Skip navigation

DSpace JSPUI

DSpace preserves and enables easy and open access to all types of digital content including text, images, moving images, mpegs and data sets

Learn More
DSpace logo
English
中文
  • Browse
    • Communities
      & Collections
    • Publication Year
    • Author
    • Title
    • Subject
    • Advisor
  • Search TDR
  • Rights Q&A
    • My Page
    • Receive email
      updates
    • Edit Profile
  1. NTU Theses and Dissertations Repository
  2. 電機資訊學院
  3. 光電工程學研究所
Please use this identifier to cite or link to this item: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/97748
Full metadata record
???org.dspace.app.webui.jsptag.ItemTag.dcfield???ValueLanguage
dc.contributor.advisor吳肇欣zh_TW
dc.contributor.advisorChao-Hsin Wuen
dc.contributor.author陳承昱zh_TW
dc.contributor.authorCheng-Yu Chenen
dc.date.accessioned2025-07-16T16:08:32Z-
dc.date.available2025-07-17-
dc.date.copyright2025-07-16-
dc.date.issued2025-
dc.date.submitted2025-06-19-
dc.identifier.citation[1] Novoselov K S, Geim A K, Morozov S V, et al. “Electric field effect in atomically thin carbon films”, Science, 306 (5696), 666-669. (2004).
[2] Zhou, Yingqiu, et al. "Symmetry-controlled reversible photovoltaic current flow in ultrathin all 2D vertically stacked graphene/MoS2/WS2/graphene devices." ACS applied materials & interfaces 11.2 (2019): 2234-2242.
[3] Pospischil, A.; Humer, M.; Furchi, M. M.; Bachmann, D.; Guider, R.; Fromherz, T.; Mueller, T. CMOS-compatible graphene photodetector covering all optical communication bands. Nat. Photonics 2013, 7, 11, 892-896.
[4] Du, P.; Zhang, F.; Li, Z.; Liu, Q.; Gong, M.; Fu, X. Single-photon detection approach for autonomous vehicles sensing. IEEE Transactions on Vehicular Technology 2020, 69, 6, 6067-6078.
[5] Polat, E. O.; Mercier, G.; Nikitskiy, I.; Puma, E.; Galan, T.; Gupta, S.; Koppens, F. Flexible graphene photodetectors for wearable fitness monitoring. Sci. Adv. 2019, 5, 9, eaaw7846.
[6] Saleem, M. I.; Kyaw, A. K. K.; Hur, J. Infrared photodetectors: Recent advances and challenges toward innovation for image sensing applications. Adv. Opt. Mater. 2024, 12, 33, 2401625.
[7] Nayak, P. K.; Mahesh, S.; Snaith, H. J.; Cahen, D. Photovoltaic solar cell technologies: analysing the state of the art. Nat. Rev. Mater. 2019, 4, 4, 269-285.
[8] Yang, W.; Chen, J.; Zhang, Y.; Zhang, Y.; He, J. H.; Fang, X. Silicon‐compatible photodetectors: trends to monolithically integrate photosensors with chip technology. Adv. Funct. Mater. 2019, 29, 18, 1808182.
[9] Chow, P. C.; Someya, T. Organic photodetectors for next‐generation wearable electronics. Adv. Mater. 2020, 32, 15, 1902045.
[10] Martyniuk, Piotr, et al. "Infrared avalanche photodiodes from bulk to 2D materials." Light: Science & Applications 12.1 (2023): 212.
[11] Long, M., Wang, P., Fang, H., & Hu, W. (2019). Progress, challenges, and opportunities for 2D material based photodetectors. Advanced Functional Materials, 29(19), 1803807.
[12] Chaves, A., Azadani, J. G., Alsalman, H., Da Costa, D. R., Frisenda, R., Chaves, A. J., ... & Low, T. (2020). Bandgap engineering of two-dimensional semiconductor materials. npj 2D Materials and Applications, 4(1), 29.
[13] Radatovic, B., Çakıroğlu, O., Jadriško, V., Frisenda, R., Senkic, A., Vujicic, N., ... & Castellanos-Gomez, A. (2024). Strain-enhanced large-area mono-layer MoS2 Photodetectors. ACS Applied Materials & Interfaces, 16(12), 15596-15604.
