Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 重點科技研究學院
  3. 奈米工程與科學學位學程
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/97725
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor陳建彰zh_TW
dc.contributor.advisorJian-Zhang Chenen
dc.contributor.author闕振宸zh_TW
dc.contributor.authorChen-Chen Chuehen
dc.date.accessioned2025-07-11T16:22:48Z-
dc.date.available2025-07-12-
dc.date.copyright2025-07-11-
dc.date.issued2025-
dc.date.submitted2025-07-07-
dc.identifier.citation參考文獻

1. Chueh, C.C., et al., Enhanced Oxygen Evolution Reaction Performance of NiMoO(4)/Carbon Paper Electrocatalysts in Anion Exchange Membrane Water Electrolysis by Atmospheric-Pressure Plasma Jet Treatment. Langmuir, 2024. 40(46): p. 24675-24686.
2. Chen, Z., et al., Waste-Derived Catalysts for Water Electrolysis: Circular Economy-Driven Sustainable Green Hydrogen Energy. Nanomicro Lett, 2022. 15(1): p. 4.
3. Anwar, S., et al., Recent development in electrocatalysts for hydrogen production through water electrolysis. International Journal of Hydrogen Energy, 2021. 46(63): p. 32284-32317.
4. Zhang, T., et al., Activating titanium metal with H2 plasma for the hydrogen evolution reaction. ACS Applied Materials & Interfaces, 2021. 13(21): p. 24682-24691.
5. Miller, H.A., et al., Green hydrogen from anion exchange membrane water electrolysis: a review of recent developments in critical materials and operating conditions. Sustainable Energy & Fuels, 2020. 4(5): p. 2114-2133.
6. Vincent, I. and D. Bessarabov, Low cost hydrogen production by anion exchange membrane electrolysis: A review. Renewable and Sustainable Energy Reviews, 2018. 81: p. 1690-1704.
7. Yu, S.-E., et al., Direct Current Pulse Atmospheric Pressure Plasma Jet Treatment on Electrochemically Deposited NiFe/Carbon Paper and Its Potential Application in an Anion-Exchange Membrane Water Electrolyzer. Langmuir, 2024. 40(29): p. 14978-14989.
8. Dey, A., et al., Atmospheric pressure plasma engineered superhydrophilic CuO surfaces with enhanced catalytic activities. Applied Surface Science, 2021. 564.
9. Pu, Z.-H., et al., Improved oxygen evolution reaction performance of NiCo-metal organic framework/carbon paper catalysts in anion exchange membrane water electrolysis via ultrafast atmospheric-pressure plasma jet processing. International Journal of Hydrogen Energy, 2025. 113: p. 429-440.
10. Zhang, B., et al., Atmospheric-pressure plasma jet-induced ultrafast construction of an ultrathin nonstoichiometric nickel oxide layer with mixed Ni3+/Ni2+ ions and rich oxygen defects as an efficient electrocatalyst for oxygen evolution reaction. ACS Applied Energy Materials, 2021. 4(5): p. 5059-5069.
11. Santos, D.M.F., et al., Platinum–rare earth electrodes for hydrogen evolution in alkaline water electrolysis. International Journal of Hydrogen Energy, 2013. 38(8): p. 3137-3145.
12. Wei, Y., et al., Defect-rich CoRu alloy embedded in the porous carbon serving as highly-efficient and bifunctional electrocatalyst for overall water splitting over a wide pH range. Chemical Engineering Journal, 2024. 492.
13. Lee, W.H., et al., High crystallinity design of Ir-based catalysts drives catalytic reversibility for water electrolysis and fuel cells. Nat Commun, 2021. 12(1): p. 4271.
14. Wang, C. and L. Feng, Recent advances and perspectives of Ir-based anode catalysts in PEM water electrolysis. Energy Advances, 2024. 3(1): p. 14-29.
15. Sharan, H., et al., Unlocking the Electrocatalytic Behavior of Cu(2)MnS(2) Nanoflake-Anchored rGO for the Oxygen Evolution Reaction in an Alkaline Medium. Langmuir, 2024. 40(42): p. 22230-22244.
16. Yoon, K.-Y., et al., Improved Oxygen Evolution Reaction Kinetics with Titanium Incorporated Nickel Ferrite for Efficient Anion Exchange Membrane Electrolysis. ACS Catalysis, 2024. 14(7): p. 4453-4462.
17. Cheng, M., et al., Interconnected hierarchical NiCo(2)O(4) microspheres as high-performance electrode materials for supercapacitors. Dalton Trans, 2017. 46(28): p. 9201-9209.
18. Jiang, H., et al., Humid atmospheric pressure plasma jets exposed micro-defects on CoMoO(4) nanosheets with enhanced OER performance. Chem Commun (Camb), 2019. 55(64): p. 9432-9435.
19. Bhat, M.A. and K. Majid, Metal-Organic Framework-Derived FeCo(2)S(4)/Co(3)O(4) Heterostructure with Enhanced Electrocatalytic Performance for Oxygen Evolution and Hydrogen Evolution Reactions. Langmuir, 2023. 39(23): p. 8224-8233.
20. Liao, H., et al., Dynamic dissolution and re-adsorption of molybdate ion in iron incorporated nickel-molybdenum oxyhydroxide for promoting oxygen evolution reaction. Applied Catalysis B: Environmental, 2022. 307.
21. Yang, S., et al., In Situ Fabrication of Mn-Doped NiMoO(4) Rod-like Arrays as High Performance OER Electrocatalyst. Nanomaterials (Basel), 2023. 13(5).
22. Kim, M., et al., Gas-Liquid Interfacial Plasma engineering under dilute nitric acid to improve hydrophilicity and OER performance of nickel foam. Progress in Natural Science: Materials International, 2022. 32(5): p. 608-616.
23. Rauscher, T., et al., Spark-plasma-sintered porous electrodes for efficient oxygen evolution in alkaline water electrolysis. Electrochimica Acta, 2019. 317: p. 128-138.
24. Alers, G.B., et al., Nitrogen plasma annealing for low temperature Ta2O5 films. Applied Physics Letters, 1998. 72(11): p. 1308-1310.
25. Chen, J.-Z., et al., Ultrafast synthesis of carbon-nanotube counter electrodes for dye-sensitized solar cells using an atmospheric-pressure plasma jet. Carbon, 2016. 98: p. 34-40.
26. Shiva Kumar, S. and H. Lim, An overview of water electrolysis technologies for green hydrogen production. Energy Reports, 2022. 8: p. 13793-13813.
27. Hassan, N.S., et al., Recent review and evaluation of green hydrogen production via water electrolysis for a sustainable and clean energy society. International Journal of Hydrogen Energy, 2024. 52: p. 420-441.
28. You, B. and Y. Sun, Innovative Strategies for Electrocatalytic Water Splitting. Acc Chem Res, 2018. 51(7): p. 1571-1580.
29. Kojima, H., et al., Influence of renewable energy power fluctuations on water electrolysis for green hydrogen production. International Journal of Hydrogen Energy, 2023. 48(12): p. 4572-4593.
30. Wei, J., et al., Heterostructured Electrocatalysts for Hydrogen Evolution Reaction Under Alkaline Conditions. Nanomicro Lett, 2018. 10(4): p. 75.
31. Verma, J. and S. Goel, Cost-effective electrocatalysts for Hydrogen Evolution Reactions (HER): Challenges and Prospects. International Journal of Hydrogen Energy, 2022. 47(92): p. 38964-38982.
32. Lasia, A., Mechanism and kinetics of the hydrogen evolution reaction. International Journal of Hydrogen Energy, 2019. 44(36): p. 19484-19518.
33. Vazhayil, A., et al., A comprehensive review on the recent developments in transition metal-based electrocatalysts for oxygen evolution reaction. Applied Surface Science Advances, 2021. 6.
34. Yan, Z., et al., Electrodeposition of (hydro)oxides for an oxygen evolution electrode. Chem Sci, 2020. 11(39): p. 10614-10625.
35. Fabbri, E. and T.J. Schmidt, Oxygen evolution reaction—the enigma in water electrolysis. 2018, ACS Publications. p. 9765-9774.
36. Suen, N.T., et al., Electrocatalysis for the oxygen evolution reaction: recent development and future perspectives. Chem Soc Rev, 2017. 46(2): p. 337-365.
37. Yu, Z.Y., et al., Clean and Affordable Hydrogen Fuel from Alkaline Water Splitting: Past, Recent Progress, and Future Prospects. Adv Mater, 2021. 33(31): p. e2007100.
38. Wang, S., A. Lu, and C.J. Zhong, Hydrogen production from water electrolysis: role of catalysts. Nano Converg, 2021. 8(1): p. 4.
39. Shinagawa, T., A.T. Garcia-Esparza, and K. Takanabe, Insight on Tafel slopes from a microkinetic analysis of aqueous electrocatalysis for energy conversion. Sci Rep, 2015. 5: p. 13801.
40. Singha Roy, S., et al., From Theory to Practice: A Critical and Comparative Assessment of Tafel Slope Analysis Techniques in Electrocatalytic Water Splitting. ACS Materials Letters, 2024. 6(7): p. 3112-3123.
41. Connor, P., et al., The Determination of Electrochemical Active Surface Area and Specific Capacity Revisited for the System MnOx as an Oxygen Evolution Catalyst. Zeitschrift für Physikalische Chemie, 2020. 234(5): p. 979-994.
42. Anantharaj, S., H. Sugime, and S. Noda, Why shouldn’t double-layer capacitance (Cdl) be always trusted to justify Faradaic electrocatalytic activity differences? Journal of Electroanalytical Chemistry, 2021. 903.
43. Jung, E.Y., et al., A Review of Plasma-Synthesized and Plasma Surface-Modified Piezoelectric Polymer Films for Nanogenerators and Sensors. Polymers (Basel), 2024. 16(11).
44. Bredar, A.R.C., et al., Electrochemical Impedance Spectroscopy of Metal Oxide Electrodes for Energy Applications. ACS Applied Energy Materials, 2020. 3(1): p. 66-98.
45. Anantharaj, S. and S. Noda, Appropriate use of electrochemical impedance spectroscopy in water splitting electrocatalysis. ChemElectroChem, 2020. 7(10): p. 2297-2308.
46. Vij, V., et al., Nickel-Based Electrocatalysts for Energy-Related Applications: Oxygen Reduction, Oxygen Evolution, and Hydrogen Evolution Reactions. ACS Catalysis, 2017. 7(10): p. 7196-7225.
47. Chen, Y., et al., Recent progress on nickel‐based oxide/(oxy) hydroxide electrocatalysts for the oxygen evolution reaction. Chemistry–A European Journal, 2019. 25(3): p. 703-713.
48. Hua, W., et al., A review and perspective on molybdenum-based electrocatalysts for hydrogen evolution reaction. Rare Metals, 2020. 39(4): p. 335-351.
49. Qian, X., et al., Recent progress and perspective on molybdenum-based electrocatalysts for water electrolysis. International Journal of Hydrogen Energy, 2023. 48(67): p. 26084-26106.
50. Zhang, Y., et al., Regulation Strategy of Transition Metal Oxide-Based Electrocatalysts for Enhanced Oxygen Evolution Reaction. Accounts of Materials Research, 2022. 3(10): p. 1088-1100.
51. Guo, Y., et al., Nanoarchitectonics for transition‐metal‐sulfide‐based electrocatalysts for water splitting. Advanced Materials, 2019. 31(17): p. 1807134.
52. Lin, B.-L., et al., The Research Progress of Ruthenium-Based Catalysts for the Alkaline Hydrogen Evolution Reaction in Water Electrolysis. Catalysts, 2024. 14(10).
53. Weltmann, K.D., et al., The future for plasma science and technology. Plasma Processes and Polymers, 2019. 16(1): p. 1800118.
54. Hojnik, N., et al., Mycotoxin Decontamination of Food: Cold Atmospheric Pressure Plasma versus "Classic" Decontamination. Toxins (Basel), 2017. 9(5).
55. Chao, T., Introduction to semiconductor manufacturing technology. 2000: Prentice Hall New Jersey.
56. Creel, J.R., Characteristic measurements within a GEC rf reference cell. 2010: Baylor University.
57. Cho, S.I., et al., Plasma ion bombardment induced heat flux on the wafer surface in inductively coupled plasma reactive ion ETCH. Applied Sciences, 2023. 13(17): p. 9533.
58. Sabat, K.C., Physics and chemistry of solid state direct reduction of iron ore by hydrogen plasma. Physics and Chemistry of Solid State, 2021. 22(2): p. 292-300.
59. Sohi, P.A. and M. Kahrizi, Advances in gas ionization sensors based on nanostructured materials: a review. Journal of Materials Science: Materials in Electronics, 2019. 30(21): p. 19087-19099.
60. Staack, D., et al., Characterization of a dc atmospheric pressure normal glow discharge. Plasma Sources Science and Technology, 2005. 14(4): p. 700-711.
61. Gudmundsson, J.T. and A. Hecimovic, Foundations of DC plasma sources. Plasma Sources Science and Technology, 2017. 26(12).
62. Rawat, R.S., Plasma Science and Technology for Emerging Economies: An AAAPT Experience. 2017: Springer.
63. Xu, S., et al., Low-frequency, high-density, inductively coupled plasma sources: Operation and applications. Physics of Plasmas, 2001. 8(5): p. 2549-2557.
64. Plakhotnyuk, M.M., et al., Low surface damage dry etched black silicon. Journal of Applied Physics, 2017. 122(14).
65. Tseng, W.S., C.Y. Tseng, and C.T. Kuo, Effects of gas composition on highly efficient surface modification of multi-walled carbon nanotubes by cation treatment. Nanoscale Res Lett, 2008. 4(3): p. 234-9.
66. Zeng, K. and D. Zhang, Recent progress in alkaline water electrolysis for hydrogen production and applications. Progress in Energy and Combustion Science, 2010. 36(3): p. 307-326.
67. Liu, R.T., et al., Recent advances in proton exchange membrane water electrolysis. Chem Soc Rev, 2023. 52(16): p. 5652-5683.
68. Shao, Y., et al., Proton exchange membrane fuel cell from low temperature to high temperature: Material challenges. Journal of Power Sources, 2007. 167(2): p. 235-242.
69. Hua, D., et al., Development of anion exchange membrane water electrolysis and the associated challenges: a review. ChemElectroChem, 2023. 10(1): p. e202200999.
70. Ghorui, U.K., et al., Anion-Exchange Membrane Water Electrolyzers for Green Hydrogen Generation: Advancement and Challenges for Industrial Application. ACS Applied Energy Materials, 2024. 7(18): p. 7649-7676.
71. Tseng, C.-Y., I.C. Cheng, and J.-Z. Chen, Low-pressure-plasma-processed NiFe-MOFs/nickel foam as an efficient electrocatalyst for oxygen evolution reaction. International Journal of Hydrogen Energy, 2022. 47(85): p. 35990-35998.
72. Chueh, C.-C., et al., Low-pressure-plasma-treated NiMoO4/Carbon paper for enhanced hydrogen evolution reaction in alkaline water electrolysis. Ceramics International, 2024.
73. Penkov, O.V., et al., A review of recent applications of atmospheric pressure plasma jets for materials processing. Journal of Coatings Technology and Research, 2015. 12(2): p. 225-235.
74. Chien, H.-H., et al., Nitrogen DC-pulse atmospheric-pressure-plasma jet (APPJ)-processed reduced graphene oxide (rGO)‑carbon black (CB) nanocomposite electrodes for supercapacitor applications. Diamond and Related Materials, 2018. 88: p. 23-31.
75. Torrinha, Á. and S. Morais, Electrochemical (bio)sensors based on carbon cloth and carbon paper: An overview. TrAC Trends in Analytical Chemistry, 2021. 142.
76. Huhtamaki, T., et al., Surface-wetting characterization using contact-angle measurements. Nat Protoc, 2018. 13(7): p. 1521-1538.
77. Williams, H., SEM for conductive and non-conductive specimens. Physics Education, 2021. 56(5).
78. Whiteside, P., J. Chininis, and H. Hunt, Techniques and Challenges for Characterizing Metal Thin Films with Applications in Photonics. Coatings, 2016. 6(3).
79. Harrington, G.F. and J. Santiso, Back-to-Basics tutorial: X-ray diffraction of thin films. Journal of Electroceramics, 2021. 47(4): p. 141-163.
80. Bagus, P.S. and H.-J. Freund, X-ray photoelectron spectroscopy as a useful tool to study surfaces and model systems for heterogeneous catalysts: A review and perspective. Surface Science, 2024. 745.
81. Guntoro, P., et al., X-ray Microcomputed Tomography (µCT) for Mineral Characterization: A Review of Data Analysis Methods. Minerals, 2019. 9(3).
82. Yan, Y., et al., Study on the anodic behavior of AISI E52100 steel in two fluorine-containing ionic liquids. Research on Chemical Intermediates, 2021. 47(5): p. 2107-2123.
83. Tseng, C.-H., et al., Dielectric-Barrier-Discharge Jet Treated Flexible Supercapacitors with Carbon Cloth Current Collectors of Long-Lasting Hydrophilicity. Journal of The Electrochemical Society, 2020. 167(11).
84. Gotoh, K. and A. Yasukawa, Atmospheric pressure plasma modification of polyester fabric for improvement of textile-specific properties. Textile Research Journal, 2010. 81(4): p. 368-378.
85. Yu, S.-E., et al., Characteristics of low-pressure-plasma-processed NiRu-MOFs/nickel foam for Hydrogen evolution reaction. Physica Scripta, 2024. 99(4).
86. Li, Z., et al., NiMOF-Derived MoSe(2)/NiSe Hollow Nanoflower Structures as Electrocatalysts for Hydrogen Evolution Reaction in Alkaline Medium. Langmuir, 2024. 40(41): p. 21514-21523.
87. Su, Y.-L., et al., Low-Pressure Plasma-Processed NiCo Metal–Organic Framework for Oxygen Evolution Reaction and Its Application in Alkaline Water Electrolysis Module. Journal of Composites Science, 2024. 8(1).
88. Tao, L., et al., Plasma-engineered MoS2 thin-film as an efficient electrocatalyst for hydrogen evolution reaction. Chem Commun (Camb), 2015. 51(35): p. 7470-3.
89. Durr, R.N., et al., From NiMoO(4) to gamma-NiOOH: Detecting the Active Catalyst Phase by Time Resolved in Situ and Operando Raman Spectroscopy. ACS Nano, 2021. 15(8): p. 13504-13515.
90. Thiagarajan, K., et al., Nanofiber NiMoO(4)/g-C(3)N(4) Composite Electrode Materials for Redox Supercapacitor Applications. Nanomaterials (Basel), 2020. 10(2).
91. Yang, M., et al., Synergistic effects boosting hydrogen evolution performance of transition metal oxides at ultralow Ru loading levels. RSC Adv, 2023. 13(19): p. 13263-13268.
92. Zhuang, S., et al., The P/NiFe doped NiMoO4 micro-pillars arrays for highly active and durable hydrogen/oxygen evolution reaction towards overall water splitting. International Journal of Hydrogen Energy, 2019. 44(45): p. 24546-24558.
93. Li, Y., et al., Anion-modulated nickel-based nanoheterostructures as high performance electrocatalysts for hydrogen evolution reaction. Journal of Materials Chemistry A, 2020. 8(24): p. 12013-12027.
94. Yu, C., et al., NiCo-layered double hydroxides vertically assembled on carbon fiber papers as binder-free high-active electrocatalysts for water oxidation. Carbon, 2016. 110: p. 1-7.
95. Zhao, X., et al., Nanostructured NiMoO4 as active electrocatalyst for oxygen evolution. Chinese Chemical Letters, 2019. 30(2): p. 319-323.
96. Zhang, L., et al., Electrodeposition of amorphous molybdenum sulfide thin film for electrochemical hydrogen evolution reaction. BMC Chem, 2019. 13(1): p. 88.
97. Liu, T., et al., Rapid microwave-assisted synthesis of mesoporous NiMoO4 nanorod/reduced graphene oxide composites for high-performance supercapacitors. Electrochimica Acta, 2015. 180: p. 998-1006.
98. Guo, D., et al., High performance NiMoO4 nanowires supported on carbon cloth as advanced electrodes for symmetric supercapacitors. Nano Energy, 2014. 8: p. 174-182.
99. Jain, S., et al., Significance of interface barrier at electrode of hematite hydroelectric cell for generating ecopower by water splitting. International Journal of Energy Research, 2019. 43(9): p. 4743-4755.
100. Karmakar, A., et al., Oxygen vacancy enriched NiMoO4 nanorods via microwave heating: a promising highly stable electrocatalyst for total water splitting. Journal of Materials Chemistry A, 2021. 9(19): p. 11691-11704.
101. Ghosh, D. and D. Pradhan, Effect of Cooperative Redox Property and Oxygen Vacancies on Bifunctional OER and HER Activities of Solvothermally Synthesized CeO(2)/CuO Composites. Langmuir, 2023. 39(9): p. 3358-3370.
102. Wang, D., et al., In Situ Preparation of Mo2C Nanoparticles Embedded in Ketjenblack Carbon as Highly Efficient Electrocatalysts for Hydrogen Evolution. ACS Sustainable Chemistry & Engineering, 2017. 6(1): p. 983-990.
103. Senthil Raja, D., et al., NiMo-MOF-Derived Carbon-Armored Ni(4)Mo Alloy of an Interwoven Nanosheet Structure as an Outstanding pH-Universal Catalyst for Hydrogen Evolution Reaction at High Current Densities. ACS Appl Mater Interfaces, 2023. 15(16): p. 20130-20140.
104. Gopalakrishnan, M., et al., Recent advances in oxygen electrocatalysts based on tunable structural polymers. Materials Today Chemistry, 2022. 23.
105. Sivanantham, A. and S. Shanmugam, Nickel selenide supported on nickel foam as an efficient and durable non-precious electrocatalyst for the alkaline water electrolysis. Applied Catalysis B: Environmental, 2017. 203: p. 485-493.
106. Kim, S., et al., Bimetallic-metal organic framework-derived Ni3S2/MoS2 hollow spheres as bifunctional electrocatalyst for highly efficient and stable overall water splitting. International Journal of Hydrogen Energy, 2022. 47(13): p. 8165-8176.
107. Masa, J., et al., Ultrathin High Surface Area Nickel Boride (NixB) Nanosheets as Highly Efficient Electrocatalyst for Oxygen Evolution. Advanced Energy Materials, 2017. 7(17).
108. Zhang, K. and R. Zou, Advanced Transition Metal-Based OER Electrocatalysts: Current Status, Opportunities, and Challenges. Small, 2021. 17(37): p. e2100129.
109. Alobaid, A., C. Wang, and R.A. Adomaitis, Mechanism and Kinetics of HER and OER on NiFe LDH Films in an Alkaline Electrolyte. Journal of The Electrochemical Society, 2018. 165(15): p. J3395-J3404.
110. Yin, X., et al., A novel structure of Ni-(MoS 2 /GO) composite coatings deposited on Ni foam under supergravity field as efficient hydrogen evolution reaction catalysts in alkaline solution. Electrochimica Acta, 2017. 249: p. 52-63.
111. Zheng, X., et al., Phosphorus and cobalt co-doped reduced graphene oxide bifunctional electrocatalyst for oxygen reduction and evolution reactions. RSC Advances, 2016. 6(69): p. 64155-64164.
112. Chen, H., et al., NiMo/NiCo2O4 as synergy catalyst supported on nickel foam for efficient overall water splitting. Molecular Catalysis, 2022. 518.
113. Rajput, A., M.K. Adak, and B. Chakraborty, Intrinsic Lability of NiMoO(4) to Excel the Oxygen Evolution Reaction. Inorg Chem, 2022. 61(29): p. 11189-11206.
114. Wang, H., et al., Application progress of NiMoO4 electrocatalyst in basic oxygen evolution reaction. Catalysis Science & Technology, 2024. 14(3): p. 533-554.
115. Xiao, Z., et al., In-situ surface structural reconstruction of NiMoO4 for efficient overall water splitting. Applied Surface Science, 2022. 602.
116. Wang, Y.C., et al., NiFe(2)O(4) Material on Carbon Paper as an Electrocatalyst for Alkaline Water Electrolysis Module. Micromachines (Basel), 2023. 15(1).
117. Dawood, F., M. Anda, and G.M. Shafiullah, Hydrogen production for energy: An overview. International Journal of Hydrogen Energy, 2020. 45(7): p. 3847-3869.
118. Wang, J., et al., Morphology engineering of nickel molybdate hydrate nanoarray for electrocatalytic overall water splitting: from nanorod to nanosheet. RSC Adv, 2018. 8(61): p. 35131-35138.
119. Zhang, Z., X. Ma, and J. Tang, Porous NiMoO4−x/MoO2 hybrids as highly effective electrocatalysts for the water splitting reaction. Journal of Materials Chemistry A, 2018. 6(26): p. 12361-12369.
120. Huo, L., et al., Applications of Nickel‐Based Electrocatalysts for Hydrogen Evolution Reaction. Advanced Energy and Sustainability Research, 2022. 3(4).
121. Moroto, K., et al., Fabrication of NiSx/C with a tuned S/Ni molar ratio using Ni2+ ions and Amberlyst for hydrogen evolution reaction (HER). International Journal of Hydrogen Energy, 2020. 45(46): p. 24567-24572.
122. Wang, Z., et al., A High Faraday Efficiency NiMoO(4) Nanosheet Array Catalyst by Adjusting the Hydrophilicity for Overall Water Splitting. Chemistry, 2020. 26(52): p. 12067-12074.
123. Zhang, L., et al., Identification and application of the most suitable entropy model for precipitation complexity measurement. Atmospheric Research, 2019. 221: p. 88-97.
124. Liu, X., et al., Synthesis of Synergistic Nitrogen-Doped NiMoO4/Ni3N Heterostructure for Implementation of an Efficient Alkaline Electrocatalytic Hydrogen Evolution Reaction. ACS Applied Energy Materials, 2020. 3(3): p. 2440-2449.
125. Wang, C., et al., Plasma-induced moieties impart super-efficient activity to hydrogen evolution electrocatalysts. Nano Energy, 2021. 85.
126. Zhao, C., et al., Ultrafine MoO2‐Carbon Microstructures Enable Ultralong‐Life Power‐Type Sodium Ion Storage by Enhanced Pseudocapacitance. Advanced Energy Materials, 2017. 7(15).
127. Guo, J., et al., Controllable synthesis of molybdenum-based electrocatalysts for a hydrogen evolution reaction. Journal of Materials Chemistry A, 2017. 5(10): p. 4879-4885.
128. Zhang, T., et al., Engineering oxygen vacancy on NiO nanorod arrays for alkaline hydrogen evolution. Nano Energy, 2018. 43: p. 103-109.
129. Wang, G., et al., Fractional Snow Cover Mapping from FY-2 VISSR Imagery of China. Remote Sensing, 2017. 9(10).
130. Fang, M., et al., Hierarchical NiMo-based 3D electrocatalysts for highly-efficient hydrogen evolution in alkaline conditions. Nano Energy, 2016. 27: p. 247-254.
131. Liu, B., et al., Unconventional Nickel Nitride Enriched with Nitrogen Vacancies as a High-Efficiency Electrocatalyst for Hydrogen Evolution. Adv Sci (Weinh), 2018. 5(8): p. 1800406.
132. Ling, T., et al., Well-Dispersed Nickel- and Zinc-Tailored Electronic Structure of a Transition Metal Oxide for Highly Active Alkaline Hydrogen Evolution Reaction. Adv Mater, 2019. 31(16): p. e1807771.
133. Wang, Z., et al., Manipulation on active electronic states of metastable phase beta-NiMoO(4) for large current density hydrogen evolution. Nat Commun, 2021. 12(1): p. 5960.
134. Yan, K.-L., et al., Facile synthesis of binary NiCoS nanorods supported on nickel foam as efficient electrocatalysts for oxygen evolution reaction. International Journal of Hydrogen Energy, 2017. 42(27): p. 17129-17135.
135. Li, G.L., et al., Synergistic Effect of N-NiMoO(4) /Ni Heterogeneous Interface with Oxygen Vacancies in N-NiMoO(4) /Ni/CNTs for Superior Overall Water Splitting. Small, 2023. 19(28): p. e2207196.
136. Yu, S.H., et al., In-situ derived highly active NiS2 and MoS2 nanosheets on NiMoO4 microcuboids via controlled surface sulfidation for high-current-density hydrogen evolution reaction. Electrochimica Acta, 2021. 389: p. 138733.
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/97725-
dc.description.abstract隨著再生能源的快速發展,氫氣作為潔淨能源在儲能與轉換應用上扮演關鍵角色。其中,水電解產氫技術因其成本較低且操作穩定,被視為實現綠色氫能的重要技術。然而,析氧反應(Oxygen Evolution Reaction, OER)在電解水中具有較高的動力學障礙,限制了整體能量轉換效率。為解決此問題,本研究提出一種以鎳鉬氧化物(NiMoO4)為基礎的非貴金屬電極材料,並結合常壓噴射電漿(Atmospheric-Pressure Plasma Jet, APPJ)進行表面改質,以提升其OER活性與電化學穩定性。
鎳鉬氧化物首先以水熱法合成並原位生長於碳紙(Carbon Paper, CP)基材上,形成良好的結構。接著透過APPJ快速高溫處理60秒,成功引入表面氧缺陷與活性位點,改善材料的導電性與電化學反應活性。經電化學測試,處理後之NiMoO4/CP/APPJ-60 s電極在100 mA/cm2電流密度下,其過電位由處理前的大於879 mV降至790 mV,顯示出良好的OER性能。同時,其電荷轉移電阻由2.8 Ω顯著下降至1.2 Ω,證明APPJ處理可有效促進電子傳輸並降低反應阻力。
進一步將此電極應用於陰離子交換膜水電解(Anion Exchange Membrane Water Electrolysis, AEMWE)系統,於70°C操作下達到95.1%之能量效率,且比能耗由4.02 kWh/m3降至3.83 kWh/m3,展現出優異的系統性能與節能潛力。整體而言,本研究所提出之NiMoO4/CP/APPJ電極不僅展現OER活性與穩定性,也具備可擴展性與環境友善特性,有望作為貴金屬催化劑之替代材料,為未來高效、低成本的水電解系統提供新的想法
zh_TW
dc.description.abstractHydrogen is regarded as a clean and sustainable energy carrier, and water electrolysis is one of the most promising technologies for green hydrogen production. However, the oxygen evolution reaction (OER) involved in the process is hindered by sluggish kinetics, limiting the overall system efficiency.
To address this challenge, a non-precious metal electrode based on nickel molybdate (NiMoO4) was synthesized on carbon paper (CP) via a hydrothermal method. An atmospheric-pressure plasma jet (APPJ) treatment was applied for 60 s to introduce surface oxygen vacancies and active sites, enhancing the material’s conductivity and catalytic activity. The APPJ-treated NiMoO4/CP electrode exhibited a reduced overpotential of 790 mV at 100 mA/cm2, along with a significant drop in charge transfer resistance from 2.8 Ω to 1.2 Ω.
When integrated into an anion exchange membrane water electrolysis (AEMWE) system operating at 70°C, the electrode achieved 95.1% energy efficiency, and the specific energy consumption decreased from 4.02 to 3.83 kWh/m3. These findings demonstrate that APPJ modification effectively improves OER performance and system energy efficiency. The developed NiMoO4-based electrode offers a scalable, low-cost, and environmentally friendly alternative to precious metal catalysts, holding strong potential for practical applications in advanced water electrolysis systems
en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2025-07-11T16:22:48Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2025-07-11T16:22:48Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontents目次
致謝 i
摘要 ii
Abstract iii
目次 iv
圖次 viii
表次 xiii
第一章 緒論 1
1.1 前言 1
1.2 研究動機 2
1.3 論文大綱 3
第二章 文獻回顧與理論整理 4
2.1 氫能及電解水催化反應 4
2.1.1 氫能發展 4
2.1.2 析氫反應機制( Hydrogen evolution reaction, HER ) 6
2.1.3 析氧反應機制(Oxygen evolution reaction, OER) 8
2.1.4 線性掃描伏安法及過電位(Linear Sweep Voltammetry, LSV) 11
2.1.5 塔弗斜率(Tafel slope) 14
2.1.6 循環伏安法及電雙層電容(Cyclic Voltammetry & Double Layer Capacitance, CV & Cdl) 16
2.1.7 電化學阻抗分析(Electrochemical Impedance Spectroscopy, EIS) 18
2.2 電催化電極材料介紹 20
2.2.1 鎳基電極材料 20
2.2.2 鉬基電極材料 21
2.2.3 過度金屬氧化物電極材料 22
2.2.4 釕基電極材料 23
2.3 電漿原理及種類 24
2.3.1 電漿基礎介紹 24
2.3.2 電漿碰撞及產生機制 25
2.3.3 電漿原理 29
2.3.4 電漿放電種類介紹 33
2.4 電解水系統介紹 37
2.4.1 鹼性水電解 37
2.4.2 質子交換膜水電解 38
2.4.3 陰離子交換膜水電解 39
第三章 實驗步驟與各項設備 40
3.1 實驗材料與實驗設備 40
3.1.1 實驗藥品與材料 40
3.1.2 實驗設備 41
3.2 製程設備 43
3.2.1 低壓電漿清洗機( Low pressure plasma cleaner ) 43
3.2.2 常壓噴射電漿(Atmospheric Pressure Plasma Jet, APPJ) 45
3.3 製程步驟 47
3.3.1 基板介紹 47
3.3.2 碳紙的預清理 47
3.3.3 水熱法原位生長鎳鉬氧化物在碳紙基材上 48
3.3.4 利用常壓噴射電漿表面處理鎳鉬氧化物/碳紙 49
3.3.5 水熱法原位生長釕金屬在碳紙基材上 50
3.4 分析及量測設備 51
3.4.1 接觸角量測儀(Contact Angle Meter) 51
3.4.2 場發射式掃描電子顯微鏡(FE-SEM) 53
3.4.3 X射線繞射分析儀(X-ray Diffraction, XRD) 56
3.4.4 X射線光電子能譜儀(X-ray Photoelectron Spectroscopy, XPS) 59
3.4.5 電化學工作站量測設置 61
3.4.6 陰離子交換膜水電解系統(AEMWE System) 63
第四章 結果與討論 66
4.1 常壓電漿處理鎳鉬氧化物/碳紙之水接觸角分析結果 66
4.2 常壓電漿處理鎳鉬氧化物/碳紙之掃描式電子顯微鏡表面型態分析 68
4.3 常壓電漿處理鎳鉬氧化物/碳紙之X射線繞射晶相分析圖譜 71
4.4 常壓電漿處理鎳鉬氧化物/碳紙之X射線光譜元素組成分析 73
4.5 常壓電漿處理鎳鉬氧化物/碳紙之電化學分析結果 82
4.5.1 線性掃描伏安法與塔弗斜率分析 82
4.5.2 電化學阻抗圖譜分析 85
4.5.3 循環伏安法與電雙層電容分析 87
4.5.4 計時電位法電化學耐久性量測 90
4.6 常壓電漿處理鎳鉬氧化物/碳紙之陰離子交換膜水電解系統分析 92
第五章 結論 96
第六章 附錄 97
6.1 摘要 97
6.2 實驗流程 97
6.3 結果與討論 99
6.3.1 低壓電漿處理鎳鉬氧化物/碳紙之水接觸角分析結果 99
6.3.2 低壓電漿處理鎳鉬氧化物/碳紙之掃描式電子顯微鏡表面型態分析 100
6.3.3 低壓電漿處理鎳鉬氧化物/碳紙之X射線繞射晶相分析圖譜 102
6.3.4 低壓電漿處理鎳鉬氧化物/碳紙之X射線光譜元素組成分析 103
6.3.5 低壓電漿處理鎳鉬氧化物/碳紙之電化學分析結果 107
6.4 結論 111
參考文獻 112
個人期刊發表 123
-
dc.language.isozh_TW-
dc.subject過度金屬氧化物zh_TW
dc.subject析氧反應zh_TW
dc.subject陰離子交換膜水電解系統zh_TW
dc.subject常壓噴射電漿zh_TW
dc.subjectTransition Metal Oxideen
dc.subjectAEMWEen
dc.subjectAPPJen
dc.subjectOxygen Evolution Reactionen
dc.title常壓噴射電漿表面改質提升陰離子交換膜水電解系統中鎳鉬氧化物/碳紙複合電催化劑之析氧反應活性zh_TW
dc.titleEnhancing the Oxygen Evolution Reaction Activity of NiMoO4/Carbon Paper Composite Electrocatalysts via Atmospheric Pressure Plasma Surface Modification for Application in Anion Exchange Membrane Water Electrolysisen
dc.typeThesis-
dc.date.schoolyear113-2-
dc.description.degree碩士-
dc.contributor.oralexamcommittee陳奕君;陳志鴻;李昭仁zh_TW
dc.contributor.oralexamcommitteeI-Chun Cheng;Chih-Hung Chen;Chao-Jen Lien
dc.subject.keyword陰離子交換膜水電解系統,常壓噴射電漿,析氧反應,過度金屬氧化物,zh_TW
dc.subject.keywordAEMWE,APPJ,Oxygen Evolution Reaction,Transition Metal Oxide,en
dc.relation.page123-
dc.identifier.doi10.6342/NTU202501464-
dc.rights.note同意授權(全球公開)-
dc.date.accepted2025-07-09-
dc.contributor.author-college重點科技研究學院-
dc.contributor.author-dept奈米工程與科學學位學程-
dc.date.embargo-lift2025-07-12-
顯示於系所單位:奈米工程與科學學位學程

文件中的檔案:
檔案 大小格式 
ntu-113-2.pdf21.75 MBAdobe PDF檢視/開啟
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved