Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 管理學院
  3. 會計學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/97723
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor蔡彥卿zh_TW
dc.contributor.advisorYann-Ching Tsaien
dc.contributor.author高丞瀅zh_TW
dc.contributor.authorCheng-Ying Kaoen
dc.date.accessioned2025-07-11T16:22:15Z-
dc.date.available2025-07-12-
dc.date.copyright2025-07-11-
dc.date.issued2025-
dc.date.submitted2025-07-01-
dc.identifier.citationAmel-Zadeh, A., Calliess, J.-P., Kaiser, D., & Roberts, S. (2020). Machine learning- based financial statement analysis. SSRN. https://doi.org/10.2139/ssrn.3520684
Arkan, T. (2016). The importance of financial ratios in predicting stock price trends: A case study in emerging markets. Finanse, Rynki Finansowe, Ubezpieczenia, (79), 13–26.
Ball, R., & Brown, P. (1968). An empirical evaluation of accounting income numbers. Journal of Accounting Research, 6(2), 159–178.
Bird, R., Gerlach, R., & Hall, A. D. (2001). The prediction of earnings movements using accounting data: An update and extension of Ou and Penman. Journal of Asset Management, 2, 180–195.
Breiman, L. (2001). Random forests. Machine Learning, 45, 5–32.
Cao, K., & You, H. (2024). Fundamental analysis via machine learning. Financial Analysts Journal, 80(2), 74–98.
Chen, T., & Guestrin, C. (2016). XGBoost: A scalable tree boosting system. In Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (pp. 785–794). https://doi.org/10.1145/2939672.2939785
Coppe Pimentel, C. W. L., de Santana Júnior, J. L., & Salotti, B. M. (2024). IFRS 9 adoption and its impacts on banks’ credit impairment: An international perspective. Enfoque: Reflexão Contábil, 43(3), 1–19. DOI:10.4025/enfoque.v43i3.64183.
Chen, X., Cho, Y. H., Dou, Y., & Lev, B. (2022). Predicting future earnings changes using machine learning and detailed financial data. Journal of Accounting Research, 60(2), 467–515.
de Wet, J. H. v. H. (2013). Earnings per share as a measure of financial performance: Does it obscure more than it reveals? In J. H. v. H. de Wet (Ed.), Essays in Accounting (pp. 265–275).
European Banking Authority (EBA). (2021). Monitoring Report on the Implementation of IFRS 9 by EU Institutions.
Foster, G. (1977). Quarterly accounting data: Time-series properties and predictive- ability results. The Accounting Review, 52(1), 1–21.
Friedman, J. H. (2002). Stochastic gradient boosting. Computational Statistics & Data Analysis, 38(4), 367–378.
Hunt, J. O., Myers, J. N., & Myers, L. A. (2022). Improving earnings predictions and abnormal returns with machine learning. Accounting Horizons, 36(1), 131–149.
Mabudio, L., Nkosi, T., & Mbeki, J. (2024). IFRS 16 and lease financing: Insights from South African banks. African Journal of Finance, 12(1), 78-95.
Morawska, K. (2021). IFRS 15 implementation and earnings management: Evidence from Polish listed companies. Accounting and Business Research, 51(4), 401-420.
Ohlson, J. A. (1995). Earnings, book values, and dividends in equity valuation. Contemporary Accounting Research, 11(2), 661–687.
Ou, J. A., & Penman, S. H. (1989). Financial statement analysis and the prediction of stock returns. Journal of Accounting and Economics, 11(4), 295–329.
Rumelhart, D. E., Hinton, G. E., & Williams, R. J. (1986). Learning representations by back-propagating errors. Nature, 323(6088), 533–536.
Singh, G., & Thanaya, I. (2023). Predicting earnings per share using feature- engineered extreme gradient boosting models and constructing alpha trading strategies. International Journal of Information Technology, 15(8), 3999–4012.
Taani, K. (2011). The effect of financial ratios, firm size and cash flows from operating activities on earnings per share: An applied study on Jordanian industrial sector. International Journal of Social Sciences and Humanity Studies, 3(1), 197–205.
Tutino, M., Rossi, L., & Bianchi, F. (2019). The impact of IFRS 15 adoption on earnings management: Evidence from Italian firms. Journal of Accounting and Finance, 35(2), 123-145.
張達元(2023)。《每股盈餘預測及套利投資策略探討—機器學習模型應用》(碩士論文,國立台灣大學)。
張祐誠(2024)。《不同財務資訊對每股盈餘預測和套利報酬之比較——機器學習模型應用》(碩士論文,國立台灣大學)。
周騰煜(2024)。《IFRS 16與財務報表可比性之研究》(碩士論文,國立台灣大學)。
蔡建宣(2024)。《IFRS 9 與 IFRS 15 對股價影響之研究》(碩士論文,國立臺中科技大學)。
王藝靜(2021)。《IFRS 9 對公司債務資金成本與信用風險之影響—以台灣上市櫃公司為例》(碩士論文,國立台灣大學)。
吳維祥(2024)。《IFRS 16 實施對公司債務資金成本之影響—租賃負債調節分析》(碩士論文,國立台灣大學)
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/97723-
dc.description.abstract本研究以2018年後IFRS 9、15、16新制實施後之臺灣上市櫃公司財報與財務比率資料為基礎,運用四種機器學習與深度學習模型——隨機森林(Random Forest)、梯度提升(Gradient Boost)、極限梯度提升(XGBoost)與深度神經網路(DNN)——進行調整每股盈餘(Adjusted EPS)及調整稀釋每股盈餘(Adjusted Diluted EPS)之預測,並據以建構多空套利策略。本研究旨在探討 IFRS 新制下財報資訊與市場預期間的落差是否具備可轉化為投資報酬的潛力。
研究結果顯示,Random Forest 與 Gradient Boost 在多數情境下具較佳的預測準確性,而 XGBoost 雖預測誤差略高,卻在套利策略穩定性與排序能力方面展現潛力。DNN 模型因樣本數限制,易出現過度擬合問題,整體表現不如其他模型。進一步分析發現,預測準確性不必然轉化為顯著報酬,預測誤差本身需具備資訊含量方能成為套利來源。在風險調整報酬方面,XGBoost 在Fama-French三因子模型下展現最高的解釋力與正向 Alpha,特別是在等權重策略下表現較佳。
整體而言,本研究證實機器學習模型能有效擷取財報中的非線性關係與潛在訊號,並有助於因子構建與策略設計,並補足新制 IFRS 下每股盈餘預測與投資應用領域之文獻空缺,並提供財報使用者與投資實務參考依據。
zh_TW
dc.description.abstractThis thesis analyzes financial statements and ratio data of Taiwan-listed firms after the implementation of IFRS 9, 15, and 16 in 2018. Four predictive models—Random Forest, Gradient Boosting, XGBoost, and Deep Neural Network (DNN)—are applied to forecast Adjusted EPS and Adjusted Diluted EPS, serving as the basis for long-short arbitrage strategies. The study explores whether discrepancies between accounting data and market expectations can generate investment profits.
Results show that Random Forest and Gradient Boosting generally outperform in prediction accuracy, while XGBoost, though slightly less accurate, excels in strategy stability and ranking effectiveness. DNN suffers from overfitting due to limited data. Importantly, prediction accuracy alone does not ensure return potential; only errors containing informative signals support arbitrage. XGBoost delivers the highest risk-adjusted returns and alpha under the Fama-French three-factor model, particularly in equal-weighted portfolios.
Overall, the study highlights the usefulness of machine learning in capturing complex patterns in financial data, contributing to EPS prediction and investment strategy design under the new IFRS framework.
en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2025-07-11T16:22:15Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2025-07-11T16:22:15Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontents口試委員審定書 i
謝辭 ii
中文摘要 iii
英文摘要 iv
目次 v
圖次 vii
表次 ix
第一章 緒論 1
第一節 研究動機與目標 1
第二節 研究架構 4
第二章 文獻回顧 5
第一節 預測每股盈餘與套利 5
第二節 IFRS制度變革對財務報表結構與指標之影響 7
第三節 機器學習與深度學習 9
第三章 研究及實證方法 10
第一節 變數與樣本 10
第二節 模型建立與評估方式 20
第三節 以三因子模型檢驗風險調整後超額報酬 25
第四節 機器學習和深度學習參數調整 27
第五節 套利模型之建立 31
第四章 研究結果 35
第一節 探討自變數期間之預測能力 35
第二節 探討不同演算法之預測能力 38
第三節 探討不同演算法之套利報酬 40
第四節 探討三因子風險溢酬之實證 49
第五節 探討加入價值因子之預測能力與套利報酬 55
第五章 結論與建議 65
第一節 研究結論 65
第二節 研究限制 67
第三節 研究建議 68
參考文獻 69
-
dc.language.isozh_TW-
dc.subject每股盈餘預測zh_TW
dc.subjectFama-French 三因子zh_TW
dc.subject套利zh_TW
dc.subjectIFRS 9/15/16zh_TW
dc.subject機器學習zh_TW
dc.subjectIFRS 9/15/16en
dc.subjectMachine Learningen
dc.subjectEarnings Per Share Predictionen
dc.subjectArbitrageen
dc.subjectFama-French Three-Factor Modelen
dc.title機器學習應用於新制 IFRS 下之每股盈餘預測與套利分析——考量三因子風險溢酬zh_TW
dc.titleMachine Learning-Based EPS Prediction and Arbitrage Strategy Analysis under the 2018 IFRS Reform: Considering the Fama-French Three-Factor Risk Premium for TWSE-Listed Companiesen
dc.typeThesis-
dc.date.schoolyear113-2-
dc.description.degree碩士-
dc.contributor.coadvisor劉心才zh_TW
dc.contributor.coadvisorHsin-Tsai Liuen
dc.contributor.oralexamcommittee簡雪芳;李淑華zh_TW
dc.contributor.oralexamcommitteeHsueh-Fang Chien;Shu-Hua Leeen
dc.subject.keyword每股盈餘預測,機器學習,IFRS 9/15/16,套利,Fama-French 三因子,zh_TW
dc.subject.keywordEarnings Per Share Prediction,Machine Learning,IFRS 9/15/16,Arbitrage,Fama-French Three-Factor Model,en
dc.relation.page71-
dc.identifier.doi10.6342/NTU202501370-
dc.rights.note未授權-
dc.date.accepted2025-07-02-
dc.contributor.author-college管理學院-
dc.contributor.author-dept會計學系-
dc.date.embargo-liftN/A-
顯示於系所單位:會計學系

文件中的檔案:
檔案 大小格式 
ntu-113-2.pdf
  未授權公開取用
2.38 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved