Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 應用力學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/97745
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor陳發林zh_TW
dc.contributor.advisorFalin Chenen
dc.contributor.author周宥全zh_TW
dc.contributor.authorYou-Chuan Chouen
dc.date.accessioned2025-07-16T16:07:59Z-
dc.date.available2025-07-17-
dc.date.copyright2025-07-16-
dc.date.issued2025-
dc.date.submitted2025-07-11-
dc.identifier.citation[1] Choi, S. U. S. and Eastman, J. A., “Enhancing thermal conductivity of fluids with nanoparticles,” in ASME International Mechanical Engineering Congress and Exposition, San Franciso, USA, November, 1995.
[2] Z. Guo, "A review on heat transfer enhancement with nanofluids," J. Enhanc. Heat Transf. 27, 1-70 (2020).
[3] M. Rafati, A. A. Hamidi, and M. S. Niaser, "Application of nanofluids in computer cooling systems (heat transfer performance of nanofluids)," Appl. Therm. Eng. 45, 9-14 (2012).
[4] R. R. Riehl, and N. dos Santos, "Water-copper nanofluid application in an open loop pulsating heat pipe," Appl. Therm. Eng. 42, 6-10 (2012).
[5] Y. Tong, X. Chi, W. Kang, and H. Cho, "Comparative investigation of efficiency sensitivity in a flat plate solar collector according to nanofluids," Appl. Therm. Eng. 174, 115346 (2020).
[6] S. M. S. Hosseini, and M. S. Dehaj, "Assessment of TiO2 water-based nanofluids with two distinct morphologies in a U type evacuated tube solar collector," Appl. Therm. Eng. 182, 116086 (2021).
[7] T. J. Choi, S. H. Kim, S. P. Jang, D. J. Yang, and Y. M. Byeon, "Heat transfer enhancement of a radiator with mass-producing nanofluids (EG/water-based Al2O3 nanofluids) for cooling a 100 kW high power system," Appl. Therm. Eng. 180, 115780 (2020).
[8] H. Xie, J. Wang, T. Xi, Y. Liu, F. Ai, and Q. Wu, "Thermal conductivity enhancement of suspensions containing nanosized alumina particles," J. Appl. Phys. 91, 4568-4572 (2002).
[9] S. K. Das, N. Putra , P. Thiesen , and W. Roetzel, "Temperature Dependence of Thermal Conductivity Enhancement for Nanofluids,"ASME J. Heat Transf. 125, 567-574 (2003).
[10] C. H. Chon, K. D. Kihm, S. P. Lee, and S. U. S. Choi, "Empirical correlation finding the role of temperature and particle size for nanofluid (Al2O3) thermal conductivity enhancement," Appl. Phys. Lett. 87, 153107 (2005).
[11] C. H. Li, and G. Peterson, "Experimental investigation of temperature and volume fraction variations on the effective thermal conductivity of nanoparticle suspensions (nanofluids)," J. Appl. Phys. 99, 084314 (2006).
[12] M. Sharifpur, S. O. Giwa, K.-Y. Lee, H. Ghodsinezhad, and J. P. Meyer, "Experimental investigation into natural convection of zinc oxide/water nanofluids in a square cavity," Heat Transf. Eng. 42, 1675-1687 (2021).
[13] J. Buongiorno, "Convective transport in nanofluids,"ASME J. Heat Transf. 128, 240-250 (2006).
[14] D. A. Nield, and A. V. Kuznetsov, “The onset of convection in a horizontal nanofluid layer of finite depth: a revised model,” Int. J. Heat & Mass Transfer 77, 915-918 (2014).
[15] J. Ahuja, and J. Sharma, “Rayleigh-Bénard instability in nanofluids: a comprehensive review,” Micro & Nano Syst. Lett. 8, 21 (2020).
[16] M. H. Chang, and A. C. Ruo, "Rayleigh-Bénard instability in nanofluids: effect of gravity settling," J. Fluid Mech. 950, A37 (2022).
[17] A. C. Ruo, and M. H. Chang, "Effect of gravity settling on the onset of thermal convection in a nanofluid-saturated porous medium layer," J. Fluid Mech. 984, A5 (2024).
[18] R. Chand, and G. C. Rana, "On the onset of thermal convection in rotating nanofluid layer saturating a Darcy–Brinkman porous medium," Int. J. Heat Mass Transfer 55, 5417-5424 (2012).
[19] S. Chandrasekhar, Hydrodynamic and hydromagnetic stability, Dover Publications, New York, 1961.
[20] H. Hamabata, and M. Takashima, "The effect of rotation on convective instability in a horizontal fluid layer with internal heat generation," J. Phys. Soc. Jpn. 52, 4145-4151 (1983).
[21] D. Yadav, G. S. Agrawal, and R. Bhargava, "Thermal instability of rotating nanofluid layer," Int. J. Eng. Sci. 49, 1171-1184 (2011).
[22] D. Yadav, R. Bhargava, and G. S. Agrawal, "Numerical solution of a thermal instability problem in a rotating nanofluid layer," Int. J. Heat Mass Transfer 63, 313-322 (2013).
[23] S. Agarwal, and B. S. Bhadauria, "Flow patterns in linear state of Rayleigh–Bénard convection in a rotating nanofluid layer," Appl. Nanosci. 4, 935-941 (2014).
[24] S. Agarwal, and B. S. Bhadauria, "Unsteady heat and mass transfer in a rotating nanofluid layer," Contin. Mech. Thermodyn. 26, 437-445 (2014).
[25] D. Yadav, G. S. Agrawal, and J. Lee, "Thermal instability in a rotating nanofluid layer: a revised model," Ain Shams Eng. J. 7, 431-440 (2016).
[26] Capone, F., Luca, R.D. & Vadasz, P. Onset of thermosolutal convection in rotating horizontal nanofluid layers. Acta Mech. 233, 2237–2247 (2022).
[27] S. Agarwal, "Natural convection in a nanofluid-saturated rotating porous layer: A more realistic approach," Transp. Porous Media 104, 581-592 (2014).
[28] A. Mahajan, and M. Arora, "Convection in rotating magnetic nanofluids," Appl. Math. Comput. 219, 6284-6296 (2013).
[29] D. Yadav, R. Bhargava, G. S. Agrawal, G. S. Hwang, J. Lee, and M. C. Kim, "Magneto‐convection in a rotating layer of nanofluid," Asia-Pac. J. Chem. Eng. 9, 663-677 (2014).
[30] P. Rana, and M. Khurana, "LTNE thermoconvective instability in Newtonian rotating layer under magnetic field utilizing nanoparticles," J. Therm. Anal. Calorim. 147, 615-637 (2022).
[31] I. K. Khalid, N. F. M. Mokhtar, I. Hashim, Z. B. Ibrahim, and S. S. A. Gani, "Effect of internal heat source on the onset of double‐diffusive convection in a rotating nanofluid layer with feedback control strategy," Adv. Math. Phys. 2017, 2789024 (2017).
[32] Sanjalee, Y. D. Sharma, and O. P. Yadav, "The linear and non-linear study of effect of rotation and internal heat source/sink on Bénard convection," Fluid Dyn. Res. 55, 045503 (2023).
[33] S. H. Manjula, P. Kiran, and S. N. Gaikwad, "Study of heat and mass transfer in a rotating nanofluid layer under gravity modulation," J. Nanofluids 12, 842-852 (2023).
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/97745-
dc.description.abstract本研究探討一上下兩水平無限延伸平板間充滿奈米流體並受到底部加熱與旋轉作用下的熱穩定性行為,並進行線性穩定性分析。為更準確描述奈米粒子與基底流體間的相對滑移現象,所採用的對流傳輸模型除考慮布朗運動與熱泳效應外,亦納入重力沉降機制。研究對象為氧化鋁–水基奈米流體,考量三種代表性奈米粒子粒徑(20 nm、40 nm、60 nm),以分析重力沉降對熱不穩定性的影響。結果顯示,旋轉效應(以泰勒數 Ta 表示)對系統具有穩定化作用,然而此穩定效果會隨奈米粒子體積分率的增加而逐漸減弱。當重力沉降效應增強時,系統穩定性明顯提升,且與熱泳效應的交互作用可能在低泰勒數條件下引發振盪型對流模式的出現。隨著泰勒數的增加,振盪模式逐漸受到抑制,並轉由靜態模式主導不穩定性。當泰勒數達到足夠大時,對流初始狀態將穩定地由具有較高臨界波數的靜態模式所控制。值得注意的是,所觀察到的熱不穩定性特徵與傳統旋轉一般黏性流體層系統顯著不同,顯示重力沉降所導致的奈米粒子遷移機制在調控旋轉奈米流體層對流時的穩定性過程中扮演關鍵角色。zh_TW
dc.description.abstractThis study focuses on the linear stability analysis of a nanofluid layer confined between two horizontal boundaries, uniformly heated from below and subjected to rotational motion. The convective transport model incorporates gravity-induced nanoparticle settling to account for interfacial slip between the dispersed phase and the base fluid, alongside conventional mechanisms such as thermophoresis and Brownian diffusion. To assess the influence of gravitational settling on flow instability, three representative nanoparticle diameters—20 nm, 40 nm, and 60 nm—are considered for an aluminum oxide–water nanofluid system. The results indicate that rotation, quantified by the Taylor number (Ta), generally stabilizes the flow. However, this stabilizing influence weakens progressively with increasing nanoparticle volume fraction. The presence of gravitational settling significantly enhances stability, and its interaction with thermophoretic effects can give rise to oscillatory modes at lower rotation rates. As Ta increases, oscillatory behavior is suppressed, and stationary modes become dominant. At sufficiently large values of Ta, the onset of instability is consistently governed by stationary modes characterized by higher critical wavenumbers. Importantly, the observed instability characteristics differ substantially from those of classical rotating viscous fluids, underscoring the pivotal role of gravity settling in shaping the onset and structure of convective instability in rotating nanofluid systemsen
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2025-07-16T16:07:59Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2025-07-16T16:07:59Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontents誌謝 i
中文摘要 ii
Abstract iii
目次 iv
圖次 vi
表次 viii
符號說明 ix
第一章 緒論 1
1.1 文獻回顧 1
1.2 研究動機 3
第二章 理論模型 5
2.1 系統模型建立與假設 5
2.2 統御方程式與邊界條件 5
第三章 線性穩定性分析 9
3.1 無因次化的統御方程式與邊界條件 9
3.2 基態解 11
3.3 線性微小擾動方程式 12
3.4 正規模態展開 14
3.5 數值方法 15
第四章 結果與討論 19
4.1 參數設定與計算式驗證 19
4.2 添加小尺度奈米顆粒的流體層穩定性分析 22
4.3 添加中尺度奈米顆粒的流體層穩定性分析 25
4.4 添加大尺度奈米顆粒的流體層穩定性分析 31
第五章 結論與未來展望 35
5.1 結論 35
5.2 未來展望 36
參考文獻 37
-
dc.language.isozh_TW-
dc.subject重力沉降效應zh_TW
dc.subject熱泳動效應zh_TW
dc.subject旋轉效應zh_TW
dc.subject熱不穩定性zh_TW
dc.subject奈米流體zh_TW
dc.subjectThermophoresisen
dc.subjectNanofluidsen
dc.subjectThermal Instabilityen
dc.subjectRotational effecten
dc.subjectGravity settlingen
dc.title考慮重力沉降效應的旋轉奈米流體層熱不穩定性zh_TW
dc.titleThermal Instability in a Rotating Nanofluid Layer with the Effect of Gravity Settlingen
dc.typeThesis-
dc.date.schoolyear113-2-
dc.description.degree碩士-
dc.contributor.oralexamcommittee羅安成;張敏興zh_TW
dc.contributor.oralexamcommitteeAn-Cheng Ruo;Min-Hsing Changen
dc.subject.keyword奈米流體,熱不穩定性,旋轉效應,重力沉降效應,熱泳動效應,zh_TW
dc.subject.keywordNanofluids,Thermal Instability,Rotational effect,Gravity settling,Thermophoresis,en
dc.relation.page40-
dc.identifier.doi10.6342/NTU202501718-
dc.rights.note同意授權(全球公開)-
dc.date.accepted2025-07-15-
dc.contributor.author-college工學院-
dc.contributor.author-dept應用力學研究所-
dc.date.embargo-lift2025-07-17-
顯示於系所單位:應用力學研究所

文件中的檔案:
檔案 大小格式 
ntu-113-2.pdf2.47 MBAdobe PDF檢視/開啟
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved