請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/97718完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 朱國瑞 | zh_TW |
| dc.contributor.advisor | Kwo-Ray Chu | en |
| dc.contributor.author | 許展昱 | zh_TW |
| dc.contributor.author | Chan-Yu Hsu | en |
| dc.date.accessioned | 2025-07-11T16:19:48Z | - |
| dc.date.available | 2025-07-12 | - |
| dc.date.copyright | 2025-07-11 | - |
| dc.date.issued | 2025 | - |
| dc.date.submitted | 2025-07-07 | - |
| dc.identifier.citation | [1] Paulina Guzik, Piotr Kulawik, Marzena Zając, and Władysław Migdał and. Microwave applications in the food industry: an overview of recent developments. Critical Reviews in Food Science and Nutrition, 62(29):7989–8008, 2022. PMID:33970698.
[2] Xidong Jiao, Haifeng Diao, Tianyi Liu, Bowen Yan, Xiangwei Tang, and Daming Fan. Single-mode microwave heating for food science research: Understanding specific microwave effects and reliability concerns. Food Physics, 2:100048, 2025. [3] Punidadas Piyasena, Chantal Dussault, Tatiana Koutchma, H. S. Ramaswamy, and G. B. Awuah and. Radio frequency heating of foods: Principles, applications and related properties—a review. Critical Reviews in Food Science and Nutrition, 43(6):587–606, 2003. PMID: 14669879. [4] Jilong Gao, Mingtai Wu, Sicheng Du, Hao Zhang, Shaojin Wang, and Bo Ling. Recent advances in food processing by radio frequency heating techniques: A review of equipment aspects. Journal of Food Engineering, 357:111609, 2023. [5] Josiel Martins Costa and Francesco Marra. Advances in food processing through radio frequency technology: Applications in pest control, microbial and enzymatic inactivation. Food Engineering Reviews, 16(3):422–440, September 2024. [6] Jinsong Zhang, XinYe, ZijunMo, GaojiYang, RuiLi, andShaojinWang. Validation of industrial radio frequency treatment protocols to control lasioderma serricorne in tobacco leaves. Journal of Stored Products Research, 113:102699, 2025. [7] Manoj B. Gawande, Sharad N. Shelke, Radek Zboril, and Rajender S. Varma. Microwave-assisted chemistry: Synthetic applications for rapid assembly of nano materials and organics. Accounts of Chemical Research, 47(4):1338–1348, 2014. PMID: 24666323. [8] S.V. Egorov, A.G. Eremeev, V.V. Kholoptsev, I.V. Plotnikov, K.I. Rybakov, A.A. Sorokin, S.S. Balabanov, and E.Ye. Rostokina. Rapid microwave sintering of functional electroceramic materials. Ceramics International, 49(14, Part B):24222 24228, 2023. A selection of papers presented at CIMTEC 2022. [9] Lidija Ćurković, Rea Veseli, Ivana Gabelica, Irena Žmak, Ivana Ropuš, and Milan Vukšić. A review of microwave-assisted sintering technique. Trans. Famena, 45(1):1–16, May 2021. [10] JohnDavidJackson. Classical Electrodynamics. John Wiley & Sons, Nashville, TN, 3 edition, July 1998. [11] Yang Jiao, Huojie Shi, Juming Tang, Feng Li, and Shaojin Wang. Improvement of radio frequency (rf) heating uniformity on low moisture foods with polyetherimide (pei) blocks. Food Research International, 74:106–114, 2015. [12] Rahmi Uyar, Ferruh Erdogdu, Fabrizio Sarghini, and Francesco Marra. Computer simulation of radio-frequency heating applied to block-shaped foods: Analysis on the role of geometrical parameters. Food and Bioproducts Processing, 98:310–319, 2016. [13] S. Wang, K. Luechapattanaporn, and J. Tang. Experimental methods for evaluating heating uniformity in radio frequency systems. Biosystems Engineering, 100(1):5865, 2008. [14] L. C. Liu, J. C. Liang, K. W. Chen, and K. R. Chu. Effects of polarization-charge shielding and electromagnetic resonances on water behavior under microwave heating. Physics of Plasmas, 30(12):123301, 12 2023. [15] M. S. Lin, S. M. Lin, W. Y. Chiang, L. R. Barnett, and K. R. Chu. Effects of polarization-charge shielding in microwave heating. Physics of Plasmas, 22(8):083302, 08 2015. [16] Y.F.Tsai, L. R. Barnett, H. H. Teng, C. C. Ko, andK.R.Chu. A study of some inherent causes for non-uniform microwave heating. Physics of Plasmas, 24(10):103301, 09 2017. [17] FAO/WHOCodexAlimentariusCommission. CodexAlimentarius: Cereals, Pulses, Legumes and Vegetable Proteins. Food and Agriculture Organization of the United Nations (FAO), Rome, first edition, 1995. Codex Standard for Rice (CODEX STAN 198-1995). [18] Stuart O. Nelson. Chapter 15- dielectric properties data. In Stuart O. Nelson, editor, Dielectric Properties of Agricultural Materials and their Applications, pages 211 246. Academic Press, San Diego, 2015. [19] M. S. Lin, L. C. Liu, L. R. Barnett, Y. F. Tsai, and K. R. Chu. On electromagnetic wave ignited sparks in aqueous dimers. Physics of Plasmas, 28(10):102102, 102021. | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/97718 | - |
| dc.description.abstract | 本論文探討微波加熱中橢球型介電質系統(以米粒為代表)產生加熱不均的物理機制。透過電磁與熱傳模擬,本研究指出兩個主要因素:與排列方向有關的極化電荷遮蔽效應(polarization-charge shielding),以及米粒間的近場增強效應(near-field enhancement)。
在單一米粒中,其內部電場強度與加熱速率高度依賴外部電場與米粒主軸方向的對齊程度。當米粒緊密排列時,彼此誘發的極化電荷會相互作用,進一步在接觸區域產生局部電場增強或抑制,導致加熱呈現額外的方向依賴性,尤其在橢圓形米粒中尤為明顯。 在電磁模擬中,線極化波會產生顯著的場強不均,圓極化波則可同時抑制排列依賴性與粒子間的近場交互作用,提升加熱速率的均勻性。雖然熱傳導與對流有助於緩和溫度差異,使溫度場的非均勻性不如場強明顯,但圓極化波在各種排列與場條件下,仍能一致地表現出最佳的加熱均勻性。 本研究結果顯示,透過調整外部微波場的極化型態,可有效改善介電米粒系統中的加熱均勻性。其中,圓極化波在各種排列結構與對齊條件下皆展現穩定的效果,具有應用於食品加工、材料工程等產業之潛力。 | zh_TW |
| dc.description.abstract | This thesis investigates the mechanisms responsible for microwave heating non-uniformity in dielectric grain systems, using rice grains as a representative model. Through electromagnetic and thermal simulations, two key contributors are identified: alignment-dependent polarization-charge shielding and inter-grain near-field enhancement.
In isolated grains, the internal electric field strength, i.e. the heating rate, depends strongly on the alignment between the grain's major axis and the external field direction. When grains are packed closely, their induced polarization charges interact, causing local field intensification or suppression. This near-field enhancement leads to additional directional dependence in the heating pattern, especially in ellipsoidal grains. Electromagnetic simulations show that linearly polarized waves produce significant non-uniformity in the electric field strength. In contrast, circularly polarized waves effectively suppress both alignment-dependent effects and near-field interactions between grains, leading to improved uniformity in heating rates. Although thermal conduction and convection help reduce temperature differences, circular polarization still provides the most uniform heating performance among all tested conditions. These findings suggest that microwave heating uniformity can be substantially improved by optimizing the polarization of the external field. Circular polarization, in particular, offers a robust solution applicable across various packing geometries and alignment conditions, with implications for food processing, materials engineering, and other industrial applications. | en |
| dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2025-07-11T16:19:48Z No. of bitstreams: 0 | en |
| dc.description.provenance | Made available in DSpace on 2025-07-11T16:19:48Z (GMT). No. of bitstreams: 0 | en |
| dc.description.tableofcontents | Verification Letter from the Oral Examination Committee i
Acknowledgements ii 摘要 iii Abstract iv Contents vi List of Figures viii List of Tables xi Chapter 1 Introduction 1 1.1 Model and Characteristic Parameters 1 Chapter 2 Alignment Dependence in Isolated Grains 4 2.1 Resonance Effects in Dielectric Grains 4 2.2 Field Uniformity in a Spherical Grain 6 2.3 Alignment-Dependent Shielding in an Ellipsoidal Grain 7 Chapter 3 Inter-Grain Interaction and Near-Field Enhancement 11 3.1 Motivation for Studying Inter-Grain Interaction 11 3.2 Near-Field Enhancement Effects in Spherical Grains 13 3.3 Combined Effects in Ellipsoidal Grain Pairs: Linear Polarization 16 3.3.1 Case 1: y-polarized, θ2 = 0, θ1 = 0, 45◦, 90◦ 20 3.3.2 Case 2: x-polarized, θ2 = 0, θ1 = 0, 45◦, 90◦ 21 3.3.3 Case 3: y-polarized, θ2 = 90◦, θ1 = 0, 45◦, 90◦ 22 3.4 Combined Effects in Ellipsoidal Grain Pairs: Circular Polarization 24 3.5 Conclusion 25 Chapter 4 Thermal Simulation and Ensemble Heating Uniformity in Densely Packed Rice Grains 27 Chapter 5 Conclusion and Outlook 35 Appendix A — Geometric Derivation for Contact Configuration of Two Rotated Ellipsoids 37 References 40 | - |
| dc.language.iso | en | - |
| dc.subject | 極化電荷遮蔽 | zh_TW |
| dc.subject | 米粒 | zh_TW |
| dc.subject | 微波加熱均勻性 | zh_TW |
| dc.subject | 近場增強 | zh_TW |
| dc.subject | 橢球形粒子 | zh_TW |
| dc.subject | ellipsoidal particles | en |
| dc.subject | rice grains | en |
| dc.subject | polarization-charge shielding | en |
| dc.subject | Microwave heating uniformity | en |
| dc.subject | near-field enhancement | en |
| dc.title | 密聚米粒在微波加熱中極化電荷效應之物理探討 | zh_TW |
| dc.title | Physical Investigation of Polarization-Charge Effects in Microwave Heating of Densely Packed Dielectric Grains | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 113-2 | - |
| dc.description.degree | 碩士 | - |
| dc.contributor.oralexamcommittee | 鄭復興;姜惟元 | zh_TW |
| dc.contributor.oralexamcommittee | Fu-Hsing Cheng;Wei-Yuan Chiang | en |
| dc.subject.keyword | 微波加熱均勻性,極化電荷遮蔽,近場增強,橢球形粒子,米粒, | zh_TW |
| dc.subject.keyword | Microwave heating uniformity,polarization-charge shielding,near-field enhancement,ellipsoidal particles,rice grains, | en |
| dc.relation.page | 43 | - |
| dc.identifier.doi | 10.6342/NTU202501198 | - |
| dc.rights.note | 同意授權(限校園內公開) | - |
| dc.date.accepted | 2025-07-08 | - |
| dc.contributor.author-college | 理學院 | - |
| dc.contributor.author-dept | 物理學系 | - |
| dc.date.embargo-lift | 2025-07-12 | - |
| 顯示於系所單位: | 物理學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-113-2.pdf 授權僅限NTU校內IP使用(校園外請利用VPN校外連線服務) | 33.05 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
