and TRIMP 29
3.2 Optimal Control Framework: Mathematical Formulation and Computational Solution 33
3.2.1 Applying Optimal Control Theory to Fitness-Fatigue Model 33
3.2.2 The Proof of Existence and Uniqueness Results 35
3.2.3 The Bang-Bang Control Formulation 40
3.2.4 The Simulation Method 41
3.3 Simulation Setting 43
Chapter 4 Results and Discussion 48
4.1 Baseline Simulation Outcomes without Optimal Control Application 48
4.2 Simulation Outcomes Incorporating Optimal Control Theory 54
4.3 Exploring the Role and Utility of Parameter A in Control Optimization 60
4.4 Simulation Results Using Bang-Bang Control 65
4.5 Simulation Results Using Average Method 70
4.6 Discussion of Present Study Limitations 76
Chapter 5 Conclusion 78
REFERENCES 80
個人期刊論文發表 87
-
dc.language.isoen-
dc.subject運動訓練和運動表現zh_TW
dc.subject起停式控制zh_TW
dc.subject前向後向掃瞄法zh_TW
dc.subject運動科學zh_TW
dc.subject電腦計算與數學模擬zh_TW
dc.subject體適能疲勞模型zh_TW
dc.subjectcomputational and mathematical modelingen
dc.subjectathletic training and performanceen
dc.subjectFitness-Fatigue Modelen
dc.subjectBang-Bang Controlen
dc.subjectForward-Backward Sweep Methoden
dc.subjectsports scienceen
dc.title運用最佳控制理論及訓練表現模型設計運動員之最適訓練計畫zh_TW
dc.titleUsing Optimal Control Theory and Training-performance Model to Design Optimal Training Programs for Athletesen
dc.typeThesis-
dc.date.schoolyear113-2-
dc.description.degree碩士-
dc.contributor.oralexamcommittee劉立偉;李宇修zh_TW
dc.contributor.oralexamcommitteeLi-Wei Liu;Yu-Hsiu Leeen
dc.subject.keyword體適能疲勞模型,運動訓練和運動表現,電腦計算與數學模擬,運動科學,前向後向掃瞄法,起停式控制,zh_TW
dc.subject.keywordFitness-Fatigue Model,athletic training and performance,computational and mathematical modeling,sports science,Forward-Backward Sweep Method,Bang-Bang Control,en
dc.relation.page87-
dc.identifier.doi10.6342/NTU202501357-
dc.rights.note同意授權(全球公開)-
dc.date.accepted2025-07-14-
dc.contributor.author-college工學院-
dc.contributor.author-dept應用力學研究所-
dc.date.embargo-lift2025-07-17-
顯示於系所單位:應用力學研究所

文件中的檔案:
檔案 大小格式 
ntu-113-2.pdf3.3 MBAdobe PDF檢視/開啟
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved