請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/97733完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 曾雪峰 | zh_TW |
| dc.contributor.advisor | Snow H. Tseng | en |
| dc.contributor.author | 許瑋芸 | zh_TW |
| dc.contributor.author | Wei-Yun Hsu | en |
| dc.date.accessioned | 2025-07-16T16:05:39Z | - |
| dc.date.available | 2025-07-17 | - |
| dc.date.copyright | 2025-07-16 | - |
| dc.date.issued | 2025 | - |
| dc.date.submitted | 2025-07-08 | - |
| dc.identifier.citation | [1] E. Yablonovitch, "Inhibited Spontaneous Emission in Solid-State Physics and Electronics," Phys. Rev. Lett., vol. 58, no. 20, pp. 2059-2062, 05/18/ 1987, doi: 10.1103/PhysRevLett.58.2059.
[2] S. John, "Strong localization of photons in certain disordered dielectric superlattices," Phys. Rev. Lett., vol. 58, no. 23, pp. 2486-2489, 06/08/ 1987, doi: 10.1103/PhysRevLett.58.2486. [3] K. M. Ho, C. T. Chan, and C. M. Soukoulis, "Existence of a photonic gap in periodic dielectric structures," Phys. Rev. Lett., vol. 65, no. 25, pp. 3152-3155, 12/17/ 1990, doi: 10.1103/PhysRevLett.65.3152. [4] H. S. Sözüer, J. W. Haus, and R. Inguva, "Photonic bands: Convergence problems with the plane-wave method," Phys. Rev. B, vol. 45, no. 24, pp. 13962-13972, 06/15/ 1992, doi: 10.1103/PhysRevB.45.13962. [5] A. Mekis, J. C. Chen, I. Kurland, S. H. Fan, P. R. Villeneuve, and J. D. Joannopoulos, "High transmission through sharp bends in photonic crystal waveguides," (in English), Phys. Rev. Lett., vol. 77, no. 18, pp. 3787-3790, Oct 1996, doi: 10.1103/PhysRevLett.77.3787. [6] A. E. Miroshnichenko and Y. S. Kivshar, "Sharp bends in photonic crystal waveguides as nonlinear Fano resonators," (in English), Optics Express, vol. 13, no. 11, pp. 3969-3976, May 2005, doi: 10.1364/opex.13.003969. [7] K. Goswami, H. Mondal, and M. Sen, "Optimized design of multiple bends for maximum power transfer in optical waveguide," (in English), Optik, vol. 265, p. 11, Sep 2022, Art no. 169448, doi: 10.1016/j.ijleo.2022.169448. [8] W. Dai, T. Yoda, Y. Moritake, M. Ono, E. Kuramochi, and M. Notomi, "High transmission in 120-degree sharp bends of inversion-symmetric and inversion-asymmetric photonic crystal waveguides," (in English), Nat. Commun., vol. 16, no. 1, p. 12, Jan 2025, Art no. 796, doi: 10.1038/s41467-025-56020-8. [9] M. H. Ma, K. Chen, R. Bi, X. She, L. Wang, and X. W. Shu, "Low loss and wide-band photonic crystal waveguide bend with an open resonator," (in English), Optics Communications, vol. 586, p. 6, Aug 2025, Art no. 131904, doi: 10.1016/j.optcom.2025.131904. [10] A. Z. Elsherbeni and V. Demir, The finite-difference time-domain method for electromagnetics with MATLAB simulations. Raleigh, NC: SciTech Pub. (in English), 2009. [11] J. B. Schneider, "Understanding the finite-difference time-domain method," School of electrical engineering and computer science Washington State University, vol. 28, 2010. [12] C. Kittel and P. McEuen, Introduction to solid state physics. John Wiley & Sons, 2018. [13] R. D. V. Meade, S. G. Johnson, and J. N. Winn, "Photonic crystals: Molding the flow of light," ed: Princeton University Press, 2008. [14] J. D. Joannopoulos, P. R. Villeneuve, and S. H. Fan, "Photonic crystals: Putting a new twist on light," (in English), Nature, Review vol. 386, no. 6621, pp. 143-149, Mar 1997, doi: 10.1038/386143a0. [15] A. Taflove and S. C. Hagness, Computational Electrodynamics: The Finite-difference Time-domain Method. Artech House, 2005. [16] K. Yee, "Numerical solution of initial boundary value problems involving Maxwell's equations in isotropic media," IEEE Transactions on antennas and propagation, vol. 14, no. 3, pp. 302-307, 1966. [17] J. P. Berenger, "A PERFECTLY MATCHED LAYER FOR THE ABSORPTION OF ELECTROMAGNETIC-WAVES," (in English), J. Comput. Phys., vol. 114, no. 2, pp. 185-200, Oct 1994, doi: 10.1006/jcph.1994.1159. [18] L. Ming-Feng, Y. Yu-Lin, and H. Yang-Tung, "Numerical Study of Transmission Improvement in a Photonic Crystal Waveguide Bend by Mode-Matching Technique," IEEE Photonics Technology Letters, vol. 20, no. 24, pp. 2114-2116, 2008, doi: 10.1109/lpt.2008.2006918. [19] Y. Zhang and B. J. Li, "Photonic crystal-based bending waveguides for optical interconnections," (in English), Optics Express, vol. 14, no. 12, pp. 5723-5732, Jun 2006, doi: 10.1364/oe.14.005723. [20] A. Mekis, S. H. Fan, and J. D. Joannopoulos, "Bound states in photonic crystal waveguides and waveguide bends," (in English), Phys. Rev. B, vol. 58, no. 8, pp. 4809-4817, Aug 1998. [Online]. Available: <Go to ISI>://WOS:000075772500089. [21] B. Rigal et al., "Propagation losses in photonic crystal waveguides: effects of band tail absorption and waveguide dispersion," (in English), Optics Express, vol. 25, no. 23, pp. 28908-28913, Nov 2017, doi: 10.1364/oe.25.028908. | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/97733 | - |
| dc.description.abstract | 本研究在二維正方光子晶體中設計線缺陷結構,以形成光子晶體波導。透過時域有限差分法(Finite-Difference Time-Domain, FDTD)模擬電磁波在不同彎曲角度的線缺陷結構中的傳播行為,並計算其穿透率。我們利用時域電場強度變化與空間電場強度分布,探討光於光子晶體波導中的傳播特性。此外,針對各種波導結構,在能隙範圍內計算其穿透率表現。本研究旨在找出於不同彎曲角度下具較佳穿透率之光子晶體波導結構。在積體光學中,波導的彎曲損耗是一項重要課題,故期望藉由本模擬研究,深入了解不同彎曲角度對光傳播損耗的影響。 | zh_TW |
| dc.description.abstract | In this study, we designed line defect structures in a two-dimensional square photonic crystal to form photonic crystal waveguides. The Finite-Difference Time-Domain (FDTD) method was used to simulate the propagation of electromagnetic waves in waveguides with different bending angles and to calculate their transmittance. Temporal variations in electric field intensity and the spatial distribution of electric field intensity were analyzed to investigate the propagation characteristics of light within the waveguides. Additionally, we evaluated the transmittance performance within the photonic bandgap for each waveguide structure. The purpose of this simulation study is to identify photonic crystal waveguide designs with better transmittance under various bending angles. In integrated optics, bending loss is a critical issue; therefore, this study aims to provide insights into how different bending angles affect optical transmission loss. | en |
| dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2025-07-16T16:05:39Z No. of bitstreams: 0 | en |
| dc.description.provenance | Made available in DSpace on 2025-07-16T16:05:39Z (GMT). No. of bitstreams: 0 | en |
| dc.description.tableofcontents | 致謝 i
中文摘要 ii ABSTRACT iii 目次 iv 圖次 vi 表次 xiv 第一章 導論 1 1.1 前言 1 1.2 研究動機 2 1.3 本文內容 2 第二章 概述光子晶體理論 3 2.1 週期函數、倒晶格與布里淵區(Brillouin Zone) 3 2.2 布洛赫定理(Bloch’s Theorem) 7 2.3 平面波展開法 10 第三章 模擬背景:時域有限差分法 12 3.1 時域有限差分法的基礎背景—馬克斯威方程組 13 3.2 中央有限差分(Central Finite Difference) 16 3.3 馬克斯威方程離散化 17 3.4 The Yee Algorithm 19 3.5 Courant Limit 23 3.6 完美吸收邊界條件(Perfectly Matched Layer Absorbing Boundary Condition, PMLABC) 25 第四章 模擬結果分析與討論 28 4.1 二維正方光子晶體之參數設定 29 4.2 正方晶格之TE頻帶結構圖與TM頻帶結構圖 31 4.3 介紹分析方法 33 4.4 設計不同彎曲角度之線缺陷結構 34 4.5 模擬分析不同彎曲角度之線缺陷結構 39 4.5.1 直線型線缺陷結構 39 4.5.2 90度彎曲線缺陷結構 46 4.5.2.1 90度彎曲線缺陷之基本結構 46 4.5.2.2 90度彎曲線缺陷之調變結構 53 4.5.2.3 90度彎曲線缺陷之基本結構與調變結構之比較 60 4.5.3 45度彎曲線缺陷結構 64 4.5.3.1 45度彎曲線缺陷之基本結構 64 4.5.3.2 45度彎曲線缺陷之調變結構 70 4.5.3.3 45度彎曲線缺陷結構之基本結構與調變結構之比較 76 4.5.4 135度彎曲線缺陷結構 80 4.5.4.1 135度彎曲線缺陷之基本結構 80 4.5.4.2 135度彎曲線缺陷之調變結構1 87 4.5.4.3 135度彎曲線缺陷之調變結構2 93 4.5.4.4 所有135度彎曲線缺陷結構之比較 99 4.6 補充說明—探討解析度之誤差值 103 第五章 結論與未來展望 105 5.1 結論 105 5.2 研究限制與討論 106 5.3 未來展望 107 參考文獻 108 | - |
| dc.language.iso | zh_TW | - |
| dc.subject | 光子晶體波導 | zh_TW |
| dc.subject | 線缺陷結構 | zh_TW |
| dc.subject | 時域有限差分法 | zh_TW |
| dc.subject | line defect structures | en |
| dc.subject | FDTD | en |
| dc.subject | photonic crystal waveguides | en |
| dc.title | 以時域有限差分法分析光子晶體波導中不同角度之彎曲線缺陷結構 | zh_TW |
| dc.title | Simulation of different degrees of bending in photonic crystal waveguide using the FDTD method | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 113-2 | - |
| dc.description.degree | 碩士 | - |
| dc.contributor.oralexamcommittee | 林晃巖;劉建豪 | zh_TW |
| dc.contributor.oralexamcommittee | Hoang-Yan Lin;Chien-Hao Liu | en |
| dc.subject.keyword | 時域有限差分法,光子晶體波導,線缺陷結構, | zh_TW |
| dc.subject.keyword | FDTD,photonic crystal waveguides,line defect structures, | en |
| dc.relation.page | 110 | - |
| dc.identifier.doi | 10.6342/NTU202501444 | - |
| dc.rights.note | 未授權 | - |
| dc.date.accepted | 2025-07-10 | - |
| dc.contributor.author-college | 電機資訊學院 | - |
| dc.contributor.author-dept | 光電工程學研究所 | - |
| dc.date.embargo-lift | N/A | - |
| 顯示於系所單位: | 光電工程學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-113-2.pdf 未授權公開取用 | 9.34 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
