請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/97726完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 梁文傑 | zh_TW |
| dc.contributor.advisor | Man-Kit Leung | en |
| dc.contributor.author | 林孟妤 | zh_TW |
| dc.contributor.author | Meng-Yu Lin | en |
| dc.date.accessioned | 2025-07-11T16:23:07Z | - |
| dc.date.available | 2025-07-12 | - |
| dc.date.copyright | 2025-07-11 | - |
| dc.date.issued | 2025 | - |
| dc.date.submitted | 2025-07-01 | - |
| dc.identifier.citation | (1) Ye, M.; Gao, X.; Hong, X.; Liu, Q.; He, C.; Liu, X.; Lin, C. Recent advances in quantum dot-sensitized solar cells: insights into photoanodes, sensitizers, electrolytes and counter electrodes. Sustain. Energy Fuels 2017, 1, 1217–1231.
(2) Yu, K.; Schanze, K. S. Commemorating the Nobel prize in chemistry 2023 for the discovery and synthesis of quantum dots. ACS Cent. Sci. 2023, 9, 1989–1992. (3) The Nobel Prize in Chemistry 2023. NobelPrize.org, https://www.nobelprize.org/prizes/chemistry/2023/summary/ (accessed 2025-04-21). (4) Brus, L. Electronic wave functions in semiconductor clusters: experiment and theory. J. Phys. Chem. 1986, 90, 2555–2560. (5) Das, T. K.; Ilaiyaraja, P.; Sudakar, C. Whispering gallery mode enabled efficiency enhancement: defect and size controlled CdSe quantum dot sensitized whisperonic solar cells. Sci. Rep. 2018, 8, 9709. (6) Algar, W. R.; Susumu, K.; Delehanty, J. B.; Medintz, I. L. Semiconductor quantum dots in bioanalysis: crossing the valley of death. Anal. Chem. 2011, 83, 8826–8837. (7) Vasudevan, D.; Gaddam, R. R.; Trinchi, A.; Cole, I. Core–shell quantum dots: properties and applications. J. Alloys Compd. 2015, 636, 395–404. (8) Sahu, A.; Kumar, D. Core-shell quantum dots: a review on classification, materials, application, and theoretical modeling. J. Alloys Compd. 2022, 924, 166508. (9) Wang, L.; Lv, Y.; Lin, J.; Zhao, J.; Liu, X.; Zeng, R.; Wang, X.; Zou, B. Surface organic ligand-passivated quantum dots: toward high-performance light-emitting diodes with long lifetimes. J. Mater. Chem. C 2021, 9, 2483–2490. (10) Tang, J.; Kemp, K. W.; Hoogland, S.; Jeong, K. S.; Liu, H.; Levina, L.; Furukawa, M.; Wang, X.; Debnath, R.; Cha, D.; et al. Colloidal-quantum-dot photovoltaics using atomic-ligand passivation. Nat. Mater. 2011, 10, 765–771. (11) Nida, D. L.; Nitin, N.; Yu, W. W.; Colvin, V. L.; Richards-Kortum, R. Photostability of quantum dots with amphiphilic polymer-based passivation strategies. Nanotechnol. 2008, 19, 035701. (12) Park, J.; Lee, J.; Kwag, J.; Baek, Y.; Kim, B.; Yoon, C. J.; Bok, S.; Cho, S.-H.; Kim, K. H.; Ahn, G. O.; et al. Quantum dots in an amphiphilic polyethyleneimine derivative platform for cellular labeling, targeting, gene delivery, and ratiometric oxygen sensing. ACS Nano 2015, 9, 6511–6521. (13) Moon, H.; Lee, C.; Lee, W.; Kim, J.; Chae, H. Stability of quantum dots, quantum dot films, and quantum dot light-emitting diodes for display applications. Adv. Mater. 2019, 31, 1804294. (14) Pan, Z.; Zhang, H.; Cheng, K.; Hou, Y.; Hua, J.; Zhong, X. Highly efficient inverted type-I CdS/CdSe core/shell structure QD-sensitized solar cells. ACS Nano 2012, 6, 3982–3991. (15) Wang, J.; Mora-Seró, I.; Pan, Z.; Zhao, K.; Zhang, H.; Feng, Y.; Yang, G.; Zhong, X.; Bisquert, J. Core/shell colloidal quantum dot exciplex states for the development of highly efficient quantum-dot-sensitized solar cells. J. Am. Chem. Soc. 2013, 135, 15913–15922. (16) Liu, M.; Yao, W.; Li, C.; Wu, Z.; Li, L. Tuning emission and Stokes shift of CdS quantum dots via copper and indium co-doping. RSC Adv. 2015, 5, 628–634. (17) Voznyy, O.; Levina, L.; Fan, F.; Walters, G.; Fan, J. Z.; Kiani, A.; Ip, A. H.; Thon, S. M.; Proppe, A. H.; Liu, M.; et al. Origins of Stokes shift in PbS nanocrystals. Nano Lett. 2017, 17, 7191–7195. (18) Dabbous, A.; Colson, E.; Chakravorty, D.; Mouesca, J.-M.; Lombard, C.; Caillat, S.; Ravanat, J.-L.; Dubois, F.; Dénès, F.; Renaud, P.; et al. Fine tuning of quantum dots photocatalysts for the synthesis of tropane alkaloid skeletons. Chem. Eur. J. 2023, 29, e202300303. (19) Zhou, Y.; Zhao, H.; Ma, D.; Rosei, F. Harnessing the properties of colloidal quantum dots in luminescent solar concentrators. Chem. Soc. Rev. 2018, 47, 5866–5890. (20) Li, B.; Jiang, L.; Li, X.; Ran, P.; Zuo, P.; Wang, A.; Qu, L.; Zhao, Y.; Cheng, Z.; Lu, Y. Preparation of monolayer MoS2 quantum dots using temporally shaped femtosecond laser ablation of bulk MoS2 targets in water. Sci. Rep. 2017, 7, 11182. (21) Chen, Y.; Sun, L.; Liao, F.; Dang, Q.; Shao, M. Fluorescent-stable and water-soluble two-component-modified silicon quantum dots and their application for bioimaging. J. Lumin. 2019, 215, 116644. (22) Xu, M.; Zhang, W.; Yang, Z.; Yu, F.; Ma, Y.; Hu, N.; He, D.; Liang, Q.; Su, Y.; Zhang, Y. One-pot liquid-phase exfoliation from graphite to graphene with carbon quantum dots. Nanoscale 2015, 7, 10527–10534. (23) Liu, X.; Ma, C.; Yan, Y.; Yao, G.; Tang, Y.; Huo, P.; Shi, W.; Yan, Y. Hydrothermal synthesis of CdSe quantum dots and their photocatalytic activity on degradation of cefalexin. Ind. Eng. Chem. Res. 2013, 52, 15015–15023. (24) Murray, C. B.; Norris, D. J.; Bawendi, M. G. Synthesis and characterization of nearly monodisperse CdE (E = sulfur, selenium, tellurium) semiconductor nanocrystallites. J. Am. Chem. Soc. 1993, 115, 8706–8715. (25) Saeedzadeh Amiri, N.; Milani Hosseini, M.-R. Application of ratiometric fluorescence sensor-based microwave-assisted synthesized CdTe quantum dots and mesoporous structured epitope-imprinted polymers for highly efficient determination of tyrosine phosphopeptide. Anal. Methods 2020, 12, 63–72. (26) Sowers, K. L.; Swartz, B.; Krauss, T. D. Chemical mechanisms of semiconductor nanocrystal synthesis. Chem. Mat. 2013, 25, 135–1362. (27) Yang, Y. A.; Wu, H.; Williams, K. R.; Cao, Y. C. Synthesis of CdSe and CdTe nanocrystals without precursor injection. Angew. Chem. Int. Ed. 2005, 44, 6712–6715. (28) Montarnal, D.; Capelot, M.; Tournilhac, F.; Leibler, L. Silica-like malleable materials from permanent organic networks. Science 2011, 334, 965–968. (29) Denissen, W.; Winne, J. M.; Du Prez, F. E. Vitrimers: permanent organic networks with glass-like fluidity. Chem. Sci. 2016, 7, 30–38. (30) Shi, Q.; Yu, K.; Kuang, X.; Mu, X.; Dunn, C. K.; Dunn, M. L.; Wang, T.; Jerry Qi, H. Recyclable 3D printing of vitrimer epoxy. Mater. Horiz. 2017, 4, 598–607. (31) Brutman, J. P.; Delgado, P. A.; Hillmyer, M. A. Polylactide vitrimers. ACS Macro Lett. 2014, 3, 607–610. (32) Santiago, D.; Guzmán, D.; Padilla, J.; Verdugo, P.; De la Flor, S.; Serra, À. Recyclable and reprocessable epoxy vitrimer adhesives. ACS Appl. Polym. Mater. 2023, 5, 2006–2015. (33) Zhang, Z.; Biswal, A. K.; Nandi, A.; Frost, K.; Smith, J. A.; Nguyen, B. H.; Patel, S.; Vashisth, A.; Iyer, V. Recyclable vitrimer-based printed circuit boards for sustainable electronics. Nat. Sustain. 2024, 7, 616–627. (34) Zhang, W.; Gao, F.; Chen, X.; Shen, L.; Chen, Y.; Lin, Y. Recyclable, degradable, and fully bio-based covalent adaptable polymer networks enabled by a dynamic diacetal motif. ACS Sustain. Chem. Eng. 2023, 11, 3065–3073. (35) Chen, Y.-C.; Reddy, K. S. K.; Jeng, R.-J.; Lin, C.-H. Poly(carbonate acetal) vitrimers with enhanced thermal properties and closed-loop thermal recyclability derived from waste polycarbonate-derived polyaldehyde and pentaerythritol/erythritol/d-sorbitol. Green Chem. 2024, 26, 10275–10289. (36) Ye, G.; Wang, C.; Zhang, Q.; Song, P.; Wang, H.; Huo, S.; Liu, Z. Bio-derived Schiff base vitrimer with outstanding flame retardancy, toughness, antibacterial, dielectric and recycling properties. Int. J. Biol. Macromol. 2024, 278, 134933. (37) Fei, M.; Chang, Y.-C.; Hao, C.; Shao, L.; Liu, W.; Zhao, B.; Zhang, J. Highly engineerable Schiff base polymer matrix with facile fiber composite manufacturability and hydrothermal recyclability. Compos. B Eng. 2023, 248, 110366. (38) Tratnik, N.; Tanguy, N. R.; Yan, N. Recyclable, self-strengthening starch-based epoxy vitrimer facilitated by exchangeable disulfide bonds. J. Chem. Eng. 2023, 451, 138610. (39) Nguyen, H. N.; Lu, L.-H.; Huang, C.-J. Aromatic disulfide cross-linkers for self-healable and recyclable acrylic polymer networks. ACS Appl. Polym. Mater. 2024, 6, 4615–4624. (40) Yang, Z.; Duan, C.; Sun, Y.; Wang, T.; Zhang, X.; Wang, Q. Utilizing polyhexahydrotriazine (PHT) to cross-link polyimide oligomers for high-temperature shape memory polymer. Ind. Eng. Chem. Res. 2019, 58, 10599–10608. (41) Zych, A.; Tellers, J.; Bertolacci, L.; Ceseracciu, L.; Marini, L.; Mancini, G.; Athanassiou, A. Biobased, biodegradable, self-healing boronic ester vitrimers from epoxidized soybean oil acrylate. ACS Appl. Polym. Mater. 2021, 3, 1135–1144. (42) Zhang, X.; Wang, S.; Jiang, Z.; Li, Y.; Jing, X. Boronic ester based vitrimers with enhanced stability via internal boron–nitrogen coordination. J. Am. Chem. Soc. 2020, 142, 21852–21860. (43) Yang, Y.; Zhang, S.; Zhang, X.; Gao, L.; Wei, Y.; Ji, Y. Detecting topology freezing transition temperature of vitrimers by AIE luminogens. Nat. Commun. 2019, 10, 3165. (44) Yu, K.; Taynton, P.; Zhang, W.; Dunn, M. L.; Qi, H. J. Reprocessing and recycling of thermosetting polymers based on bond exchange reactions. RSC Adv. 2014, 4, 10108–10117. (45) Zhang, Y.-Y.; Liu, K.-T.; Fang, M.-H.; Leung, M.-k. Quantum dot-vitrimer composites: an approach for reprocessable, self-healable, and sustainable luminescent materials. ChemSusChem 2023, 16, e202300227. (46) Adjaoud, A.; Trejo-Machin, A.; Puchot, L.; Verge, P. Polybenzoxazines: a sustainable platform for the design of fast responsive and catalyst-free vitrimers based on trans-esterification exchanges. Polym. Chem. 2021, 12, 3276–3289. (47) Ma, Y.; Jiang, X.; Shi, Z.; Berrocal, J. A.; Weder, C. Closed-loop recycling of vinylogous urethane vitrimers. Angew. Chem. Int. Ed. 2023, 62, e202306188. (48) Kuang, X.; Zhou, Y.; Shi, Q.; Wang, T.; Qi, H. J. Recycling of epoxy thermoset and composites via good solvent assisted and small molecules participated exchange reactions. ACS Sustain. Chem. Eng. 2018, 6, 9189–9197. (49) Damonte, G.; Pellis, A.; Battegazzore, D.; Athanassiou, A.; Zych, A.; Fina, A.; Monticelli, O. On sustainable vitrimers based on polycaprolactones. ACS Appl. Polym. Mater. 2024, 6, 3875–3882. (50) Ruiz de Luzuriaga, A.; Martin, R.; Markaide, N.; Rekondo, A.; Cabañero, G.; Rodríguez, J.; Odriozola, I. Epoxy resin with exchangeable disulfide crosslinks to obtain reprocessable, repairable and recyclable fiber-reinforced thermoset composites. Mater. Horiz. 2016, 3, 241–247. (51) Si, H.; Zhou, L.; Wu, Y.; Song, L.; Kang, M.; Zhao, X.; Chen, M. Rapidly reprocessable, degradable epoxy vitrimer and recyclable carbon fiber reinforced thermoset composites relied on high contents of exchangeable aromatic disulfide crosslinks. Compos. B Eng. 2020, 199, 108278. (52) Post, W.; Cohades, A.; Michaud, V.; van der Zwaag, S.; Garcia, S. J. Healing of a glass fibre reinforced composite with a disulphide containing organic-inorganic epoxy matrix. Compos. Sci. Technol. 2017, 152, 85–93. (53) Yang, Y.; Pei, Z.; Zhang, X.; Tao, L.; Wei, Y.; Ji, Y. Carbon nanotube–vitrimer composite for facile and efficient photo-welding of epoxy. Chem. Sci. 2014, 5, 3486–3492. (54) Zhang, J.; Lei, Z.; Luo, S.; Jin, Y.; Qiu, L.; Zhang, W. Malleable and recyclable conductive MWCNT-vitrimer composite for flexible electronics. ACS Appl. Nano Mater. 2020, 3, 4845–4850. (55) Hu, Y.; Jia, P.; Lamm, M. E.; Sha, Y.; Kurnaz, L. B.; Ma, Y.; Zhou, Y. Plant oil-derived vitrimers-graphene composites with self-healing ability triggered by multiple stimuli. Compos. B Eng. 2023, 259, 110704. (56) Ko, J.; Jeong, B. G.; Chang, J. H.; Joung, J. F.; Yoon, S.-Y.; Lee, D. C.; Park, S.; Huh, J.; Yang, H.; Bae, W. K.; et al. Chemically resistant and thermally stable quantum dots prepared by shell encapsulation with cross-linkable block copolymer ligands. NPG Asia Mater. 2020, 12, 19. (57) Legrand, A.; Soulié-Ziakovic, C. Silica–epoxy vitrimer nanocomposites. Macromolecules 2016, 49, 5893–5902. (58) Zhang, Y.-Y.; Lin, M.-Y.; Tsai, Y.-T.; Leung, M.-k.; Fang, M.-H. Sustainable quantum dot-vitrimer composites: a synergy of quantum dots and dynamic covalent bonds. ChemSusChem 2025, e202500464. (59) Koontz, E. Thermal analysis of glass. In Springer Handbook of Glass, Musgraves, J. D., Hu, J., Calvez, L. Eds.; Springer International Publishing, 2019; pp 853–878. (60) Cherevko, S.; Mayrhofer, K. J. J. On-line inductively coupled plasma spectrometry in electrochemistry: basic principles and applications. In Encyclopedia of Interfacial Chemistry, Wandelt, K. Ed.; Elsevier, 2018; pp 326–335. (61) National Synchrotron Radiation Research Center. 2018. https://www.nsrrc.org.tw/english/lightsource.aspx (accessed 2025-04-21). (62) Saurel, D.; Segalini, J.; Jauregui, M.; Pendashteh, A.; Daffos, B.; Simon, P.; Casas-Cabanas, M. A SAXS outlook on disordered carbonaceous materials for electrochemical energy storage. Energy Storage Mater. 2019, 21, 162–173. (63) Qian, K.; Winans, R. E.; Li, T. Insights into the nanostructure, solvation, and dynamics of liquid electrolytes through small-angle X-Ray scattering. Adv. Energy Mater. 2021, 11, 2002821. (64) Bae, W. K.; Char, K.; Hur, H.; Lee, S. Single-step synthesis of quantum dots with chemical composition gradients. Chem. Mat. 2008, 20, 531–539. (65) Hung, C.-C.; Ho, S.-J.; Yeh, C.-W.; Chen, G.-H.; Huang, J.-H.; Chen, H.-S. Highly luminescent dual-color-emitting alloyed [ZnxCd1–xSeyS1–y] quantum dots: investigation of bimodal growth and application to lighting. J. Phys. Chem. C 2017, 121, 28373–28384. | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/97726 | - |
| dc.description.abstract | 量子點(quantum dots; QDs)因其優異之光學特性而備受關注,然而應用於顯示器時須仰賴熱固性高分子(thermoset polymer)載體以提供支撐與穩定性,CdSe系列量子點雖發展技術最為成熟,然而其含重金屬鎘元素,對環境與回收利用構成挑戰,為解決此問題,本研究開發一種具可回收特性之複合材料,將CdSe@CdZnSeS/ZnS量子點以一鍋法均勻摻入聚酯型類玻璃高分子(polyester-based vitrimer; PEV)中,製成QD@PEV複合放光材料,其中PEV含動態共價鍵(dynamic covalent bond)之特性,使其兼具熱固性材料之機械穩定性與熱塑性材料(thermoplastic polymer)之可重塑特性,藉由鋅離子催化醇解(alcoholysis)反應,可於中性條件下實現量子點與高分子基材之分離與再利用,接著離心(centrifuge)、蒸餾(distillation)與混入量子點再製,建立閉環回收製程(closed-loop system),回收量子點(recycled-QD; r-QD)維持其晶體結構與光學表現,回收PEV (recycled-PEV; r-PEV)經感應耦合電漿光學發射光譜儀(inductively coupled plasma optical emission spectroscopy; ICP-OES)與同步輻射X光吸收邊緣結構(X-ray absorption near-edge structure; XANES)分析確認幾乎無鎘離子殘留。此外,掃描穿透式電子顯微鏡(scanning transmission electron microscope; STEM)與同步輻射穿透式小角度X光散射(transmission small angle X-ray scattering; TSAXS)分析顯示量子點於PEV中之分散性優於傳統熱固性高分子光固膠,最後將QD@PEV光學膜應用於量子點背光液晶顯示器(quantum-dot liquid crystal display; QD-LCD)裝置中,於國際照明委員會(Commission Internationale de l'éclairage; CIE) 1931色彩座標下接近白光色點(0.28,0.32),並實現99.9% sRGB與99.7% DCI-P3之色域覆蓋率。本研究提出一種兼具光學性能與永續回收潛力之綠色材料設計策略,為奈米材料之環保應用提供新方向。 | zh_TW |
| dc.description.abstract | Quantum dots (QDs) have attracted significant attention due to their excellent optical properties. However, their application in display devices often requires thermoset polymer matrices to provide mechanical support and structural stability. CdSe-based QDs, which represent the most technically mature class of quantum dots, pose environmental and recyclability challenges due to their heavy metal cadmium content. To address this issue, this study developed a recyclable composite material by uniformly incorporating green and red CdSe@CdZnSeS/ZnS QDs into a polyester-based vitrimer (PEV) via a one-pot synthesis to prepare QD@PEV luminescent composites. The PEV matrix features dynamic covalent bonds, providing the material with the mechanical robustness of thermoset polymers and the reprocessability of thermoplastics. Through a zinc-catalyzed alcoholysis reaction, QDs and the polymer matrix can be effectively separated and reused under neutral conditions. Following centrifugation, distillation, and reintegration of QDs, a closed-loop recycling system was established. The recycled-PEV (r-QDs) retained their crystal structure and optical performance, while the recycled-PEV (r-PEV) showed negligible cadmium residue based on inductively coupled plasma optical emission spectroscopy (ICP-OES) and X-ray absorption near-edge structure (XANES) analysis.
Furthermore, scanning transmission electron microscopy (STEM) and transmission small-angle X-ray scattering (TSAXS) confirmed the superior dispersibility of QDs within the PEV matrix compared to conventional thermoset UV glue polymers. Finally, the QD@PEV optical film was applied in a quantum-dot liquid-crystal display (QD-LCD) device, achieving a nearly white emission point at (0.28, 0.32) in the Commission Internationale de l'éclairage (CIE) 1931 chromaticity diagram, with 99.9% sRGB and 99.7% DCI-P3 color gamut coverage. This study presents a green materials design strategy that combines excellent optical performance with sustainable recyclability, offering a new direction for the eco-friendly application of nanomaterials. | en |
| dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2025-07-11T16:23:07Z No. of bitstreams: 0 | en |
| dc.description.provenance | Made available in DSpace on 2025-07-11T16:23:07Z (GMT). No. of bitstreams: 0 | en |
| dc.description.tableofcontents | 口試委員會審定書 i
謝辭 ii 摘要 iii ABSTRACT iv 目次 vi 表次 x 圖次 xi 第一章 緒論 1 1.1 顯示器之發展 1 1.1.1 液晶顯示器(liquid-crystal display; LCD) 2 1.1.2 量子點背光液晶顯示器(quantum-dot liquid crystal display; QD-LCD)之簡介 3 1.2 量子點(quantum dots; QDs)簡介 4 1.2.1 量子侷限效應(quantum confinement effect) 5 1.2.2 量子點發光機制 8 1.2.3 核殼型量子點結構 9 1.2.4 熱注射法合成量子點 11 1.3 高分子材料 13 1.3.1 類玻璃高分子 (vitrimer) 14 1.3.2 Vitrimer回收 17 1.4 高分子複合材料 18 1.4.1 量子點@熱固性高分子複合材料 19 1.4.2 Vitrimer複合材料 20 1.5 研究動機與目的 23 第二章 實驗步驟與儀器分析原理 24 2.1 CdSe@CdZnSeS/ZnS量子點合成 24 2.1.1 CdSe@CdZnSeS/ZnS量子點藥品 25 2.1.2 CdSe@CdZnSeS/ZnS量子點合成步驟 26 2.2 QD@PEV複合材料 29 2.2.1 PEV藥品 29 2.2.2 PEV前驅物二元醇單體(diol monomer)置備 29 2.2.3 QD@PEV聚合步驟 31 2.2.4 QD@PEV化學降解(chemical degradation) 33 2.3 儀器分析原理 35 2.3.1 光致發光光譜儀 (photoluminescence; PL) 35 2.3.2 X光繞射分析儀(X-ray diffraction; XRD) 37 2.3.3 紫外-可見光/近紅外光吸收分光光譜儀(UV-visible/NIR absorption spectrophotometers; ABS) 40 2.3.4 球面像差修正掃描穿透式電子顯微鏡 (spherical aberration corrected scanning transmission electron microscope, Cs-STEM) 42 2.3.5 熱示差掃描分析儀 (differential scanning calorimetry; DSC) 46 2.3.6 熱重分析儀 (thermogravimetric analysis; TGA) 47 2.3.7 感應耦合電漿光學發射光譜儀 (inductively coupled plasma optical emission spectroscopy; ICP-OES) 48 2.3.8 同步輻射X光吸收邊緣結構 (X-ray absorption near-edge structure; XANES) 49 2.3.9 同步輻射穿透式小角度X光散射 (transmission small angle X-ray scattering; TSAXS) 52 2.3.10 發光二極體封裝測試 55 第三章 結果與討論 56 3.1 CdSe@CdZnSeS/ZnS量子點性質鑑定 56 3.1.1 調控量子點放光波長 57 3.1.2 核殼結構設計 61 3.1.3 量子點粒徑分析 63 3.2 QD@PEV複合材料分析 65 3.2.1 QD@PEV光學性質 65 3.2.2 QD@PEV結構鑑定 66 3.3 r-QD性質分析 69 3.3.1 r-QD光學性質 70 3.3.2 r-QD結構鑑定 71 3.3.3 r-QD形貌與核殼結構分析 72 3.3.4 r-QD@PEV光學與結構分析 74 3.4 r-PEV鎘含量分析 76 3.5 QD@PEV熱性質分析 78 3.6 QD分散性討論 80 3.7 白光發光二極體元件 86 第四章 總結 88 參考文獻 90 | - |
| dc.language.iso | zh_TW | - |
| dc.subject | 類玻璃高分子 | zh_TW |
| dc.subject | 動態共價鍵 | zh_TW |
| dc.subject | 分散性 | zh_TW |
| dc.subject | 閉環回收 | zh_TW |
| dc.subject | 複合材料 | zh_TW |
| dc.subject | 量子點 | zh_TW |
| dc.subject | closed-loop recycling | en |
| dc.subject | composite | en |
| dc.subject | vitrimer | en |
| dc.subject | quantum dots | en |
| dc.subject | dynamic covalent bonds | en |
| dc.subject | dispersibility | en |
| dc.title | 透過動態共價鍵實現可重組之量子點-類玻璃高分子複合材料 | zh_TW |
| dc.title | Reprocessable Quantum Dot-Vitrimer Composites via Dynamic Covalent Bonding | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 113-2 | - |
| dc.description.degree | 碩士 | - |
| dc.contributor.oralexamcommittee | 方牧懷;李宜桓;李君婷 | zh_TW |
| dc.contributor.oralexamcommittee | Mu-Huai Fang;Yi-Huan Lee;Chun-Ting Li | en |
| dc.subject.keyword | 量子點,類玻璃高分子,複合材料,閉環回收,分散性,動態共價鍵, | zh_TW |
| dc.subject.keyword | quantum dots,vitrimer,composite,closed-loop recycling,dispersibility,dynamic covalent bonds, | en |
| dc.relation.page | 98 | - |
| dc.identifier.doi | 10.6342/NTU202500964 | - |
| dc.rights.note | 同意授權(限校園內公開) | - |
| dc.date.accepted | 2025-07-02 | - |
| dc.contributor.author-college | 理學院 | - |
| dc.contributor.author-dept | 化學系 | - |
| dc.date.embargo-lift | 2030-06-01 | - |
| 顯示於系所單位: | 化學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-113-2.pdf 未授權公開取用 | 11 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