[14] Du, J., Yu, H., Liu, B., Hong, M., Liao, Q., Zhang, Z., & Zhang, Y. (2021). Strain engineering in 2D material‐based flexible optoelectronics. Small Methods, 5(1), 2000919.
[15] Yang, M., Gao, W., Song, Q., Zhou, Y., Huang, L., Zheng, Z., ... & Li, J. (2021). Universal strategy integrating strain and interface engineering to drive high‐performance 2D material photodetectors. Advanced Optical Materials, 9 (15), 2100450.
[16] Geim, Andre K., and Irina V. Grigorieva. "Van der Waals heterostructures." Nature 499.7459 (2013): 419-425.
[17] Jariwala, Deep, et al. "Emerging device applications for semiconducting two-dimensional transition metal dichalcogenides." ACS nano 8.2 (2014): 1102-1120.
[18] Zeng, Hualing, et al. "Valley polarization in MoS2 monolayers by optical pumping." Nature nanotechnology 7.8 (2012): 490-493.
[19] Li, Tianshu, and Giulia Galli. "Electronic properties of MoS2 nanoparticles." The Journal of Physical Chemistry C 111.44 (2007): 16192-16196.
[20] Splendiani, Andrea, et al. "Emerging photoluminescence in monolayer MoS2." Nano letters 10.4 (2010): 1271-1275.
[21] Zeng, Hualing, et al. "Low-frequency Raman modes and electronic excitations in atomically thin MoS2 films." Physical Review B—Condensed Matter and Materials Physics 86.24 (2012): 241301.
[22] Lee, Changgu, et al. "Anomalous lattice vibrations of single-and few-layer MoS2." ACS nano 4.5 (2010): 2695-2700.
[23] Li, Qinghe, et al. "Photoluminescence (PL) Spectroscopy." Springer Handbook of Advanced Catalyst Characterization. Cham: Springer International Publishing, 2023. 295-321.
[24] Han, Tao, et al. "Probing the optical properties of MoS2 on SiO2/Si and sapphire substrates." Nanomaterials 9.5 (2019): 740.
[25] Lan, Changyong, et al. "2D WS2: from vapor phase synthesis to device applications." Advanced Electronic Materials 7.7 (2021): 2000688.
[26] Zeng, Hualing, et al. "Optical signature of symmetry variations and spin-valley coupling in atomically thin tungsten dichalcogenides." Scientific reports 3.1 (2013): 1608.
[27] Wang, He, Chung-Che Huang, and Tomas Polcar. "Triboelectrification of two-dimensional chemical vapor deposited WS2 at nanoscale." Scientific Reports 9.1 (2019): 12570.
[28] Zhang, Yanxue, et al. "Atomic insight into the effects of precursor clusters on monolayer WSe2." Nanoscale 16.5 (2024): 2391-2401.
[29] Shi, Jia, Volodymyr Turkowski, and Talat S. Rahman. "Dark-exciton energy splitting in monolayer W Se 2: Insights from time-dependent density functional theory." Physical Review B 107.15 (2023): 155431.
[30] Cheng, Qilin, et al. "WSe2 2D p‐type semiconductor‐based electronic devices for information technology: design, preparation, and applications." InfoMat 2.4 (2020): 656-697.
[31] Huang, Jing-Kai, et al. "Large-area synthesis of highly crystalline WSe2 monolayers and device applications." ACS nano 8.1 (2014): 923-930.
[32] Huang, Yuan, et al. "Universal mechanical exfoliation of large-area 2D crystals." Nature communications 11.1 (2020): 2453.
[33] Li, Na, et al. "Atomic layer deposition of Al2O3 directly on 2D materials for high‐performance electronics." Advanced Materials Interfaces 6.10 (2019): 1802055.
[34] Wong, Swee Liang, Hongfei Liu, and Dongzhi Chi. "Recent progress in chemical vapor deposition growth of two-dimensional transition metal dichalcogenides." Progress in Crystal Growth and Characterization of Materials 62.3 (2016): 9-28.
[35] Tomar, Rupika, et al. "Probing sulfur vacancies in CVD-grown monolayer MoS2 on SiO2/Si in the temperature range 750–900° C." Journal of Electronic Materials 52.8 (2023): 5513-5520.
[36] Gao, Yang, et al. "Large-area synthesis of high-quality and uniform monolayer WS2 on reusable Au foils." Nature communications 6.1 (2015): 8569.
[37] Zhen, Zhen, and Hongwei Zhu. "Structure and properties of graphene." Graphene. Academic Press, 2018. 1-12.
[38] Kim, Keun Soo, et al. "Large-scale pattern growth of graphene films for stretchable transparent electrodes." nature 457.7230 (2009): 706-710.
[39] Bolotin, Kirill I., et al. "Ultrahigh electron mobility in suspended graphene." Solid state communications 146.9-10 (2008): 351-355.
[40] Savage, Neil. "Graphene makes transistors tunable." Ieee Spectrum 46.9 (2009): 20-20.
[41] Ni, Zhenhua, et al. "Raman spectroscopy and imaging of graphene." Nano Research 1 (2008): 273-291.
[42] Rosenburg, Felix, et al. "High-temperature Raman spectroscopy of nano-crystalline carbon in silicon oxycarbide." Materials 11.1 (2018): 93.
[43] Trusovas, Romualdas, et al. "Recent advances in laser utilization in the chemical modification of graphene oxide and its applications." Advanced Optical Materials 4.1 (2016):37-65.
[44] Issi, Jean-Paul, Paulo T. Araujo, and Mildred S. Dresselhaus. "Electron and phonon transport in graphene in and out of the bulk." Physics of graphene. Cham: Springer International Publishing, 2013. 65-112.
[45] Kim, J-H., et al. "Coherent phonons in carbon nanotubes and graphene." Chemical Physics 413 (2013): 55-80.
[46] Wu, Jiang-Bin, et al. "Raman spectroscopy of graphene-based materials and its applications in related devices." Chemical Society Reviews 47.5 (2018): 1822-1873.
[47] Calizo, Irene, et al. "Ultraviolet Raman microscopy of single and multilayer graphene."Journal of applied physics 106.4 (2009).
[48] Geim, A. N. D. R. E., and K. Novoselov. "Graphene calling." Nat. Mater 6.169 (2007): 10-1038.
[49] Sun, Baojun, et al. "Synthesis of wafer‐scale graphene with chemical vapor deposition for electronic device applications." Advanced Materials Technologies 6.7 (2021): 2000744.
[50] Hass, J., WA D. de Heer, and E. H. Conrad. "The growth and morphology of epitaxial multilayer graphene." Journal of Physics: Condensed Matter 20.32 (2008): 323202.
[51] Shtepliuk, Ivan, et al. "Clustering and morphology evolution of gold on nanostructured surfaces of silicon carbide: implications for catalysis and sensing." ACS Applied Nano Materials 4.2 (2021): 1282-1293.
[52] Bonaccorso, Francesco, et al. "Production and processing of graphene and 2d crystals." Materials today 15.12 (2012): 564-589.
[53] Munoz, Roberto, and Cristina Gómez‐Aleixandre. "Review of CVD synthesis of graphene." Chemical Vapor Deposition 19.10-11-12 (2013): 297-322.
[54] Bekdüz, Bilge, et al. "Direct growth of graphene on Ge (100) and Ge (110) via thermal and plasma enhanced CVD." Scientific reports 10.1 (2020): 12938.
[55] Hwang, Jeonghyun, et al. "van der Waals epitaxial growth of graphene on sapphire by chemical vapor deposition without a metal catalyst." Acs Nano 7.1 (2013): 385-395.
[56] Böhm, Thomas Raphael Dominik. Microscopic characterization of ion exchange polymers for fuel cells and water electrolyzers. Friedrich-Alexander-Universitaet Erlangen-Nuernberg (Germany), 2021.
[57] Smits F M. “Measurement of sheet resistivities with the four‐point probe”, Bell System Technical Journal, 37 (3), 711-718. (1958).
[58] Jafari, Behnaz, Carla MR Lacerda, and Gerardine G. Botte. "Facile electrochemical preparation of hydrophobic antibacterial fabrics using reduced graphene oxide/silver nanoparticles." ChemElectroChem 10.6 (2023): e202201111.
[59] Tsai, Po-Cheng, et al. "The influence of contact metals on epitaxially grown molybdenum disulfide for electrical and optical device applications." Nanotechnology 33.50 (2022): 505205.
[60] Tsai, Po-Cheng, et al. "Charge Storage of Isolated Monolayer Molybdenum Disulfide in Epitaxially Grown MoS2/Graphene Heterostructures for Memory Device Applications." ACS Applied Materials & Interfaces 13.38 (2021): 45864-45869.
[61] Baringhaus, Jens, et al. "Exceptional ballistic transport in epitaxial graphene nanoribbons." Nature 506.7488 (2014): 349-354.
[62] Chang, Che-Jia, et al. "Molybdenum Disulfide Transistors Bearing All-2D-Material Interfaces: Device Performance Optimization and Influences of Interfaces and Passivation Layers." ACS Applied Electronic Materials 5.11 (2023): 6384-6391.
[63] Zhang, Wenjing, et al. "Ultrahigh-gain photodetectors based on atomically thin graphene-MoS2 heterostructures." Scientific reports 4.1 (2014): 3826.
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/97748-
dc.description.abstract本論文採用兩階段成長方法,製備出大面積且均勻的多層二硫化鉬薄膜。首先,我們利用射頻濺鍍系統將非晶的二硫化鉬沉積於藍寶石基板上,並透過控制濺鍍時間來獲得不同厚度的薄膜。隨後,經過高溫硫化處理,形成不同層數的二硫化鉬薄膜,並透過穿透式電子顯微鏡精確判斷其層數,包括1層、3層、6層。石墨烯薄膜則使用低壓化學氣相沉積法製備,隨後透過轉印技術將石墨烯轉印至二硫化鉬上,形成 (graphene/MoS2) 的異質結構。與單獨二硫化鉬光偵測器相比,石墨烯作為載子傳輸層,二硫化鉬作為光吸收層,使得異質結構光偵測器的響應度 (responsivity) 提升超過106倍。此現象應來自石墨烯層中極短的載子傳輸時間與二硫化鉬層中相對較長的載子壽命,從而增加了 (graphene/MoS2) 光偵測器的光導增益。此外,我們發現隨著二硫化鉬層數的增加,元件的響應時間 (response time) 明顯縮短。為了進一步優化元件性能,我們透過重複轉印3層二硫化鉬的方式製備出多層結構,成功將響應時間從單層二硫化鉬的超過50毫秒大幅減少至6層二硫化鉬的低於10毫秒。同時仍保有極高的響應度,可以達到 776.8 A/W。這一結果表示,多層二硫化鉬中多餘的電子儲存有助於實現光吸收層中的電荷中和。另外,我們也使用了不同的二維材料作為光吸收層,並利用相同的結構製備出同樣基於石墨烯載子傳輸層的光偵測器,其中WS2元件在630 nm時響應度達到 1521.9 A/W,MoS2元件在660 nm時達到 6077.9 A/W,WSe2 元件在750 nm時具有 3977.8 A/W的光響應,此結果告訴我們不同的二維材料組合不僅可實現非常高的光導增益,且能覆蓋光偵測器於可見光區的偵測波段。同時我們利用了二維材料原子級厚度以及其容易堆疊的特性,本項工作先將二維材料轉印至厚度120 µm 的PET基板,再將石墨烯轉印至二維材料上,即可製作出可撓式的光偵測器,並分別在不同彎曲條件下進行量測。結果顯示即使在100 R的彎曲半徑下石墨烯/TMD可撓式光偵測器仍保持高於500 A/W的響應度,這些實驗結果證實,二維材料異質結構光偵測器不僅在性能表現上相當優異,即使製作於軟性基板時也展現出良好的穩定性與可靠性,未來有望應用於穿戴式裝置與可撓式電子產品。zh_TW
dc.description.abstractIn this thesis, wafer-scale and uniform multilayer molybdenum disulfide (MoS2) films were prepared using a two-step growth method. Amorphous MoS2 was first deposited onto sapphire substrates using RF sputtering, with thickness controlled by sputtering times. High-temperature sulfurization was used to form MoS2 films of 1-, 3-, and 6-layers, determined by transmission electron microscopy (TEM). Graphene films were prepared using low-pressure chemical vapor deposition (LPCVD), and monolayer graphene was transferred onto MoS2 to fabricate photodetectors. Compared with standalone MoS2 photodetectors, the heterostructure photodetectors demonstrated over six orders of magnitude responsivity enhancement, attributed to the ultra-fast carrier transit time in graphene and the longer carrier lifetime in MoS2, resulting in high photoconductive gain. In addition, it was found that the response time of the device significantly decreases with the increasing number of MoS2 layers. To further optimize device performance, this work fabricated multilayer structures by sequential transferring three layers of MoS2 films. This approach successfully reduced the response time from over 50 ms for monolayer MoS2 to less than 10 ms for the six-layer MoS2 device. The device also retained an exceptionally high responsivity, reaching up to 776.8 A/W. This result suggests that the excess electron storage in multilayer MoS2 contributes to charge neutrality within the light absorption layer during light on and off procedures. Moreover, this work also employed different 2D materials as the light absorption layers and fabricated photodetectors based on the same structure, utilizing graphene as the carrier transport layer. The WS2-based device exhibited a responsivity of 1521.9 A/W at 630 nm, while the MoS2 device reached 6077.9 A/W at 660 nm, and the WSe2 device showed a responsivity of 3977.8 A/W at 750 nm. These results indicate that different combinations of 2D materials can not only achieve exceptionally high photoconductive gain but also enable wavelength-tunable detections across the visible light range. Leveraging the atomic thicknesses and easy stackings of 2D materials, this work also transferred the 2D photo-absorption layers onto a 120 µm-thick PET substrate, followed by transferring graphene as the carrier transport layer on top, thereby fabricating flexible photodetectors. Measurements under various bending conditions revealed that even at a bending radius of 100 R, the graphene/TMDs flexible photodetectors maintained high responsivities > 500 A/W. These results demonstrate that 2D material-based heterostructure photodetectors not only exhibit outstanding optoelectronic performance but also show excellent stability and reliability when fabricated on flexible substrates, indicating their potential for applications in wearable and flexible electronic devices.en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2025-07-16T16:08:32Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2025-07-16T16:08:32Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontents誌謝 i
摘要 ii
Abstract iii
目次 v
圖次 ix
第一章 序論 1
1.1研究動機與論文架構 1
1.1.1光偵測器的現況與瓶頸 2
1.1.2二維材料光偵測器的優勢與應用 2
1.2 過渡金屬硫族化合物的特性分析 3
1.2.1二硫化鉬之晶體結構與特性 3
1.2.2二硫化鉬之拉曼光譜分析 4
1.2.3二硫化鉬之光激發螢光光譜分析 6
1.2.4二硫化鎢之晶體結構與特性 6
1.2.5二硫化鎢之拉曼光譜分析 7
1.2.6二硫化鎢之光激發螢光光譜分析 8
1.2.7二硒化鎢之晶體結構與特性 9
1.2.8二硒化鎢之拉曼光譜分析 9
1.2.9二硒化鎢之光激發螢光光譜分析 10
1.2.10過渡金屬硫族化合物的製備方式 11
1.3石墨烯的特性分析 13
1.3.1石墨烯之晶體結構與特性 13
1.3.2石墨烯之拉曼光譜分析 14
1.3.3石墨烯的製備方式 17
第二章 實驗儀器與原理 22
2.1二維材料成長系統 22
2.1.1射頻磁控濺鍍系統 22
2.1.2低壓硫化系統 24
2.1.4低壓化學氣相沉積系統 25
2.2二維材料分析儀器 27
2.2.1高解析共軛焦拉曼光譜儀 27
2.2.2螢光光譜儀 29
2.2.3原子力顯微鏡 29
2.2.4穿透式電子顯微鏡 31
2.2.5四點探針 33
2.3元件製程設備 35
2.3.1旋轉塗佈機 35
2.3.2曝光機 36
2.3.3電子束蒸鍍機 37
2.3.4反應離子蝕刻機 38
2.4光電量測分析儀器 39
2.4.1元件三端點量測系統 39
2.4.2光電流量測系統 40
第三章 不同層數二硫化鉬對異質結構光偵測器的影響 42
3.1不同層數二硫化鉬薄膜的製備 42
3.1.1射頻磁控濺鍍沉積 42
3.1.2低壓硫化處理 44
3.2不同濺鍍秒數對二硫化鉬層數的影響 45
3.2.1二硫化鉬拉曼與光激發螢光光譜 45
3.2.2以穿透式電子顯微鏡判斷二硫化鉬的層數 46
3.2.3以原子力顯微鏡分析不同層數的二硫化鉬 47
3.3石墨烯薄膜的製備 48
3.3.1石墨烯在銅箔上的成長 48
3.3.2石墨烯薄膜的轉印以及拉曼光譜分析 49
3.4石墨烯/二硫化鉬異質結構光偵測器的製備 52
3.4.1定義源極與汲極 53
3.4.2電極的製備 54
3.4.3定義通道 55
3.5石墨烯/二硫化鉬異質結構光偵測器的特性分析 57
3.5.1添加石墨烯通道對光偵測器的影響 57
3.5.2不同通道長度對石墨烯/單層二硫化鉬光偵測器的影響 60
3.5.3石墨烯/多層二硫化鉬光偵測器的性能分析 62
3.5.4利用重複轉印優化石墨烯/多層二硫化鉬光偵測器的性能 64
3.6結論 70
第四章 具波長可調性的可撓式二維材料光偵測器 71
4.1過渡金屬硫族化物的分析 71
4.1.1過渡金屬硫族化物的拉曼光譜分析 71
4.1.2過渡金屬硫族化物的光激發螢光光譜分析 72
4.1.3以原子力顯微鏡分析不同的過渡金屬硫族化物 73
4.1.4不同過度金屬硫族化合物於光偵測器的特性分析 74
4.2可撓式異質結構二維材料光偵測器元件的製備 76
4.2.1可撓式基板的應用 77
4.2.2異質結構的堆疊與轉印技術 77
4.2.3定義源極與汲極 78
4.2.4電極的製備 80
4.3具波長可調性的可撓式光偵測器元件特性分析 82
4.3.1可撓式光偵測器的元件表現 82
4.3.2可撓式光偵測器的長期穩定性評估 84
4.4結論 86
第五章 總結 87
參考文獻 89
-
dc.language.isozh_TW-
dc.subject二維材料zh_TW
dc.subject偵測波長zh_TW
dc.subject可撓式元件zh_TW
dc.subject光電偵測器zh_TW
dc.subject異質結構zh_TW
dc.subject光導增益zh_TW
dc.subjectphotodetectoren
dc.subjecthetero-structuresen
dc.subject2D materialsen
dc.subjectPhotoconductive gainen
dc.subjectdetection wavelengthsen
dc.subjectflexible devicesen
dc.title高性能二維材料光偵測器研究zh_TW
dc.titleThe Study of High-Performance 2D Material Photodetectorsen
dc.typeThesis-
dc.date.schoolyear113-2-
dc.description.degree碩士-
dc.contributor.oralexamcommittee林時彥;張子璿;吳育任zh_TW
dc.contributor.oralexamcommitteeShih-Yen Lin;Tzu-Hsuan Chang;Yuh-Renn Wuen
dc.subject.keyword光導增益,二維材料,異質結構,光電偵測器,可撓式元件,偵測波長,zh_TW
dc.subject.keywordPhotoconductive gain,2D materials,hetero-structures,photodetector,flexible devices,detection wavelengths,en
dc.relation.page96-
dc.identifier.doi10.6342/NTU202501197-
dc.rights.note同意授權(全球公開)-
dc.date.accepted2025-06-19-
dc.contributor.author-college電機資訊學院-
dc.contributor.author-dept光電工程學研究所-
dc.date.embargo-lift2030-06-18-
Appears in Collections:光電工程學研究所

Files in This Item:
File SizeFormat 
ntu-113-2.pdf
  Until 2030-06-18
7.11 MBAdobe PDF
Show simple item record


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved