Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 應用力學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/97742
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor陳發林zh_TW
dc.contributor.advisorFalin Chenen
dc.contributor.author唐淯誠zh_TW
dc.contributor.authorYu-Chang Tangen
dc.date.accessioned2025-07-16T16:07:20Z-
dc.date.available2025-07-17-
dc.date.copyright2025-07-16-
dc.date.issued2025-
dc.date.submitted2025-07-10-
dc.identifier.citation[1] J.R.A. Pearson, On convection cells induced by surface tension, J. Fluid Mech. 4 (1958) 489-500.
[2] S. Chandrasekhar, Hydrodynamic and hydromagnetic stability, Dover Publications, New York, 1961.
[3] L.E. Scriven, C.V. Sternling, On cellular convection driven by surface-tension gradients: effects of mean surface tension and surface viscosity, J. Fluid Mech. 19 (1964) 321-340.
[4] D.A. Nield, Surface tension and buoyancy effects in cellular convection, J. Fluid Mech. 19 (1964) 341-352.
[5] A. Vidal, A. Acrivos, The influence of coriolis force on surface-tension-driven convection, J. Fluid Mech. 26 (1966) 807-818.
[6] K.A. Smith, On convective instability induced by surface-tension gradients, J. Fluid Mech. 24 (1966) 401-414.
[7] G.A. McConaghy, B.A. Finlayson, Surface tension driven oscillatory instability in a rotating fluid layer, J. Fluid Mech. 39 (1969) 49-55.
[8] S.H. Davis, Buoyancy-surface tension instability by the method of energy, J. Fluid Mech. 39 (1969) 347-359.
[9] R.J. Gumerman, G.M. Homsy, The stability of uniformly accelerated flows with application to convection driven by surface tension, J. Fluid Mech. 68 (1975) 191-207.
[10] S.H. Davis, G.M. Homsy, Energy stability theory for free-surface problems: buoyancy-thermocapillary layers, J. Fluid Mech. 98 (1980) 527-553.
[11] C.L. McTaggart, Convection driven by concentration-and temperature-dependent surface tension, J. Fluid Mech. 134 (1983) 301-310.
[12] A. Thess, S.A. Orszag, Surface-tension-driven Bénard convention at infinite Prandtl number, J. Fluid Mech. 283 (1995) 201-230.
[13] K.H. Kang, C.K. Choi, A theoretical analysis of the onset of surface‐tension‐driven convection in a horizontal liquid layer cooled suddenly from above, Phys. Fluids 9 (1997) 7-15.
[14] C.P.-García, B. Echebarría, M. Bestehorn, Thermal properties in surface-tension-driven convection, Phys. Rev. E 57 (1998) 475-481.
[15] B. Straughan, Surface-tension-driven convection in a fluid overlying a porous layer, J. Comput. Phys. 170 (2001) 320-337.
[16] R. Savino, S. Fico, Buoyancy and surface tension driven convection around a bubble, Phys. Fluids 18 (2006) 057104-1-057104-14.
[17] C.-M. Wu, Y.-R. Li, R.-J. Liao, Instability of three-dimensional flow due to rotation and surface-tension driven effects in a shallow pool with partly free surface, Int. J. Heat Mass Transf. 79 (2014) 968-980.
[18] R. Sarma, P.K. Mondal, Marangoni instability in a thin film heated from below: effect of nonmonotonic dependence of surface tension on temperature, Phys. Rev. E 97 (2018) 043105-1-043105-13.
[19] S. Chakraborty, T.W.-H. Sheu, Stability analysis of a chemotaxis–convection–diffusion coupling system with the roles of deformed free surface and surface tension, J. Fluid Mech. 923 (2021) A14-1-A14-29.
[20] E. Yim, A. Bouillant, F. Gallaire, Buoyancy-driven convection of droplets on hot nonwetting surfaces, Phys. Rev. E 103 (2021) 053105-1-053105-10.
[21] M. Celli, A.V. Kuznetsov, Marangoni convection of a viscous fluid over a vibrating plate, Proc. R. Soc. A 475 (2019) 20192014-1-20190214-16.
[22] J. Kim, C.K. Choi, Y.T. Kang, Instability analysis of Marangoni convection for absorption process accompanied by heat transfer, Int. J. Heat Mass Transf. 47 (2004) 2395-2402.
[23] W. Tang, J. Wang, D. Wu, K. Song, L. Duan, Q. Kang, Stability analysis of Rayleigh–Bénard–Marangoni convection in fluids with cross-zero expansion coefficient, Phys. Fluids 36 (2024) 104101-1-104101-17.
[24] E.L. Koschmieder, M.I. Biggerstaff, Onset of surface-tension-driven Bénard convection, J. Fluid Mech. 167 (1986) 49-64.
[25] E.L. Koschmieder, S.A. Prahl, Surface-tension-driven Bénard convection in small containers, J. Fluid Mech. 215 (1990) 571-583.
[26] E.L. Koschmieder, D.W. Switzer, The wavenumbers of supercritical surface-tension-driven Bénard convection, J. Fluid Mech. 240 (1992) 533-548.
[27] S.J. Vanhook, M.F. Schatz, J.B. Swift, W.D. McCormick, H.L. Swinney, Long-wavelength surface-tension-driven Bénard convection: experiment and theory, J. Fluid Mech. 345 (1997) 45-78.
[28] A. Garcimartin, N. Mukolobwiez, F. Daviaud, Origin of waves in surface-tension-driven convection, Phys. Rev. E 56 (1997) 1699-1705.
[29] K. Eckert, M. Bestehorn, A. Thess, Square cells in surface-tension-driven Bénard convection: experiment and theory, J. Fluid Mech. 356 (1998) 155-197.
[30] J.A. Maroto, V.P.-Muñuzuri, M.S. R.-Cano, Introductory analysis of Bénard–Marangoni convection. Eur. J. Phys. 28 (2007) 311-320.
[31] J. Kim, Y.T. Kang, C.K. Choi, Analysis of convective instability and heat transfer characteristics of nanofluids, Phys. Fluids 16 (2004) 2395-2401.
[32] S.K. Das, S.U.S. Choi, H.E. Patel, Heat transfer in nanofluids—a review, Heat Transf. Eng. 27 (2006) 3-19.
[33] V. Sridhara, L.N. Satapathy, Al2O3-based nanofluids: a review, Nanoscale Res. Lett. 6 (2011) 456-1-456-16.
[34] G. Ramesh, N.K. Prabhu, Review of thermo-physical properties, wetting and heat transfer characteristics of nanofluids and their applicability in industrial quench heat treatment, Nanoscale Res. Lett. 6 (2011) 334-1-334-15.
[35] S. Tanvir, L. Qiao, Surface tension of nanofluid-type fuels containing suspended nanomaterials, Nanoscale Res. Lett. 7 (2012) 226-1-226-10.
[36] S.S. Khaleduzzaman, I.M. Mahbubul, I.M. Shahrul, R. Saidur, Effect of particle concentration, temperature and surfactant on surface tension of nanofluids, Int. Commun. Heat Mass Transf. 49 (2013) 110-114.
[37] J. Buongiorno, Convective transport in nanofluids, J. Heat Transf. 128 (2006) 240-250.
[38] D.A. Nield, A.V. Kuznetsov, The effect of vertical throughflow on thermal instability in a porous medium layer saturated by a nanofluid: a revised model, J. Heat Transf. 137 (2015) 052601-1-052601-5.
[39] A. Mahajan, M.K. Sharma, Penetrative convection in magnetic nanofluids via internal heating, Phys. Fluids 29 (2017) 034101-1-034101-13.
[40] A.A. Abdullah, K.A. Lindsay, Marangoni convection in a thin layer of nanofluid: application to combinations of water or ethanol with nanoparticles of alumina or multi-walled carbon nanotubules, Int. J. Heat Mass Transf. 104 (2017) 693-702.
[41] Y. Ma, Z. Yang, Simplified and highly stable thermal Lattice Boltzmann method simulation of hybrid nanofluid thermal convection at high Rayleigh numbers, Phys. Fluids 32 (2020) 012009-1-012009-12.
[42] M.-H. Chang, A.-C. Ruo, Rayleigh–Bénard instability in nanofluids: effect of gravity settling, J. Fluid Mech. 950 (2022) A37-1-A37-22.
[43] A.-C. Ruo, M.-H. Chang, Effect of gravity settling on the onset of thermal convection in a nanofluid-saturated porous medium layer, J. Fluid Mech. 984 (2024) A5-1-A5-31.
[44] A.-C. Ruo, W.-M. Yan, M.-H. Chang, The onset of natural convection in a horizontal nanofluid layer heated from below, Heat Transfer 50 (2021) 7764-7783.
[45] S.W. Joo, Marangoni instabilities in liquid mixtures with Soret effects, J. Fluid Mech. 293 (1995) 127-145.
[46] R. Gandhi, A. Nepomnyashchy, A. Oron, Thermosolutal instabilities in a moderately dense nanoparticle suspension, J. Fluid Mech. 1011 (2025) A52-1-A52-47.
[47] D.A. Nield, A.V. Kuznetsov, The onset of convection in an internally heated nanofluid layer, J. Heat Transf. 136 (2014) 014501-1-014501-5.
[48] C.B. Moler, G.W. Stewart, An algorithm for generalized matrix eigenvalue problems, SIAM J. Numer. Anal. 10 (1973) 241-256.
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/97742-
dc.description.abstract本研究之目的是探討表面張力效應對水平奈米流體層對流穩定性的影響,模型為一水平奈米流體層,上表面存在表面張力,溫度固定為 Tc,為不可變形之自由液面且與外界環境存在熱通量,下板溫度固定為 Th,考慮熱泳動、布朗運動及奈米粒子重力沉降效應,依照流體穩定學分析流程自統御方程式開始,經由無因次化、基態流場分析、微小擾動分析以及正規模態展開,其中採用連續方程式、動量守恆式、奈米粒子質量守恆式及能量守恆式作為統御方程式,搭配適當的邊界條件,最後使用 Chebyshev polynomials 進行數值分析。
本研究選擇水作為流體介質,氧化鋁作為奈米粒子製成奈米流體進行分析,其中奈米粒子直徑選擇 20、40 和 60 奈米做為小、中和大尺寸奈米粒子代表,考慮不同奈米粒子濃度或 Biot 數對系統穩定性的影響,並繪製出中性曲線、震盪頻率及流動模式圖。得出的結果為奈米粒子直徑增加或濃度增加會使系統更穩定且臨界波數越大,而 Biot 數增加也會得到相同的結果。在系統中無奈米粒子存在時屬於固定模態,加入奈米粒子後則呈現震盪模態,在流動模式中亦呈現相同的結果。本研究探討表面張力隨奈米粒子體積分率增加而增加及表面張力與奈米粒子體積分率無關案例得出了相似的結果。
本研究與前人對奈米流體對流穩定性研究不同之處在於考慮奈米粒子重力沉降效應,可得出更加符合實際情況的方程式。
zh_TW
dc.description.abstractThe objective of this study is to investigate the effect of surface tension on the convective stability of a horizontal nanofluid layer. The model considers a horizontal nanofluid layer with an undeformable free surface subject to surface tension, maintained at a constant temperature Tc, and exchanging heat flux with the external environment. The bottom surface is held at a higher constant temperature Th. Thermophoresis, Brownian motion, and gravity-induced nanoparticle settling are taken into account. Following the standard procedure in fluid stability analysis, the governing equations—comprising the continuity equation, momentum conservation, nanoparticle mass conservation, and energy conservation—are nondimensionalized, and steady-state and linear stability analyses are conducted. The perturbation equations are expanded using normal modes and solved numerically via Chebyshev polynomials.
Water is selected as the base fluid and alumina (Al₂O₃) as the dispersed nanoparticles. Particle diameters of 20, 40, and 60 nm are used to represent small, medium, and large nanoparticles, respectively. The effects of nanoparticle volume fraction and Biot number on system stability are examined. Neutral curves, oscillatory frequencies, and flow patterns are presented. The results indicate that increasing nanoparticle diameter or volume fraction enhances system stability and leads to larger critical wavenumbers. A similar stabilizing effect is observed with increasing Biot number. The system exhibits a stationary mode in the absence of nanoparticles and transitions to an oscillatory mode upon nanoparticle inclusion, which is also reflected in the flow patterns. This study demonstrates that similar results are obtained for cases where surface tension increases with nanoparticle volume fraction and where surface tension is independent of nanoparticle volume fraction.
This study differs from previous work on nanofluid convective stability by incorporating the effect of nanoparticle gravity settling, resulting in a more realistic and physically consistent model.
en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2025-07-16T16:07:20Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2025-07-16T16:07:20Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontents誌謝 Ⅰ
摘要 Ⅱ
Abstract Ⅲ
目次 Ⅴ
圖次 Ⅶ
表次 Ⅸ
符號說明 Ⅹ
第 1 章 緒論 1
1.1 文獻回顧 1
1.2 研究動機 9
第 2 章 理論模型 10
2.1 研究方法 10
2.2 模型建立 11
2.3 Boussinesq approximation 12
2.4 統御方程式與邊界條件 13
2.5 無因次化統御方程式 18
2.6 基態流場 21
第 3 章 線性穩定分析 23
3.1 微小擾動方程式 23
3.2 正規模態展開 26
3.3 數值方法 28
3.4 柴比雪夫多項式 29
第 4 章 結果與討論 35
4.1 與已知文獻比較 37
4.2 小尺寸奈米粒子直徑結果 39
4.3 中尺寸奈米粒子直徑結果 45
4.4 大尺寸奈米粒子直徑結果 51
4.5 奈米粒子體積分率與表面張力無關情況 59
第 5 章 結論與未來展望 61
參考文獻 64
-
dc.language.isozh_TW-
dc.subject柴比雪夫多項式zh_TW
dc.subject奈米粒子重力沉降效應zh_TW
dc.subject表面張力效應zh_TW
dc.subject奈米流體zh_TW
dc.subject流體穩定學zh_TW
dc.subjectgravity settling of nanoparticlesen
dc.subjectfluid stabilityen
dc.subjectnanofluiden
dc.subjectsurface tension effecten
dc.subjectChebyshev polynomialsen
dc.title重力沉降效應對水平奈米流體層熱與表面張力驅動不穩定性的影響zh_TW
dc.titleEffect of gravity settling on the thermal and surface-tension driven instability in a horizontal nanofluid layeren
dc.typeThesis-
dc.date.schoolyear113-2-
dc.description.degree碩士-
dc.contributor.oralexamcommittee張敏興;羅安成zh_TW
dc.contributor.oralexamcommitteeMin-Hsing Chang;An-Cheng Ruoen
dc.subject.keyword流體穩定學,奈米流體,表面張力效應,柴比雪夫多項式,奈米粒子重力沉降效應,zh_TW
dc.subject.keywordfluid stability,nanofluid,surface tension effect,Chebyshev polynomials,gravity settling of nanoparticles,en
dc.relation.page68-
dc.identifier.doi10.6342/NTU202501671-
dc.rights.note未授權-
dc.date.accepted2025-07-11-
dc.contributor.author-college工學院-
dc.contributor.author-dept應用力學研究所-
dc.date.embargo-liftN/A-
顯示於系所單位:應用力學研究所

文件中的檔案:
檔案 大小格式 
ntu-113-2.pdf
  未授權公開取用
2.65 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved