Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 理學院
  3. 化學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/97716
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor鄭原忠zh_TW
dc.contributor.advisorYuan-Chung Chengen
dc.contributor.author劉凱丞zh_TW
dc.contributor.authorKai-Cheng Liuen
dc.date.accessioned2025-07-11T16:19:12Z-
dc.date.available2025-07-12-
dc.date.copyright2025-07-11-
dc.date.issued2025-
dc.date.submitted2025-07-03-
dc.identifier.citationFörster, T. Zwischenmolekulare Energiewanderung und Fluoreszenz. Ann. Phys. 1948, 437, 55–75, DOI: 10.1002/andp.19484370105.
Redfield, A. G. On the Theory of Relaxation Processes. IBM J. Res. Dev. 1957, 1, 19–31, DOI: 10.1147/rd.11.0019.
Leggett, A. J.; Chakravarty, S.; Dorsey, A. T.; Fisher, M. P. A.; Garg, A.; Zwerger, W. Dynamics of the dissipative two-state system. Rev. Mod. Phys. 1987, 59, 1–85, DOI: 10.1103/RevModPhys.59.1.
Breuer, H.-P.; Petruccione, F., The Theory of Open Quantum Systems; Oxford Uni- versity Press: Oxford, 2002.
Engel, G.; Calhoun, T. R.; Read, E. L.; Ahn, T.-K.; Mančal, T.; Cheng, Y.-C.; Blankenship, R. E.; Fleming, G. R. Evidence for wavelike energy transfer through quantum coherence in photosynthetic systems. Nature 2007, 446, 782–786, DOI: 10.1038/nature05678.
Collini, E.; Scholes, G. D. Coherent Intrachain Energy Migration in a Conjugated Polymer at Room Temperature. Science 2009, 323, 369–373, DOI: 10 . 1126 / science.1164016.
Collini, E.; Scholes, G. D. Electronic and Vibrational Coherences in Resonance Energy Transfer along MEH-PPV Chains at Room Temperature. J. Phys. Chem. A 2009, 113, 4223–4241, DOI: 10.1021/jp810757x.
Chirolli, L.; Burkard, G. Decoherence in solid-state qubits. Adv. Phys. 2008, 57, 225–285, DOI: 10.1080/00018730802218067.
Chin, A. W.; Huelga, S. F.; Plenio, M. B. Quantum metrology in non-Markovian environments. Phys. Rev. Lett. 2012, 109, 233601, DOI: 10.1103/PhysRevLett. 109.233601.
Tanimura, Y.; Kubo, R. Time Evolution of a Quantum System in Contact with a Nearly Gaussian-Markoffian Noise Bath. J. Phys. Soc. Jpn. 1989, 58, 101–114, DOI: 10.1143/JPSJ.58.101.
Tanimura, Y.; Wolynes, P. G. Quantum and classical Fokker-Planck equations for
a Gaussian-Markovian noise bath. Phys. Rev. A 1991, 43, 4131–4142, DOI: 10.1103/PhysRevA.43.4131. Tanimura, Y. Numerically ”exact” approach to open quantum dynamics: The hierarchical equations of motion (HEOM). J. Chem. Phys. 2020, 153, 020901, DOI: 10.1063/5.0011599.
Dan, X.; Geva, E.; Batista, V. S. Simulating Non-Markovian Quantum Dynamics on NISQ Computers Using the Hierarchical Equations of Motion. J. Chem. Theory Comput. 2025, 21, 1530–1546, DOI: 10.1021/acs.jctc.4c01565.
Hoshino, R.; Tanimura, Y. Analysis of intramolecular modes of liquid water in two-
dimensional spectroscopy: A classical hierarchical equations of motion approach. J. Chem. Phys. 2025, 162, 044105, DOI: 10.1063/5.0245564.
Dutta, R.; Reppert, M. Quantum and classical effects in system-bath correlations and optical line shapes. Phys. Rev. A 2025, 111, 022210, DOI: 10.1103/PhysRevA.111.022210.
Ishizaki, A.; Fleming, G. Theoretical examination of quantum coherence in a photosynthetic system at physiological temperature. Proc. Natl. Acad. Sci. U.S.A. 2009,106, 17255–17260, DOI: 10.1073/pnas.0908989106.
Chen, L.; Zheng, R.; Jing, Y.; Shi, Q. Simulation of the two-dimensional electronic spectra of the Fenna-Matthews-Olson complex using the hierarchical equations of motion method. J. Chem. Phys. 2011, 134, 194508, DOI: 10.1063/1.3589982.
Yan, Y.; Yang, F.; Liu, Y.; Shao, J. Hierarchical approach based on stochastic decoupling to dissipative systems. Chem. Phys. Lett. 2004, 395, 216–221, DOI: 10.1016/j.cplett.2004.07.086.
Xu, R.-X.; Yan, Y. Dynamics of quantum dissipation systems interacting with bosonic canonical bath: Hierarchical equations of motion approach. Phys. Rev. E 2007, 75, 031107, DOI: 10.1103/PhysRevE.75.031107.
Jin, J.; Zheng, X.; Yan, Y. Exact dynamics of dissipative electronic systems and quantum transport: Hierarchical equations of motion approach. J. Chem. Phys. 2008, 128, 234703, DOI: 10.1063/1.2938087.
Zheng, X.; Jin, J.; Yan, Y. Dynamic electronic response of a quantum dot driven by time-dependent voltage. J. Chem. Phys. 2008, 129, 184112, DOI: 10.1063/1.3010886.
Ye, L.; Wang, X.; Hou, D.; Xu, R.-X.; Zheng, X.; Yan, Y. HEOM-QUICK: a pro-
gram for accurate, efficient, and universal characterization of strongly correlated quantum impurity systems. WIREs Comput. Mol. Sci. 2016, 6, 608–638, DOI: 10.1002/wcms.1269.
Zhang, D.; Ye, L.; Cao, J.; Wang, Y.; Xu, R.; Zheng, X.; Yan, Y. HEOM‐QUICK2: A general‐purpose simulator for fermionic many‐body open quantum systems—An update. Wiley Interdiscip. Rev.: Comput. Mol. Sci. 2024, 14, e1727, DOI: 10.1002/wcms.1727.
Ishizaki, A.; Tanimura, Y. Nonperturbative non-Markovian quantum master equation: Validity and limitation to calculate nonlinear response functions. Chem. Phys.2008, 347, 184–193, DOI: 10.1016/j.chemphys.2007.10.037.
Meier, C.; Tannor, D. J. Non-Markovian evolution of the density operator in the presence of strong laser fields. J. Chem. Phys. 1999, 111, 3365–3376, DOI: 10.1063/1.479669.
Liu, H.; Zhu, L.; Bai, S.; Shi, Q. Reduced quantum dynamics with arbitrary bath spectral densities: Hierarchical equations of motion based on several different bathdecomposition schemes. J. Chem. Phys. 2014, 140, 134106, DOI: 10.1063/1.4870035.
Ishizaki, A.; Tanimura, Y. Quantum Dynamics of System Strongly Coupled to Low-Temperature Colored Noise Bath: Reduced Hierarchy Equations Approach. J. Phys.Soc. Jpn. 2005, 74, 3131–3134, DOI: 10.1143/JPSJ.74.3131.
Dalton, B. J.; Barnett, S. M.; Garraway, B. M. Theory of pseudomodes in quantum optical processes. Phys. Rev. A 2001, 64, 053813, DOI: 10.1103/PhysRevA.64.053813.
Tamascelli, D.; Smirne, A.; Huelga, S. F.; Plenio, M. B. Nonperturbative Treatment of non-Markovian Dynamics of Open Quantum Systems. Phys. Rev. Lett. 2018,120, 030402, DOI: 10.1103/PhysRevLett.120.030402.
Lambert, N.; Ahmed, S.; Cirio, M.; Nori, F. Modelling the ultra-strongly coupled spin-boson model with unphysical modes. Nat. Commun. 2019, 10, 3721, DOI: 10.1038/s41467-019-11656-1.
Cirio, M.; Luo, S.; Liang, P.; Nori, F.; Lambert, N. Modeling the unphysical pseu-
domode model with physical ensembles: Simulation, mitigation, and restructuring of non-Markovian quantum noise. Phys. Rev. Res. 2024, 6, 033083, DOI: 10.1103/PhysRevResearch.6.033083.
[32] Li, X.; Lyu, S.-X.; Wang, Y.; Xu, R.-X.; Zheng, X.; Yan, Y. Toward quantum simulation of non-Markovian open quantum dynamics: A universal and compact theory. Phys. Rev. A 2024, 110, 032620, DOI: 10.1103/PhysRevA.110.032620.
Lambert, N.; Raheja, T.; Cross, S.; Menczel, P.; Ahmed, S.; Pitchford, A.; Bur-
garth, D.; Nori, F. QuTiP-BoFiN: A bosonic and fermionic numerical hierarchical-equations-of-motion library with applications in light-harvesting, quantum control, and single-molecule electronics. Phys. Rev. Res. 2023, 5, 013181, DOI: 10.1103/ PhysRevResearch.5.013181.
Cirio, M.; Lambert, N.; Liang, P.; Kuo, P.-C.; Chen, Y.-N.; Menczel, P.; Funo, K.; Nori, F. Pseudofermion method for the exact description of fermionic environments: From single-molecule electronics to the Kondo resonance. Phys. Rev. Res. 2023, 5, 049002, DOI: 10.1103/PhysRevResearch.5.033011.
Cirio, M.; Kuo, P.-C.; Chen, Y.-N.; Nori, F.; Lambert, N. Canonical derivation of the fermionic influence superoperator. Phys. Rev. B 2022, 035121, DOI: 10.1103/PhysRevB.105.035121.
Tanimura, Y. Stochastic Liouville, Langevin, Fokker–Planck, and Master Equation Approaches to Quantum Dissipative Systems. J. Phys. Soc. Jpn. 2006, 75, 082001, DOI: 10.1143/JPSJ.75.082001.
Ishizaki, A.; Fleming, G. R. Unified treatment of quantum coherent and incoherent hopping dynamics in electronic energy transfer: Reduced hierarchy equation approach. J. Chem. Phys. 2009, 130, 234111, DOI: 10.1063/1.3155372.
Matsubara, T. A New Approach to Quantum-Statistical Mechanics. Prog. Theor. Phys. 1955, 14, 351–378, DOI: 10.1143/PTP.14.351.
Wendling, M.; Pullerits, T.; Przyjalgowski, M. A.; Vulto, S. I. E.; Aartsma, T. J.; van
Grondelle, R.; van Amerongen, H. Electron−Vibrational Coupling in the Fenna−Matthews−Olson
Complex of Prosthecochloris aestuarii Determined by Temperature-Dependent Absorption and Fluorescence Line-Narrowing Measurements. J. Phys. Chem. B. 2000, 104, 5825–5831, DOI: 10.1021/jp000077+.
Burkard, G.; Koch, R. H.; DiVincenzo, D. P. Multilevel quantum description of decoherence in superconducting qubits. Phys. Rev. B 2004, 69, 063503, DOI: 10.1103/PhysRevB.69.064503.
Grishin, A.; Yurkevich, I. V.; Lerner, I. V. Low-temperature decoherence of qubit coupled to background charges. Phys. Rev. B 2005, 72, 060509, DOI: 10.1103/PhysRevB.72.060509.
Makri, N.; Makarov, D. E. Tensor propagator for iterative quantum time evolution of reduced density matrices. I. Theory. J. Chem. Phys. 1995, 102, 4600–4610, DOI: 10.1063/1.469508.
Makri, N.; Makarov, D. E. Tensor propagator for iterative quantum time evolution of reduced density matrices. II. Numerical methodology. J. Chem. Phys. 1995, 102, 4611–4618, DOI: 10.1063/1.469509.
Brixner, T.; Stenger, J.; Vaswani, H.; Cho, M.; Blankenship, R.; Fleming, G. Two-dimensional Spectroscopy of Electronic Couplings in Photosynthesis. Nature 2005, 434, 625–628, DOI: 10.1038/nature03429.
Collini E; Wong CY; Wilk KE; Curmi PM; Brumer P; Scholes GD. Coherently wired light-harvesting in photosynthetic marine algae at ambient temperature. Nature 2010, 463, 644–647, DOI: 10.1038/nature08811.
Schlau-Cohen GS; Ishizaki A; Calhoun TR; Ginsberg NS; Ballottari M; Bassi R; Fleming GR. Elucidation of the timescales and origins of quantum electronic coherence in LHCII. Nat. Chem 2012, 4, 389–395, DOI: 10.1038/nchem.1303.
Romero, E.; Augulis, R.; Novoderezhkin, V.; Ferretti, M.; Thieme, J.; Zigmantas, D.; van Grondelle, R. Quantum Coherence in Photosynthesis for Efficient Solar Energy Conversion. Nat. Phys. 2014, 10, 676–682, DOI: 10.1038/nphys3017.
Sahu, A.; Tiwari, V. Isolating non-adiabatically enhanced ground state quantum beats through two-dimensional electronic spectroscopy. J. Chem. Phys. 2025, 162, 064201, DOI: 10.1063/5.0253269.
Shen, K.; Sun, K.; Gelin, M. F.; Zhao, Y. 2D Electronic Spectroscopy Uncovers 2D Materials: Theoretical Study of Nanocavity-Integrated Monolayer Semiconductors. J. Phys. Chem. Lett. 2025, 16, 3264–3273, DOI: 10.1021/acs.jpclett.5c00280.
Cheng YC, F. G. Dynamics of light harvesting in photosynthesis. Annu. Rev. Phys. Chem. 2009, 60, 241–262, DOI: 10.1146/annurev.physchem.040808.090259.
Leng, X.; Yue, S.; Weng, Y.-X.; Song, K.; Shi, Q. Effects of finite laser pulse width on two-dimensional electronic spectroscopy. Chem. Phys. Lett. 2017, 667, 79–86, DOI: 10.1016/j.cplett.2016.11.030.
Fuller, F. D.; Pan, J.; Gelzinis, A.; Butkus, V.; Senlik, S. S.; Wilcox, D. E.; Yocum, C. F.; Valkunas, L.; Abramavicius, D.; Ogilvie, J. P. Vibronic coherence in oxygenic photosynthesis. Nat. Chem. 2014, 6, 706–711, DOI: 10.1038/nchem.2005.
Cho, M.; Vaswani, H. M.; Brixner, T.; Stenger, J.; Fleming, G. R. Exciton Analysis in 2D Electronic Spectroscopy. J. Phys. Chem. B 2005, 109, 10542–10556, DOI: 10.1021/jp050788d.
Kramer, T.; Noack, M.; Reinefeld, A.; Rodríguez, M.; Zelinskyy, Y. Efficient cal-
culation of open quantum system dynamics and time-resolved spectroscopy with distributed memory HEOM (DM-HEOM). J. Comput. Chem. 2018, 39, 1779–1794, DOI: 10.1002/jcc.25354.
Hein, B.; Kreisbeck, C.; Kramer, T.; Rodríguez, M. Modelling of oscillations in two-dimensional echo-spectra of the Fenna–Matthews–Olson complex. New J. Phys. 2012, 14, 023018, DOI: 10.1088/1367-2630/14/2/023018.
Mukamel, S., Principles of Nonlinear Optical Spectroscopy; Oxford University Press: New York, 1995.
Gelin, M. F.; Egorova, D.; Domcke, W. Efficient method for the calculation of time and frequency-resolved four-wave mixing signals and its application to photon-echo spectroscopy. J. Chem. Phys. 2005, 123, 164112, DOI: 10.1063/1.2062188.
Egorova, D.; Gelin, M. F.; Domcke, W. Analysis of cross peaks in two-dimensional electronic photon-echo spectroscopy for simple models with vibrations and dissipation. J. Chem. Phys. 2007, 126, 074314, DOI: 10.1063/1.2435353.
Abramavicius, D.; Voronine, D. V.; Mukamel, S. Double-quantum resonances and exciton-scattering in coherent 2D spectroscopy of photosynthetic complexes. Proc.Natl. Acad. Sci. U.S.A. 2008, 105, 8525–8530, DOI: 10.1073/pnas.0802926105.
Cheng, Y.-C.; Fleming, G. R. Coherence Quantum Beats in Two-Dimensional Electronic Spectroscopy. J. Phys. Chem. A 2008, 112, 4254–4260, DOI: 10.1021/jp7107889.
Harel, E.; Engel, G. S. Quantum coherence spectroscopy reveals complex dynamics in bacterial light-harvesting complex 2 (LH2). Proc. Natl. Acad. Sci. U.S.A. 2012,109, 706–711, DOI: 10.1073/pnas.1110312109.
Hayes, D.; Griffin, G. B.; Engel, G. S. Engineering Coherence Among Excited States in Synthetic Heterodimer Systems. SCI. 2013, 340, 1431–1434, DOI: 10.1126/science.1233828.
Kwak, K.; Park, S.; Finkelstein, I. J.; Fayer, M. D. Frequency-frequency correlation functions and apodization in two-dimensional infrared vibrational echo spectroscopy: A new approach. J. Chem. Phys. 2007, 127, 124503, DOI: 10.1063/1.2772269.
Sun, Z.-H.; Yao, Y.-X.; Ai, Q.; Cheng, Y.-C. Theory of Center-Line Slope in 2D Electronic Spectroscopy with Static Disorder. Adv. Quantum Technol. 2023, 8, 2300163, DOI: 10.1002/qute.202300163.
Jang, S. Theory of coherent resonance energy transfer for coherent initial condition. J. Chem. Phys. 2009, 131, 164101, DOI: 10.1063/1.3247899.
Jang, S. Theory of multichromophoric coherent resonance energy transfer: A polaronic quantum master equation approach. J. Chem. Phys. 2011, 135, 034105, DOI:10.1063/1.3608914.
Landau, L. D. Electron Motion in Crystal Lattices. Phys. Z. Sowjetunion 1933, 3, 67–68, DOI: 10.1016/b978-0-08-010586-4.50015-8.
Fröhlich, H. Electrons in lattice fields. Adv. Phys. 1954, 3, 325–361, DOI: 10.1080/00018735400101213.
Holstein, T. Studies of polaron motion: Part I. The molecular-crystal model. Ann. Phys. 1959, 8, 325–342, DOI: 10.1016/0003-4916(59)90002-8.
Holstein, T. Studies of polaron motion: Part II. The “small"polaron. Ann. Phys.1959, 8, 343–389, DOI: 10.1016/0003-4916(59)90003-X.
Oseledets, I. V. Tensor-Train Decomposition. SINUM. 2011, 33, 2295–2317, DOI:10.1137/090752286.
Lubich, C.; Oseledets, I. V.; Vandereycken, B. Time Integration of Tensor Trains.SINUM. 2015, 53, 917–941, DOI: 10.1137/140976546.
Haegeman, J.; Lubich, C.; Oseledets, I.; Vandereycken, B.; Verstraete, F. Unifying time evolution and optimization with matrix product states. Phys. Rev. B 2016, 94,165116, DOI: 10.1103/PhysRevB.94.165116.
Orús, R. A practical introduction to tensor networks: Matrix product states and projected entangled pair states. Ann. Phys. 2014, 349, 117–158, DOI: 10.1016/j.aop.2014.06.013.
Jiang, T.; O’Gorman, B.; Mahajan, A.; Lee, J. Unbiasing fermionic auxiliary-field quantum Monte Carlo with matrix product state trial wavefunctions. Phys. Rev. Res.2025, 7, 013038, DOI: 10.1103/PhysRevResearch.7.013038.
Tang, W.; Verstraete, F.; Haegeman, J. Matrix product state fixed points of non-Hermitian transfer matrices. Phys. Rev. B 2025, 111, 035107, DOI: 10.1103/PhysRevB.111.035107.
Eckart, C.; Young, G. The Approximation of One Matrix by Another of Lower Rank. Psychometrika 1936, 1, 211–218, DOI: 10.1007/BF02288367.
[78] Shi, Q.; Xu, Y.; Yan, Y.; Xu, M. Efficient propagation of the hierarchical equations of motion using the matrix product state method. J. Chem. Phys. 2018, 148, 174102,DOI: 10.1063/1.5026753.
Ma, J.; Sun, Z.; Wang, X.; Nori, F. Entanglement dynamics of two qubits in a common bath. Phys. Rev. A 2012, 85, 062323, DOI: 10.1103/PhysRevA.85.062323.
Vulto, S. I. E.; Neerken, S.; Louwe, R. J. W.; de Baat, M. A.; Amesz, J.; Aartsma,
T. J. Excited-State Structure and Dynamics in FMO Antenna Complexes from Photosynthetic Green Sulfur Bacteria. J. Phys. Chem. B 1998, 103, 8153–8161, DOI:10.1021/jp983003v.
R.P Feynman; F.L Vernon The theory of a general quantum system interacting with a linear dissipative system. Ann. Phys. 1963, 24, 118–173, DOI: 10.1016/0003-4916(63)90068-X.
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/97716-
dc.description.abstract層次運動方程式(Hierarchical Equations of Motion, HEOM)方法可在諧振環境下對開放量子系統動力學進行數值精確模擬,然而在強系統-環境耦合或極低溫條件下,HEOM 方法的計算成本將變得難以負擔。此外,HEOM 模擬中所採用的環境頻譜密度(spectral density)常受限於 Debye–Lorentz 形式,以利時間相關函數(Time Correlation Function, TCF)的指數展開。為克服這些限制,我們提出一種有效熱振盪模型(Effective Thermal Oscillator Model, ETOM),此方法可直接將 TCF 解釋為一系列振盪性的指數衰退項,避免了低溫修正的繁瑣處理,並顯著減少在模擬任意頻譜密度時所需的輔助密度算符(Auxiliary Density Operators, ADO)數量。此外,我們亦結合 GPU 加速以提升計算效率,使 HEOM 方法能更快速地模擬開放量子系統的動力學。針對一系列模型系統,我們應用 ETOM-HEOM 方法進行族群動力學與二維電子光譜(2D electronic spectra)模擬並分析光譜峰值訊號變化帶來的非馬可夫性質。最後,我們將 ETOM-HEOM 與標準 HEOM 及其他數值精確方法進行比較,驗證新方法之正確性與可靠性。我們期望 ETOM-HEOM 能成為一套功能強大且開放原始碼的模擬工具,為化學與物理領域中重要的量子動力學現象提供高效且精確的模擬工具。zh_TW
dc.description.abstractHierarchical equations of motion (HEOM) approach offers exact numerical simulations of open quantum system dynamics under harmonic baths, but it becomes computationally intractable for strong system-bath coupling or low temperature regime. Furthermore, the bath spectral density used in HEOM simulations is often constrained to the Debye–Lorentz form for time correlation function (TCF) exponential expansion. To overcome these limitations, we propose an effective thermal oscillator model (ETOM), which directly interprets TCF to a series of oscillatory exponential terms and avoids both cumbersome low-temperature corrections and large number of auxiliary density operators needed to simulate arbitrary spectral densities. Moreover, we also incorporate GPU acceleration to enhance computational efficiency, enabling faster simulations of open quantum system dynamics using the HEOM approach. Applications of the ETOM-HEOM method for calculations of population dynamics as well as 2D electronic spectra for a series of model systems across a wide parameter regime were carried out to analyze the variance in 2D peaks signal and explore the non-Markovian property of the system. Finally, we compared ETOM-HEOM with standard HEOM and other numerically exact method to confirm the validity of the new approach. We expect ETOM-HEOM to become a powerful and open source tools for efficient and accurate simulations of quantum dynamical phenomena important in chemistry and physics.en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2025-07-11T16:19:12Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2025-07-11T16:19:12Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontentsVerification Letter from the Oral Examination Committee i
Acknowledgements iii
摘要 v
Abstract vii
Contents ix
List of Figures xiii
List of Tables xix
Denotation xxi
Chapter 1 Introduction 1
1.1 Open Quantum System . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Hierarchical Equation of Motion (HEOM) . . . . . . . . . . . . . . . 2
1.2.1 Comparison with Förster Theory and Redfield Theory . . . . . . . . 3
1.3 Limitations of HEOM Approach . . . . . . . . . . . . . . . . . . . . 7
1.3.1 Debye-Lorentz Spectral Density Constraints: Parametrization Strat-egy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
1.3.2 Low-Temperature Challenges in HEOM: Review of Numerical Ap-proaches . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
1.3.3 Pseudomode-Based Methods: A Survey of Recent Advances . . . . 11
1.4 Scope and Organization of This Work . . . . . . . . . . . . . . . . . 12
Chapter 2 Methodology 13
2.1 Open Quantum System Model . . . . . . . . . . . . . . . . . . . . . 13
2.1.1 Exciton–Bath Composite Hamiltonian . . . . . . . . . . . . . . . . 13
2.1.2 Spectral Density and Bath Correlation Function . . . . . . . . . . . 14
2.2 Hierarchical Equations of Motion (HEOM) for Open System Dynamics 16
2.2.1 Matsubara Expansion for Debye–Lorentz Spectral Densities . . . . 16
2.2.2 Reduced System Density Operator Evolution . . . . . . . . . . . . 18
2.2.3 General HEOM Structure and Truncation Rule . . . . . . . . . . . . 20
2.2.4 Computational Bottlenecks in HEOM . . . . . . . . . . . . . . . . 22
2.3 Effective Thermal Oscillator Model (ETOM) . . . . . . . . . . . . . 23
2.3.1 Representation via Underdamped Mode Decomposition . . . . . . . 24
2.3.2 Flexibility and Temperature Dependence . . . . . . . . . . . . . . . 25
Chapter 3 ETOM Expanded Time Correlation Functions 27
3.1 Mode Expansion of Bath Correlations via ETOM . . . . . . . . . . 27
3.1.1 Debye–Lorentz TCF Approximation . . . . . . . . . . . . . . . . . 28
3.1.2 Super-Ohmic TCF Approximation . . . . . . . . . . . . . . . . . . 28
3.2 Scaling Behavior of System-Bath Coupling Strengths . . . . . . . . . 30
Chapter 4 ETOM-HEOM Population Dynamics Simulations 31
4.1 Debye–Lorentz Bath: Population Dynamics . . . . . . . . . . . . . 31
4.1.1 Benchmarking with Traditional HEOM . . . . . . . . . . . . . . . 32
4.1.2 ETOM-HEOM vs. QuTiP-BoFiN Under Cryogenic Limits . . . . . 34
4.2 Super-Ohmic Bath: Population Dynamics . . . . . . . . . . . . . . 37
4.2.1 Coupling Effects on Decoherence and Damping . . . . . . . . . . . 38
4.2.2 Energy Gap and Coupling Effects on Population Localization and Oscillation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
4.2.3 Cryogenic Effect on Preservation of Quantum Coherence . . . . . . 42
Chapter 5 2DES Simulations from ETOM-HEOM 45
5.1 Dynamics Simulation of 2DES Spectrum . . . . . . . . . . . . . . . 45
5.1.1 Overview of 2DES and Its Relevance to Excitonic Dynamics . . . . 45
5.1.2 Laser–Matter Interaction and Exciton Manifold Construction . . . . 46
5.1.3 Finite-Pulse 2DES Signal within the HEOM Framework . . . . . . 48
5.1.4 2D Fourier Analysis and Spectrum Construction . . . . . . . . . . . 49
5.2 Population-Time Evolution of 2D Spectral Peaks in an Ohmic Dimer 50
5.2.1 Population–dynamics signatures in 2DES . . . . . . . . . . . . . . 50
5.2.2 ETOM–HEOM simulation of an Ohmic dimer . . . . . . . . . . . . 51
5.3 Spectral Diffusion Analysis via Central Line Slope . . . . . . . . . . 53
5.3.1 Time-Resolved CLS and its Connection to Environmental Memory . 54
5.3.2 Spectral-Diffusion Kinetics Revealed by CLS . . . . . . . . . . . . 54
5.4 Quantum Beating Signatures in Non-Rephasing Spectra . . . . . . . 56
5.4.1 Physical Origin of Quantum Beating in 2DES . . . . . . . . . . . . 56
5.4.2 Double-Sided Feynman Diagram Analysis of Coherence Pathways . 57
5.4.3 Impact of System–Bath Coupling Strength on Beating Frequency . . 58
Chapter 6 GPU Implementation 63
6.1 GPU Program Workflow . . . . . . . . . . . . . . . . . . . . . . . . 64
6.2 Parallel Performance of ETOM–HEOM . . . . . . . . . . . . . . . . 66
6.2.1 Nominal scaling and dominant bottlenecks . . . . . . . . . . . . . . 66
6.2.2 Runtime crossover as a function of system size . . . . . . . . . . . 67
6.3 Memory Bottlenecks and Further Optimization Strategies . . . . . . 69
6.3.1 Matrix–Product Compression of the HEOM . . . . . . . . . . . . . 69
6.3.2 MPS Decoposition with ETOM . . . . . . . . . . . . . . . . . . . . 71
6.3.3 GPU Acceleration with cuTensor and cuTensorNet . . . . . . . . . 72
Chapter 7 Conclusion 73
References 75
Appendix A — Limitations of the Cos–Sin TCF Decomposition 85
Appendix B — Parameter Correspondence between Thesis Notation and Source Code 89
-
dc.language.isoen-
dc.subject圖形處理器zh_TW
dc.subject任意譜密度zh_TW
dc.subject非馬可夫動力學zh_TW
dc.subject層次運動方程zh_TW
dc.subjectGPUen
dc.subjectHierarchical Equations of Motionen
dc.subjectNon-Markovian-Dynamicsen
dc.subjectArbitrary Spectral Densityen
dc.title具有有效熱振子模型框架的層次運動方程zh_TW
dc.titleEffective Thermal Oscillator Model Framework for HEOMen
dc.typeThesis-
dc.date.schoolyear113-2-
dc.description.degree碩士-
dc.contributor.oralexamcommittee金必耀;許良彥;林倫年zh_TW
dc.contributor.oralexamcommitteeBIH-YAW JIN;Liang-Yan Hsu;Michitoshi Hayashien
dc.subject.keyword層次運動方程,非馬可夫動力學,任意譜密度,圖形處理器,zh_TW
dc.subject.keywordHierarchical Equations of Motion,Non-Markovian-Dynamics,Arbitrary Spectral Density,GPU,en
dc.relation.page90-
dc.identifier.doi10.6342/NTU202501504-
dc.rights.note同意授權(全球公開)-
dc.date.accepted2025-07-04-
dc.contributor.author-college理學院-
dc.contributor.author-dept化學系-
dc.date.embargo-lift2025-07-12-
顯示於系所單位:化學系

文件中的檔案:
檔案 大小格式 
ntu-113-2.pdf2.06 MBAdobe PDF檢視/開啟
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved