請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/97720完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 吳紀聖 | zh_TW |
| dc.contributor.advisor | Chi-Sheng Wu | en |
| dc.contributor.author | 葉淳霖 | zh_TW |
| dc.contributor.author | Chun-Lin Yeh | en |
| dc.date.accessioned | 2025-07-11T16:21:17Z | - |
| dc.date.available | 2025-07-12 | - |
| dc.date.copyright | 2025-07-11 | - |
| dc.date.issued | 2024 | - |
| dc.date.submitted | 2025-06-19 | - |
| dc.identifier.citation | Chen, S., T. Takata, and K. Domen, Particulate photocatalysts for overall water splitting. Nature Reviews Materials, 2017. 2(10): p. 1-17.
Fujishima, A. and K. Honda, Electrochemical photolysis of water at a semiconductor electrode. nature, 1972. 238(5358): p. 37-38. Guo, Q., C. Zhou, Z. Ma, and X. Yang, Fundamentals of TiO2 photocatalysis: concepts, mechanisms, and challenges. Advanced Materials, 2019. 31(50): p. 1901997. Maeda, K., Photocatalytic water splitting using semiconductor particles: history and recent developments. Journal of Photochemistry and Photobiology C: Photochemistry Reviews, 2011. 12(4): p. 237-268. Inoue, Y., Photocatalytic water splitting by RuO2-loaded metal oxides and nitrides with d0-and d10-related electronic configurations. Energy & Environmental Science, 2009. 2(4): p. 364-386. Teter, D.M. and R.J. Hemley, Low-compressibility carbon nitrides. Science, 1996. 271(5245): p. 53-55. Zhang, N., L. Wen, J. Yan, and Y. Liu, Dye-sensitized graphitic carbon nitride (gC3N4) for photocatalysis: a brief review. Chemical Papers, 2020. 74: p. 389-406. Inagaki, M., T. Tsumura, T. Kinumoto, and M. Toyoda, Graphitic carbon nitrides (g-C3N4) with comparative discussion to carbon materials. Carbon, 2019. 141: p. 580-607. Gao, J., Y. Zhou, Z. Li, S. Yan, N. Wang, and Z. Zou, High-yield synthesis of millimetre-long, semiconducting carbon nitride nanotubes with intense photoluminescence emission and reproducible photoconductivity. Nanoscale, 2012. 4(12): p. 3687-3692. Hong, J., D.K. Hwang, R. Selvaraj, and Y. Kim, Facile synthesis of Br-doped g-C3N4 nanosheets via one-step exfoliation using ammonium bromide for photodegradation of oxytetracycline antibiotics. Journal of Industrial and Engineering Chemistry, 2019. 79: p. 473-481. Xu, J., L. Zhang, R. Shi, and Y. Zhu, Chemical exfoliation of graphitic carbon nitride for efficient heterogeneous photocatalysis. Journal of Materials Chemistry A, 2013. 1(46): p. 14766-14772. Dong, X. and F. Cheng, Recent development in exfoliated two-dimensional gC3N4 nanosheets for photocatalytic applications. Journal of Materials Chemistry A, 2015. 3(47): p. 23642-23652. Lu, X., K. Xu, P. Chen, K. Jia, S. Liu, and C. Wu, Facile one step method realizing scalable production of gC3N4 nanosheets and study of their photocatalytic H2 evolution activity. Journal of Materials Chemistry A, 2014. 2(44): p. 18924-18928. Zhang, M., Y. Yang, X. An, J. Zhao, Y. Bao, and L.-a. Hou, Exfoliation method matters: The microstructure-dependent photoactivity of g-C3N4 nanosheets for water purification. Journal of Hazardous Materials, 2022. 424: p. 127424. Li, G., Z. Xie, S. Chai, X. Chen, and X. Wang, A facile one-step fabrication of holey carbon nitride nanosheets for visible-light-driven hydrogen evolution. Applied Catalysis B: Environmental, 2021. 283: p. 119637. Li, Y., M.-Q. Wang, S.-J. Bao, S. Lu, M. Xu, D. Long, and S. Pu, Tuning and thermal exfoliation graphene-like carbon nitride nanosheets for superior photocatalytic activity. Ceramics International, 2016. 42(16): p. 18521-18528. Niu, P., L. Zhang, G. Liu, and H.M. Cheng, Graphene‐like carbon nitride nanosheets for improved photocatalytic activities. Advanced Functional Materials, 2012. 22(22): p. 4763-4770. Alivisatos, A.P., Semiconductor clusters, nanocrystals, and quantum dots. science, 1996. 271(5251): p. 933-937. de Medeiros, T.V., A.O. Porto, H.A. Bicalho, J.C. González, R. Naccache, and A.P.C. Teixeira, The effects of chemical and thermal exfoliation on the physico-chemical and optical properties of carbon nitrides. Journal of Materials Chemistry C, 2021. 9(24): p. 7622-7631. Yi, Z., N.H. Ladi, X. Shai, H. Li, Y. Shen, and M. Wang, Will organic–inorganic hybrid halide lead perovskites be eliminated from optoelectronic applications? Nanoscale Advances, 2019. 1(4): p. 1276-1289. Tidrow, S.C., Mapping comparison of Goldschmidt's tolerance factor with Perovskite structural conditions. Ferroelectrics, 2014. 470(1): p. 13-27. Mu, L., Y. Zhao, A. Li, S. Wang, Z. Wang, J. Yang, Y. Wang, T. Liu, R. Chen, and J. Zhu, Enhancing charge separation on high symmetry SrTiO3 exposed with anisotropic facets for photocatalytic water splitting. Energy & Environmental Science, 2016. 9(7): p. 2463-2469. Pan, L., H. Mei, G. Zhu, S. Li, X. Xie, S. Gong, H. Liu, Z. Jin, J. Gao, and L. Cheng, Bi selectively doped SrTiO3-x nanosheets enhance photocatalytic CO2 reduction under visible light. Journal of colloid and interface science, 2022. 611: p. 137-148. Piskunov, S., E. Heifets, R. Eglitis, and G. Borstel, Bulk properties and electronic structure of SrTiO3, BaTiO3, PbTiO3 perovskites: an ab initio HF/DFT study. Computational Materials Science, 2004. 29(2): p. 165-178. Wu, G., P. Li, D. Xu, B. Luo, Y. Hong, W. Shi, and C. Liu, Hydrothermal synthesis and visible-light-driven photocatalytic degradation for tetracycline of Mn-doped SrTiO3 nanocubes. Applied Surface Science, 2015. 333: p. 39-47. Patial, S., V. Hasija, P. Raizada, P. Singh, A.A.P.K. Singh, and A.M. Asiri, Tunable photocatalytic activity of SrTiO3 for water splitting: strategies and future scenario. Journal of Environmental Chemical Engineering, 2020. 8(3): p. 103791. Alarab, F., K. Hricovini, B. Leikert, L. Nicolaï, M. Fanciulli, O. Heckmann, C. Richter, L. Prušakova, Z. Jansa, and P. Šutta, Photoemission study of pristine and Ni-doped SrTiO3 thin films. Physical Review B, 2021. 104(16): p. 165129. Takata, T. and K. Domen, Defect engineering of photocatalysts by doping of aliovalent metal cations for efficient water splitting. The Journal of Physical Chemistry C, 2009. 113(45): p. 19386-19388. Faughnan, B., Photochromism in Transition-Metal-Doped SrTiO3. Physical Review B, 1971. 4(10): p. 3623. Ye, J. and Z. Zou, Visible light sensitive photocatalysts In1− xMxTaO4 (M= 3d transition-metal) and their activity controlling factors. Journal of Physics and Chemistry of Solids, 2005. 66(2-4): p. 266-273. Huang, S.-T., W.W. Lee, J.-L. Chang, W.-S. Huang, S.-Y. Chou, and C.-C. Chen, Hydrothermal synthesis of SrTiO3 nanocubes: Characterization, photocatalytic activities, and degradation pathway. Journal of the Taiwan Institute of Chemical Engineers, 2014. 45(4): p. 1927-1936. Yu, H., S. Ouyang, S. Yan, Z. Li, T. Yu, and Z. Zou, Sol–gel hydrothermal synthesis of visible-light-driven Cr-doped SrTiO3 for efficient hydrogen production. Journal of Materials Chemistry, 2011. 21(30): p. 11347-11351. Moniz, S.J., S.A. Shevlin, D.J. Martin, Z.-X. Guo, and J. Tang, Visible-light driven heterojunction photocatalysts for water splitting–a critical review. Energy & Environmental Science, 2015. 8(3): p. 731-759. Low, J., C. Jiang, B. Cheng, S. Wageh, A.A. Al‐Ghamdi, and J. Yu, A review of direct Z‐scheme photocatalysts. Small methods, 2017. 1(5): p. 1700080. Bard, A.J., Photoelectrochemistry and heterogeneous photo-catalysis at semiconductors. Journal of Photochemistry, 1979. 10(1): p. 59-75. Ng, B.J., L.K. Putri, X.Y. Kong, Y.W. Teh, P. Pasbakhsh, and S.P. Chai, Z‐scheme photocatalytic systems for solar water splitting. Advanced science, 2020. 7(7): p. 1903171. Tai, Y.-Y., J.C. Wu, W.-Y. Yu, M.M. Kržmanc, and E. Kotomin, Photocatalytic water splitting of improved strontium titanate for simultaneous separation of H2 in a twin photoreactor. Applied Catalysis B: Environmental, 2023. 324: p. 122183. Li, H., W. Tu, Y. Zhou, and Z. Zou, Z‐Scheme photocatalytic systems for promoting photocatalytic performance: recent progress and future challenges. Advanced science, 2016. 3(11): p. 1500389. Tada, H., T. Mitsui, T. Kiyonaga, T. Akita, and K. Tanaka, All-solid-state Z-scheme in CdS–Au–TiO2 three-component nanojunction system. Nature materials, 2006. 5(10): p. 782-786. Iwase, A., Y.H. Ng, Y. Ishiguro, A. Kudo, and R. Amal, Reduced graphene oxide as a solid-state electron mediator in Z-scheme photocatalytic water splitting under visible light. Journal of the American Chemical Society, 2011. 133(29): p. 11054-11057. Wang, X., G. Liu, Z.-G. Chen, F. Li, L. Wang, G.Q. Lu, and H.-M. Cheng, Enhanced photocatalytic hydrogen evolution by prolonging the lifetime of carriers in ZnO/CdS heterostructures. Chemical communications, 2009(23): p. 3452-3454. Yu, J., S. Wang, J. Low, and W. Xiao, Enhanced photocatalytic performance of direct Z-scheme gC3N4–TiO2 photocatalysts for the decomposition of formaldehyde in air. Physical Chemistry Chemical Physics, 2013. 15(39): p. 16883-16890. Maček Kržmanc, M., N. Daneu, A. Čontala, S. Santra, K.M. Kamal, B. Likozar, and M. Spreitzer, SrTiO3/Bi4Ti3O12 nanoheterostructural platelets synthesized by topotactic epitaxy as effective noble-metal-free photocatalysts for pH-neutral hydrogen evolution. ACS Applied Materials & Interfaces, 2020. 13(1): p. 370-381. Ahamad, T. and S.M. Alshehri, Fabrication of Ag@ SrTiO3/g-C3N4 heterojunctions for H2 production and the degradation of pesticides under visible light. Separation and Purification Technology, 2022. 297: p. 121431. Ferreira, M.A., G.T. da Silva, O.F. Lopes, V.R. Mastelaro, C. Ribeiro, M.J. Pires, A.R. Malagutti, W. Avansi Jr, and H.A. Mourao, Fabrication of SrTiO3/g-C3N4 heterostructures for visible light-induced photocatalysis. Materials Science in Semiconductor Processing, 2020. 108: p. 104887. Tan, C.-E., J.-T. Lee, E.-C. Su, and M.-Y. Wey, Facile approach for Z-scheme type Pt/g-C3N4/SrTiO3 heterojunction semiconductor synthesis via low-temperature process for simultaneous dyes degradation and hydrogen production. International Journal of Hydrogen Energy, 2020. 45(24): p. 13330-13339. Schrauzer, G. and T. Guth, Photolysis of water and photoreduction of nitrogen on titanium dioxide. Journal of the American Chemical Society, 2002. 99(22): p. 7189-7193. Sato, S. and J. White, Photodecomposition of water over Pt/TiO2catalysts. Chemical Physics Letters, 1980. 72(1): p. 83-86. Lehn, J., S. JP, and R. Ziessel, Photochemical water splitting continuous generation of hydrogen and oxygen by irradiation of aqueous suspensions of metal loaded strontium titanate. 1980. Kudo, A., A. Tanaka, K. Domen, K.-i. Maruya, K.-i. Aika, and T. Onishi, Photocatalytic decomposition of water over NiO-K4Nb6O17 catalyst. Journal of catalysis, 1988. 111(1): p. 67-76. Kudo, A., K. Ueda, H. Kato, and I. Mikami, Photocatalytic O2 evolution under visible light irradiation on BiVO4 in aqueous AgNO3 solution. Catalysis Letters, 1998. 53(3): p. 229-230. Pan, C., T. Takata, M. Nakabayashi, T. Matsumoto, N. Shibata, Y. Ikuhara, and K. Domen, A complex perovskite‐type oxynitride: the first photocatalyst for water splitting operable at up to 600 nm. Angewandte Chemie International Edition, 2015. 54(10): p. 2955-2959. Zhang, G., Z.-A. Lan, L. Lin, S. Lin, and X. Wang, Overall water splitting by Pt/gC3N4 photocatalysts without using sacrificial agents. Chemical science, 2016. 7(5): p. 3062-3066. Maeda, K. and K. Domen, Photocatalytic water splitting: recent progress and future challenges. The Journal of Physical Chemistry Letters, 2010. 1(18): p. 2655-2661. Ye, S., C. Ding, and C. Li, Artificial photosynthesis systems for catalytic water oxidation, in Advances in Inorganic Chemistry. 2019, Elsevier. p. 3-59. Zhao, J., X. Wang, Z. Xu, and J.S. Loo, Hybrid catalysts for photoelectrochemical reduction of carbon dioxide: a prospective review on semiconductor/metal complex co-catalyst systems. Journal of Materials Chemistry A, 2014. 2(37): p. 15228-15233. Lin, S., H. Huang, T. Ma, and Y. Zhang, Photocatalytic oxygen evolution from water splitting. Advanced Science, 2021. 8(1): p. 2002458. Chen, Z., X. Jiang, C. Zhu, and C. Shi, Chromium-modified Bi4Ti3O12 photocatalyst: Application for hydrogen evolution and pollutant degradation. Applied Catalysis B: Environmental, 2016. 199: p. 241-251. Wang, M., S. Shen, L. Li, Z. Tang, and J. Yang, Effects of sacrificial reagents on photocatalytic hydrogen evolution over different photocatalysts. Journal of materials science, 2017. 52: p. 5155-5164. Kumaravel, V., M.D. Imam, A. Badreldin, R.K. Chava, J.Y. Do, M. Kang, and A. Abdel-Wahab, Photocatalytic hydrogen production: role of sacrificial reagents on the activity of oxide, carbon, and sulfide catalysts. Catalysts, 2019. 9(3): p. 276. Liu, Z., J. Li, Z. Chen, M. Li, L. Wang, S. Wu, and J. Zhang, Photocatalytic conversion of carbon dioxide on triethanolamine: Unheeded catalytic performance of sacrificial agent. Applied Catalysis B: Environmental, 2023. 326: p. 122338. Hesleitner, P., N. Kallay, and E. Matijevic, Adsorption at solid/liquid interfaces. 6. The effect of methanol and ethanol on the ionic equilibria at the hematite/water interface. Langmuir, 1991. 7(1): p. 178-184. Ran, J., G. Gao, F.-T. Li, T.-Y. Ma, A. Du, and S.-Z. Qiao, Ti3C2 MXene co-catalyst on metal sulfide photo-absorbers for enhanced visible-light photocatalytic hydrogen production. Nature communications, 2017. 8(1): p. 13907. Wang, J., K. Feng, B. Chen, Z.-J. Li, Q.-Y. Meng, L.-P. Zhang, C.-H. Tung, and L.-Z. Wu, Polymer-modified hydrophilic graphene: A promotor to photocatalytic hydrogen evolution for in situ formation of core@ shell cobalt nanocomposites. Journal of Photochemistry and Photobiology A: Chemistry, 2016. 331: p. 247-254. Wang, B., J. Zhang, and F. Huang, Enhanced visible light photocatalytic H2 evolution of metal-free g-C3N4/SiC heterostructured photocatalysts. Applied Surface Science, 2017. 391: p. 449-456. Inaguma, A., H. Nagakawa, S. Kamata, and M. Nagata, Influence of Sacrificial Reagents on the Photodeposition Reaction of Cocatalysts. Advanced Energy and Sustainability Research, 2024: p. 2300295. Unruh, D.K. and T.Z. Forbes, X-ray diffraction techniques. Analytical geomicrobiology: a handbook of instrumental techniques, 2019: p. 215-237. Fatimah, S., R. Ragadhita, D.F. Al Husaeni, and A.B.D. Nandiyanto, How to calculate crystallite size from x-ray diffraction (XRD) using Scherrer method. ASEAN Journal of Science and Engineering, 2022. 2(1): p. 65-76. Morozzi, P., B. Ballarin, S. Arcozzi, E. Brattich, F. Lucarelli, S. Nava, P.J. Gómez-Cascales, J.A. Orza, and L. Tositti, Ultraviolet–Visible Diffuse Reflectance Spectroscopy (UV–Vis DRS), a rapid and non-destructive analytical tool for the identification of Saharan dust events in particulate matter filters. Atmospheric Environment, 2021. 252: p. 118297. Apopei, P., C. Catrinescu, C. Teodosiu, and S. Royer, Mixed-phase TiO2 photocatalysts: Crystalline phase isolation and reconstruction, characterization and photocatalytic activity in the oxidation of 4-chlorophenol from aqueous effluents. Applied Catalysis B: Environmental, 2014. 160: p. 374-382. Saadatkhah, N., A. Carillo Garcia, S. Ackermann, P. Leclerc, M. Latifi, S. Samih, G.S. Patience, and J. Chaouki, Experimental methods in chemical engineering: Thermogravimetric analysis—TGA. The Canadian Journal of Chemical Engineering, 2020. 98(1): p. 34-43. Scheu, C. and W.D. Kaplan, Introduction to scanning electron microscopy. In-situ electron microscopy: Applications in physics, chemistry and materials science. Weinheim, DEU: Wiley-VCH Verlag, 2012: p. 3-37. Brandon, D. and W.D. Kaplan, Microstructural characterization of materials. 2013: John Wiley & Sons. Hodoroaba, V.-D., Energy-dispersive X-ray spectroscopy (EDS), in Characterization of Nanoparticles. 2020, Elsevier. p. 397-417. Mulyaningsih, N.N. and R. Sapundani, Analysis of Osteoporosis by Electron Microscopy, in Electron Microscopy. 2022, IntechOpen. Brunauer, S., P.H. Emmett, and E. Teller, Adsorption of gases in multimolecular layers. Journal of the American chemical society, 1938. 60(2): p. 309-319. Stevie, F.A. and C.L. Donley, Introduction to x-ray photoelectron spectroscopy. Journal of Vacuum Science & Technology A, 2020. 38(6). Bard, A.J., L.R. Faulkner, and H.S. White, Electrochemical methods: fundamentals and applications. 2022: John Wiley & Sons. Gelderman, K., L. Lee, and S. Donne, Flat-band potential of a semiconductor: using the Mott–Schottky equation. Journal of chemical education, 2007. 84(4): p. 685. Shinde, K.N., S. Dhoble, H. Swart, K. Park, K.N. Shinde, S. Dhoble, H. Swart, and K. Park, Basic mechanisms of photoluminescence. Phosphate Phosphors for Solid-State Lighting, 2012: p. 41-59. Cruz, D., J. Chang, S. Showalter, F. Gelbard, R. Manginell, and M. Blain, Microfabricated thermal conductivity detector for the micro-ChemLab™. Sensors and Actuators B: Chemical, 2007. 121(2): p. 414-422. Yang, J., Y. Liang, K. Li, G. Yang, K. Wang, R. Xu, and X. Xie, One-step synthesis of novel K+ and cyano groups decorated triazine-/heptazine-based g-C3N4 tubular homojunctions for boosting photocatalytic H2 evolution. Applied Catalysis B: Environmental, 2020. 262: p. 118252. Konstas, P.-S., I. Konstantinou, D. Petrakis, and T. Albanis, Synthesis, characterization of g-C3N4/SrTiO3 heterojunctions and photocatalytic activity for organic pollutants degradation. Catalysts, 2018. 8(11): p. 554. Agustina, F.R., B. Suherman, L.U. Hasanah, N.F.S. Puspita, D.K. Sandi, F. Nurosyid, E. Handoko, and Y. Iriani. Preparation of Nickel (Ni) doped SrTiO3 and effects of sintering temperatures on its properties as photocatalyst. in Journal of Physics: Conference Series. 2023. IOP Publishing. Mei, P., J. Xiao, X. Huang, A. Ishag, and Y. Sun, Enhanced Photocatalytic Reduction of U (VI) on SrTiO3/g‐C3N4 Composites: Synergistic Interaction. European Journal of Inorganic Chemistry, 2022. 2022(7). | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/97720 | - |
| dc.description.abstract | 於石油日漸枯竭造成的能源危機下,尋求新的替代能源方案為當今之首要任務。氫氣因其高能量密度,作為新興能源是未來可期的。當利用光催化水分解產氫時,因水資源取之不盡的特色,且程序上乾淨無碳排,是永續綠色能源。
現階段光觸媒之挑戰主要來自於過快的電子電洞再結合速率。為解決此困境,傳統光觸媒常利用貴金屬共觸媒作為電子陷阱,將電子捕捉於表面,提高電子在觸媒表面反應之機率。本研究則是藉將鈦酸鍶、氮化碳兩種光觸媒混合,形成異質結構,分離電子/電洞,從而降低電子電洞於再結合之機率,進一步提升光催化水分解產氫活性。本研究發現,對氮化碳觸媒,利用一步剝離法可有效提高其剝離程度,其中以鍛燒2小時之氮化碳gCN_OS2具有最高之剝離程度,其產氫活性為7.18 μmol/g*hr;而對搭配之鈦酸鍶觸媒,使用2 mol%鎳摻雜、升溫速率1 ℃/min之水熱法製備的鈦酸鍶STOH1,其小粒徑有利於電子流通,將其與氮化碳混合後,可有效降低混合觸媒之阻抗。而混合觸媒10% 2Ni:STOH1/gCN_OS2於紫外光照射下,以三乙醇胺為犧牲試劑時,最高產氫活性可達285.4 μmol/g*hr,為純氮化碳觸媒活性的39.7倍。 於鎳摻雜鈦酸鍶-氮化碳混合觸媒中,其氫氣還原之反應位點由鈦酸鍶轉移至氮化碳上,形成Z型系統,不僅提高反應之驅動勢能,亦能顯著降低電子電洞對之再結合速率。 藉單波長LED光源進行之活性測試結果,當僅氮化碳被激發而鈦酸鍶未被激發時,活性大幅下降,故可認為兩觸媒間確實有交互作用,Z型系統對活性提升至關重要。透過Z型系統之結構,在無共觸媒附載的情況下,電子電洞再結合被有效抑制,仍可有效提升其光催化產氫活性。如此一來,相較傳統光觸媒,因無貴金屬共觸媒之附載,便可有效降低製備成本,提高光觸媒之發展性。 | zh_TW |
| dc.description.abstract | Because of the energy crisis, seeking new alternative energy solutions is important today. Hydrogen, with its high energy density, is a promising energy source. When hydrogen is produced from photocatalytic water splitting, the inexhaustible nature of water resources and the carbon-free process qualify it as a sustainable green energy.
The current challenge for photocatalysts is the rapid recombination rate of electron-hole pairs. To address this issue, traditional photocatalysts often load noble metal cocatalysts on the surface as electron traps to capture electrons, which could increase the probability of surface reaction. This study combines strontium titanate (STO) and carbon nitride (gCN) photocatalysts, forming a heterostructural photocatalyst to separate electrons and holes and to reduce the recombination probability of electron-hole pairs, leading to the further increasing of hydrogen evolution activity. Here we show that the gCN catalyst could be effectively exfoliated using the one-step exfoliation method, gCN_OS2, exhibits the highest degree of exfoliation and demonstrates the highest hydrogen production efficiency of 7.18 μmol/g*hr. For STO catalyst, 2Ni:STOH1 prepared by hydrothermal method with a heating rate of 1 ℃/min and doped by nickel could possesses small particle size to be conducive to electron transport. When compounded with gCN, it effectively reduced the impedance. Under UV irradiation and using triethanolamine as a sacrificial agent, 10% 2Ni:STOH1/gCN_OS2 achieved a maximum hydrogen production activity of 285.4 μmol/g*hr, which is 39.7 times higher than that of the pure gCN catalyst. For Ni:STO/gCN catalyst, the hydrogen reduction active sites transfer from STO to gCN, forming the Z-scheme system. This not only enhances the driving potential of the reaction but also significantly reduces the recombination rate of electron-hole pairs. The results of activity tests conducted using a single-wavelength LED light source indicate a significant decrease in activity when only gCN is excited while STO remains unexcited. This suggests the interaction between the two catalysts and the critical importance of the Z-scheme system for enhancing activity. Through the Z-scheme system structure, the recombination of electron-hole pairs is effectively suppressed even without noble metal cocatalyst loading, thereby significantly enhancing photocatalytic hydrogen production activity. Thus, compared to traditional photocatalysts, the absence of noble metal cocatalysts can effectively reduce preparation costs and enhance the potential for photocatalyst development. | en |
| dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2025-07-11T16:21:17Z No. of bitstreams: 0 | en |
| dc.description.provenance | Made available in DSpace on 2025-07-11T16:21:17Z (GMT). No. of bitstreams: 0 | en |
| dc.description.tableofcontents | 口試委員審定書 i
誌謝 ii 中文摘要 iv Abstract v CONTENTS vii LIST OF FIGURES xii LIST OF TABLES xix 代號說明 xx 第1章 緒論 1 1.1 研究背景 1 1.2 研究動機與目標 3 1.3 論文總覽 4 第2章 文獻回顧 5 2.1 光觸媒 5 2.1.1 類石墨相氮化碳 8 2.1.2 鈦酸鍶 17 2.1.3 利用水熱法合成小粒徑鈦酸鍶 21 2.2 複合材料 23 2.2.1 Z型系統(Z-scheme system) 24 2.2.2 鈦酸鍶-氮化碳 27 2.3 光催化水分解 29 2.4 以犧牲試劑輔助進行水分解 32 2.4.1 甲醇 33 2.4.2 三乙醇胺 35 第3章 實驗方法 39 3.1 化學藥品與實驗儀器介紹 39 3.1.1 藥品 39 3.1.2 氣體 40 3.1.3 儀器 40 3.2 光觸媒的合成 42 3.2.1 類石墨相氮化碳觸媒合成 42 3.2.1.1 熱剝離法 42 3.2.1.2 一步剝離法 42 3.2.2 鈦酸鍶觸媒之合成 43 3.2.2.1 熔鹽法 43 3.2.2.2 水熱法 44 3.2.3 鈦酸鍶觸媒與氮化碳觸媒之混合 46 3.3 觸媒材料特性分析原理 47 3.3.1 X光繞射儀(X-ray Diffraction, XRD) 47 3.3.2 紫外光-可見光光譜儀(UV-Visible spectrometer, UV-Vis) 49 3.3.3 熱重分析儀(Thermogravimetric analysis, TGA) 51 3.3.4 場發掃描式電子顯微鏡(Field Emission-Scanning Electron Microscope, FESEM) 52 3.3.5 能量分散光譜儀(Energy Dispersive Spectrometer, EDS) 54 3.3.6 高解析度穿透式電子顯微鏡(High Resolution Transmission Electron Microscope, HRTEM) 55 3.3.7 比表面積與孔洞分布測量儀(BET Surface Area Analysis) 56 3.3.8 X光光電子能譜儀(X-ray photoelectron spectroscopy, XPS) 57 3.3.9 電化學阻抗圖譜(Electrochemical Impedance Spectroscopy, EIS) 59 3.3.10 光致發光光譜(Photoluminescence, PL) 62 3.4 氣相層析法(Gas Chromatography, GC) 63 3.5 氣相層析檢量線之製作 65 3.5.1 氫氣檢量線製作 65 3.5.2 氫氣產量換算 66 3.6 光反應系統 66 3.6.1 紫外光燈源及其光譜 66 3.6.2 光催化水分解系統 67 第4章 觸媒性質分析與討論 69 4.1 XRD繞射分析 69 4.1.1 鈦酸鍶系列觸媒圖譜分析 69 4.1.2 類石墨相氮化碳系列觸媒圖譜分析 70 4.1.3 鈦酸鍶-氮化碳系列觸媒圖譜分析 71 4.2 UV-Vis紫外光-可見光光譜分析 73 4.2.1 鈦酸鍶系列觸媒光譜分析 73 4.2.2 類石墨相氮化碳系列觸媒光譜分析 74 4.2.3 鈦酸鍶-氮化碳系列觸媒光譜分析 75 4.3 FTIR(Fourier-Transform Infrared Spectroscopy)紅外線光譜分析 76 4.4 EPR(Electron Paramagnetic Resonance)電子順磁共振圖譜分析 78 4.5 TGA熱重分析 79 4.6 SEM電子顯微鏡分析 81 4.6.1 類石墨相氮化碳系列觸媒影像分析 81 4.6.2 鈦酸鍶系列觸媒影像分析 82 4.6.3 鈦酸鍶-氮化碳觸媒影像分析 84 4.7 EDS能量分散光譜分析 86 4.7.1 鎳摻雜鈦酸鍶觸媒元素分析 86 4.7.2 鈦酸鍶-氮化碳觸媒元素分析 86 4.8 HRTEM(High Resolution Transmission Electron Microscope)電子顯微鏡分析 90 4.8.1 類石墨相氮化碳系列觸媒影像分析 90 4.8.2 鈦酸鍶-氮化碳觸媒影像分析 91 4.9 BET比表面積分析 93 4.10 XPS表面元素分析 95 4.10.1 鎳摻雜鈦酸鍶混合前後之比較 96 4.10.2 鎳摻雜鈦酸鍶之鎳2p軌域圖譜分析 97 4.10.3 氮化碳混合前後之比較 98 4.11 Mott-Schottky能帶分析 100 4.12 EIS電化學阻抗分析 101 4.13 PL光致發光光譜 103 4.14 Photocurrent光電流分析 105 第5章 光催化水分解 106 5.1 鈦酸鍶之產氫活性測試 107 5.1.1 鈦酸鍶製備方法對光催化產氫活性之影響 107 5.1.1.1 熔鹽法製備鈦酸鍶 107 5.1.1.2 水熱法製備鈦酸鍶 107 5.1.2 金屬混摻之鈦酸鍶 108 5.2 類石墨相氮化碳觸媒之產氫活性測試 110 5.2.1 熱剝離法 110 5.2.2 一步剝離法 110 5.3 鈦酸鍶-氮化碳系列觸媒之產氫活性測試 112 5.3.1 犧牲試劑之影響 112 5.3.2 製備方法之影響 115 5.3.3 異質光觸媒反應機構 117 5.3.4 過渡元素摻雜之影響 119 5.3.5 鈦酸鍶對氮化碳比例之影響 122 5.3.6 摻雜原子濃度之影響 124 5.3.7 氮化碳剝離時間之影響 125 5.4 單波長雷射光活性測試暨量子效率計算 127 第6章 結論 130 參考資料 131 個人小傳 138 | - |
| dc.language.iso | zh_TW | - |
| dc.subject | 光催化水分解 | zh_TW |
| dc.subject | 氫能 | zh_TW |
| dc.subject | Z型系統 | zh_TW |
| dc.subject | 氮化碳 | zh_TW |
| dc.subject | 鈦酸鍶 | zh_TW |
| dc.subject | Strontium titanate | en |
| dc.subject | Hydrogen | en |
| dc.subject | Graphitic-carbon nitride | en |
| dc.subject | Z-scheme system | en |
| dc.subject | Photocatalytic water splitting | en |
| dc.title | 無共觸媒二維異質結構光觸媒水分解產氫 | zh_TW |
| dc.title | Two-dimensional Heterostructural Photocatalyst without Cocatalyst for Hydrogen Evolution | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 113-2 | - |
| dc.description.degree | 碩士 | - |
| dc.contributor.oralexamcommittee | 游文岳;黃朝偉 | zh_TW |
| dc.contributor.oralexamcommittee | Wen-Yueh Yu;Chao-Wei Huang | en |
| dc.subject.keyword | 光催化水分解,鈦酸鍶,氮化碳,Z型系統,氫能, | zh_TW |
| dc.subject.keyword | Photocatalytic water splitting,Strontium titanate,Graphitic-carbon nitride,Z-scheme system,Hydrogen, | en |
| dc.relation.page | 138 | - |
| dc.identifier.doi | 10.6342/NTU202501176 | - |
| dc.rights.note | 同意授權(全球公開) | - |
| dc.date.accepted | 2025-06-20 | - |
| dc.contributor.author-college | 工學院 | - |
| dc.contributor.author-dept | 化學工程學系 | - |
| dc.date.embargo-lift | 2025-07-12 | - |
| 顯示於系所單位: | 化學工程學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-113-2.pdf | 11.09 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
