請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/97689完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 吳嘉文 | zh_TW |
| dc.contributor.advisor | Kevin C.-W. Wu | en |
| dc.contributor.author | 陳彥璋 | zh_TW |
| dc.contributor.author | Yen-Chang Chen | en |
| dc.date.accessioned | 2025-07-11T16:11:47Z | - |
| dc.date.available | 2025-07-12 | - |
| dc.date.copyright | 2025-07-11 | - |
| dc.date.issued | 2025 | - |
| dc.date.submitted | 2025-07-01 | - |
| dc.identifier.citation | [1] Torigian, D. A.; Huang, S. S.; Houseni, M.; Alavi, A., Functional imaging of cancer with emphasis on molecular techniques. CA Cancer J. Clin. 2007, 57, 206-224.
[2] Kunjachan, S.; Ehling, J.; Storm, G.; Kiessling, F.; Lammers, T., Noninvasive imaging of nanomedicines and nanotheranostics: principles, progress, and prospects. Chem. Rev. 2015, 115, 10907-10937. [3] Jiang, H.-Y.; Chen, J.; Xia, C.-C.; Cao, L.-K.; Duan, T.; Song, B., Noninvasive imaging of hepatocellular carcinoma: From diagnosis to prognosis. World J. Gastroenterol. 2018, 24, 2348. [4] Fass, L., Imaging and cancer: a review. Mol. Oncol. 2008, 2, 115-152. [5] Koo, V.; Hamilton, P.; Williamson, K., Non‐invasive in vivo imaging in small animal research. Anal. Cell. Pathol. 2006, 28, 127-139. [6] Vogel, A.; Chernomordik, V. V.; Riley, J. D.; Hassan, M.; Amyot, F.; Dasgeb, B.; Demos, S. G.; Pursley, R.; Little, R. F.; Yarchoan, R., Using noninvasive multispectral imaging to quantitatively assess tissue vasculature. J. Biomed. Opt. 2007, 12, 051604-051604-13. [7] Derlin, T.; Grünwald, V.; Steinbach, J.; Wester, H.-J.; Ross, T. L., Molecular imaging in oncology using positron emission tomography. Dtsch. Arztebl. Int. 2018, 115, 175. [8] Jansen, R. W.; van Amstel, P.; Martens, R. M.; Kooi, I. E.; Wesseling, P.; de Langen, A. J.; Menke-Van der Houven, C. W.; Jansen, B. H.; Moll, A. C.; Dorsman, J. C., Non-invasive tumor genotyping using radiogenomic biomarkers, a systematic review and oncology-wide pathway analysis. Oncotarget 2018, 9, 20134. [9] Xiao, Y.-D.; Paudel, R.; Liu, J.; Ma, C.; Zhang, Z.-S.; Zhou, S.-K., MRI contrast agents: Classification and application. Int. J. Mol. Med. 2016, 38, 1319-1326. [10] Yin, Q.; Yap, F. Y.; Yin, L.; Ma, L.; Zhou, Q.; Dobrucki, L. W.; Fan, T. M.; Gaba, R. C.; Cheng, J., Poly (iohexol) nanoparticles as contrast agents for in vivo X-ray computed tomography imaging. J. Am. Chem. Soc. 2013, 135, 13620-13623. [11] Wadas, T. J.; Wong, E. H.; Weisman, G. R.; Anderson, C. J., Coordinating radiometals of copper, gallium, indium, yttrium, and zirconium for PET and SPECT imaging of disease. Chem. Rev. 2010, 110, 2858-2902. [12] Chuang, Y.-C.; Hsia, Y.; Chu, C.-H.; Maharajan, S.; Hsu, F.-C.; Lee, H.-L.; Chiou, J. F.; Ch’ang, H.-J.; Liao, L.-D.; Lo, L.-W., Photothermal temperature-modulated cancer metastasis harnessed using proteinase-triggered assembly of near-infrared II photoacoustic/photothermal nanotheranostics. ACS Appl. Interfaces 2024, 16, 40611-40627. [13] Wang, Y.; Jhang, D.-F.; Tsai, C.-H.; Chiang, N.-J.; Tsao, C.-H.; Chuang, C.-C.; Chen, L.-T.; Chang, W.-S. W.; Liao, L.-D., In vivo assessment of hypoxia levels in pancreatic tumors using a dual-modality ultrasound/photoacoustic imaging system. Micromachines 2021, 12, 668. [14] Sivasubramanian, M.; Wang, Y.; Lo, L.-W.; Liao, L.-D., Personalized cancer therapeutics using photoacoustic imaging-guided sonodynamic therapy. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 2023, 70, 1682-1690. [15] Cai, W.; Chen, K.; Li, Z.-B.; Gambhir, S. S.; Chen, X., Dual-function probe for PET and near-infrared fluorescence imaging of tumor vasculature. J. Nucl. Med. 2007, 48, 1862-1870. [16] Zhang, C.; Sun, W.; Wang, Y.; Xu, F.; Qu, J.; Xia, J.; Shen, M.; Shi, X., Gd-/CuS-loaded functional nanogels for MR/PA imaging-guided tumor-targeted photothermal therapy. ACS Appl. Mater. Interfaces 2020, 12, 9107-9117. [17] Song, J.; Zheng, J.; Li, P.; Lu, X.; Zhu, G.; Shen, P., An effective multimodal image fusion method using MRI and PET for Alzheimer's disease diagnosis. Front. Digital Health 2021, 3, 637386. [18] Liu, Y.; Li, J.; Chen, M.; Chen, X.; Zheng, N., Palladium-based nanomaterials for cancer imaging and therapy. Theranostics 2020, 10, 10057. [19] Kim, J.; Piao, Y.; Hyeon, T., Multifunctional nanostructured materials for multimodal imaging, and simultaneous imaging and therapy. Chem. Soc. Rev. 2009, 38, 372-390. [20] Lusic, H.; Grinstaff, M. W., X-ray-computed tomography contrast agents. Chemical reviews 2013, 113, 1641-1666. [21] Cormode, D. P.; Naha, P. C.; Fayad, Z. A., Nanoparticle contrast agents for computed tomography: a focus on micelles. Contrast Media Mol. Imaging 2014, 9, 37-52. [22] Shi, J.; Tang, Y.; Yao, J., Advances in super-resolution photoacoustic imaging. Quant. Imaging Med. Surg. 2018, 8, 724. [23] Beard, P., Biomedical photoacoustic imaging. Interface Focus 2011, 1, 602-631. [24] Wang, L. V.; Gao, L., Photoacoustic microscopy and computed tomography: from bench to bedside. Annu. Rev. Biomed. Eng. 2014, 16, 155-185. [25] Upputuri, P. K.; Pramanik, M., Recent advances in photoacoustic contrast agents for in vivo imaging. Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol. 2020, 12, e1618. [26] Yuan, B.; Rychak, J., Tumor functional and molecular imaging utilizing ultrasound and ultrasound-mediated optical techniques. Am. J. Pathol. 2013, 182, 305-311. [27] Weber, J.; Beard, P. C.; Bohndiek, S. E., Contrast agents for molecular photoacoustic imaging. Nat. Methods 2016, 13, 639-650. [28] Gargiulo, S.; Albanese, S.; Mancini, M., State‐of‐the‐Art Preclinical Photoacoustic Imaging in Oncology: Recent Advances in Cancer Theranostics. Contrast Media Mol. Imaging 2019, 2019, 5080267. [29] Cai, W.; Chen, X., Multimodality molecular imaging of tumor angiogenesis. J. Nucl. Med. 2008, 49, 113S-128S. [30] Li, M.-L.; Oh, J.-T.; Xie, X.; Ku, G.; Wang, W.; Li, C.; Lungu, G.; Stoica, G.; Wang, L. V., Simultaneous molecular and hypoxia imaging of brain tumors in vivo using spectroscopic photoacoustic tomography. Proc. IEEE 2008, 96, 481-489. [31] Wang, S.; Lin, J.; Wang, T.; Chen, X.; Huang, P., Recent advances in photoacoustic imaging for deep-tissue biomedical applications. Theranostics 2016, 6, 2394. [32] Jung, D.; Park, S.; Lee, C.; Kim, H., Recent progress on near-infrared photoacoustic imaging: imaging modality and organic semiconducting agents. Polymers 2019, 11, 1693. [33] Liu, Y.; Nie, L.; Chen, X., Photoacoustic molecular imaging: from multiscale biomedical applications towards early-stage theranostics. Trends Biotechnol. 2016, 34, 420-433. [34] Hainfeld, J.; Slatkin, D.; Focella, T.; Smilowitz, H., Gold nanoparticles: a new X-ray contrast agent. Br. J. Radiol. 2006, 79, 248-253. [35] Cho, E. C.; Glaus, C.; Chen, J.; Welch, M. J.; Xia, Y., Inorganic nanoparticle-based contrast agents for molecular imaging. Trends Mol. Med. 2010, 16, 561-573. [36] Orza, A.; Yang, Y.; Feng, T.; Wang, X.; Wu, H.; Li, Y.; Yang, L.; Tang, X.; Mao, H., A nanocomposite of Au‐AgI core/shell dimer as a dual‐modality contrast agent for x‐ray computed tomography and photoacoustic imaging. Med. Phys. 2016, 43, 589-599. [37] Hsu, C.-H.; Chen, W.-L.; Hsieh, M.-F.; Gu, Y.; Wu, K. C.-W., Construction of magnetic Fe3O4@ NH2-MIL-100 (Fe)-C18 with excellent hydrophobicity for effective protein separation and purification. Sep. Purif. Technol. 2022, 301, 121986. [38] Tan, J.-X.; Chen, Z.-Y.; Chen, C. H.; Hsieh, M.-F.; Lin, A. Y.-C.; Chen, S. S.; Wu, K. C.-W., Efficient adsorption and photocatalytic degradation of water emerging contaminants through nanoarchitectonics of pore sizes and optical properties of zirconium-based MOFs. J. Hazard. Mater. 2023, 451, 131113. [39] Li, S.-W.; Hsieh, M.-F.; Hong, T.; Chen, P.; Osada, K.; Liu, X.; Aoki, I.; Yu, J.; Wu, K. C.-W.; Cabral, H., Block Copolymer‐Stabilized Metal-Organic Framework Hybrids Loading Pd Nanoparticles Enable Tumor Remission Through Near‐Infrared Photothermal Therapy. Adv. NanoBiomed Res. 2024, 4, 2300107. [40] Gole, B.; Sanyal, U.; Banerjee, R.; Mukherjee, P. S., High loading of Pd nanoparticles by interior functionalization of MOFs for heterogeneous catalysis. Inorg. Chem. 2016, 55, 2345-2354. [41] Yu, Y.-S.; Chen, M.-H.; Chen, H.-M.; Hsu, C.-H.; Su, W.-P.; Wu, K. C.-W., Dual-Sensitization of X-Ray and Near-Infrared Based on Pd-Loaded Metal-Organic Framework for Radiation-Photothermal Combined Cancer Therapy. Available at SSRN 4176677. [42] Xiao, J.-W.; Fan, S.-X.; Wang, F.; Sun, L.-D.; Zheng, X.-Y.; Yan, C.-H., Porous Pd nanoparticles with high photothermal conversion efficiency for efficient ablation of cancer cells. Nanoscale 2014, 6, 4345-4351. [43] Aslan, N.; Ceylan, B.; Koç, M. M.; Findik, F., Metallic nanoparticles as X-Ray computed tomography (CT) contrast agents: A review. J. Mol. Struct. 2020, 1219, 128599. [44] Jackson, P. A.; Rahman, W. N. W. A.; Wong, C. J.; Ackerly, T.; Geso, M., Potential dependent superiority of gold nanoparticles in comparison to iodinated contrast agents. Eur. J. Radiol. 2010, 75, 104-109. [45] Bae, K. T., Intravenous contrast medium administration and scan timing at CT: considerations and approaches. Radiology 2010, 256, 32-61. [46] Nadolski, G. J.; Stavropoulos, S. W., Contrast alternatives for iodinated contrast allergy and renal dysfunction: Options and limitations. J. Vasc. Surg. 2013, 57, 593-598. [47] Hasebroock, K. M.; Serkova, N. J., Toxicity of MRI and CT contrast agents. Expert Opin. Drug Metab. Toxicol. 2009, 5, 403-416. [48] Ledneva, E.; Karie, S.; Launay-Vacher, V.; Janus, N.; Deray, G., Renal safety of gadolinium-based contrast media in patients with chronic renal insufficiency. Radiology 2009, 250, 618-628. [49] Wang, C.; Cai, X.; Zhang, J.; Wang, X.; Wang, Y.; Ge, H.; Yan, W.; Huang, Q.; Xiao, J.; Zhang, Q., Trifolium‐like platinum nanoparticle‐mediated photothermal therapy inhibits tumor growth and osteolysis in a bone metastasis model. Small 2015, 11, 2080-2086. [50] Bharathiraja, S.; Bui, N. Q.; Manivasagan, P.; Moorthy, M. S.; Mondal, S.; Seo, H.; Phuoc, N. T.; Vy Phan, T. T.; Kim, H.; Lee, K. D., Multimodal tumor-homing chitosan oligosaccharide-coated biocompatible palladium nanoparticles for photo-based imaging and therapy. Sci. Rep. 2018, 8, 500. [51] Manivasagan, P.; Bharathiraja, S.; Santha Moorthy, M.; Mondal, S.; Nguyen, T. P.; Kim, H.; Phan, T. T. V.; Lee, K. D.; Oh, J., Biocompatible chitosan oligosaccharide modified gold nanorods as highly effective photothermal agents for ablation of breast cancer cells. Polymers 2018, 10, 232. [52] Doan, T. L.; Nguyen, H. L.; Pham, H. Q.; Pham‐Tran, N. N.; Le, T. N.; Cordova, K. E., Tailoring the optical absorption of water‐stable ZrIV‐and HfIV‐based metal-organic framework photocatalysts. Chem. Asian J. 2015, 10, 2660-2668. [53] Yu, Y.-S.; Liang, Y.-Y.; Hsieh, C.-C.; Lin, Z.-J.; Cheng, P.-H.; Cheng, C.-C.; Chen, S.-P.; Lai, L.-J.; Wu, K. C.-W., Downsizing and soft X-ray tomography for cellular uptake of interpenetrated metal–organic frameworks. J. Mater. Chem. B 2024. [54] Chien, W.-C.; Cheng, P.-H.; Cheng, X.-J.; Chuang, C.-C.; Huang, Y.-T.; Ts, A.; Liu, C.-H.; Lu, Y.-J.; Wu, K. C.-W., MCP-1-functionalized, core–shell gold nanorod@ iron-based metal–organic framework (MCP-1/GNR@ MIL-100 (Fe)) for photothermal therapy. ACS Appl. Mater. Interfaces 2021, 13, 52092-52105. [55] Marshall, R. J.; Griffin, S. L.; Wilson, C.; Forgan, R. S., Stereoselective Halogenation of Integral Unsaturated C-C Bonds in Chemically and Mechanically Robust Zr and Hf MOFs. Chem. Eur. J. 2016, 22, 4870-7. [56] Marshall, R. J.; Richards, T.; Hobday, C. L.; Murphie, C. F.; Wilson, C.; Moggach, S. A.; Bennett, T. D.; Forgan, R. S., Postsynthetic bromination of UiO-66 analogues: altering linker flexibility and mechanical compliance. Dalton Trans. 2016, 45, 4132-4135. [57] Hsieh, C.-C.; Lin, Z.-J.; Lai, L.-J., Construction of low humidity biosafety level-2 laboratory for cryo-sample environment for soft x-ray tomography imaging at Taiwan photon source. AIP Conf. Proc. 2023, 2990. [58] Koga, H.; Selvendiran, K.; Sivakumar, R.; Yoshida, T.; Torimura, T.; Ueno, T.; Sata, M., PPARγ potentiates anticancer effects of gemcitabine on human pancreatic cancer cells. Int. J. Oncol. 2012, 40, 679-685. [59] Yu, Y.-S.; Liang, Y.-Y.; Hsieh, C.-C.; Lin, Z.-J.; Cheng, P.-H.; Cheng, C.-C.; Chen, S.-P.; Lai, L.-J.; Wu, K. C. W., Downsizing and soft X-ray tomography for cellular uptake of interpenetrated metal–organic frameworks. J. Mater. Chem. B 2024, 12, 6079-6090. [60] Marshall, R. J.; Griffin, S. L.; Wilson, C.; Forgan, R. S., Single-Crystal to Single-Crystal Mechanical Contraction of Metal–Organic Frameworks through Stereoselective Postsynthetic Bromination. J. Mater. Chem. B 2015, 137, 9527-9530. [61] Dolai, J.; Mandal, K.; Jana, N. R., Nanoparticle size effects in biomedical applications. ACS Appl. Nano Mater. 2021, 4, 6471-6496. [62] Brown, S.; Bailey, D. L.; Willowson, K.; Baldock, C., Investigation of the relationship between linear attenuation coefficients and CT Hounsfield units using radionuclides for SPECT. Appl. Radiat. Isot. 2008, 66, 1206-1212. [63] Loomis, K.; McNeeley, K.; Bellamkonda, R. V., Nanoparticles with targeting, triggered release, and imaging functionality for cancer applications. Soft Matter 2011, 7, 839-856. [64] Yoo, J.-W.; Chambers, E.; Mitragotri, S., Factors that control the circulation time of nanoparticles in blood: challenges, solutions and future prospects. Curr. Pharm. Des. 2010, 16, 2298-2307. [65] Sun, Z.; Zhao, Y.; Li, Z.; Cui, H.; Zhou, Y.; Li, W.; Tao, W.; Zhang, H.; Wang, H.; Chu, P. K., As an efficient contrast agent for in vivo photoacoustic imaging of cancer. Small 2017, 13, 10.1002. [66] Mantri, Y.; Jokerst, J. V., Engineering plasmonic nanoparticles for enhanced photoacoustic imaging. ACS Nano 2020, 14, 9408-9422. [67] Liu, D.; Lu, K.; Poon, C.; Lin, W., Metal–organic frameworks as sensory materials and imaging agents. Inorg. Chem. 2014, 53, 1916-1924. [68] Bulte, J. W.; Kraitchman, D. L., Iron oxide MR contrast agents for molecular and cellular imaging. NMR in Biomed. 2004, 17, 484-499. [69] Kim, D.; Park, S.; Lee, J. H.; Jeong, Y. Y.; Jon, S., Antibiofouling polymer-coated gold nanoparticles as a contrast agent for in vivo X-ray computed tomography imaging. J. Am. Chem. Soc. 2007, 129, 7661-7665. [70] Furukawa, H.; Cordova, K. E.; O’Keeffe, M.; Yaghi, O. M., The chemistry and applications of metal-organic frameworks. Science 2013, 341, 1230444. [71] Alkilany, A. M.; Murphy, C. J., Toxicity and cellular uptake of gold nanoparticles: what we have learned so far? J. Nanopart. Res. 2010, 12, 2313-2333. [72] Chowdhury, M. A., Metal‐organic frameworks for biomedical applications in drug delivery, and as MRI contrast agents. J. Biomed. Mater. Res. Part A 2017, 105, 1184-1194. [73] Wang, G. D.; Chen, H.; Tang, W.; Lee, D.; Xie, J., Gd and Eu co-doped nanoscale metal–organic framework as a T1–T2 dual-modal contrast agent for magnetic resonance imaging. Tomography 2016, 2, 179. [74] DeKrafft, K. E.; Boyle, W. S.; Burk, L. M.; Zhou, O. Z.; Lin, W., Zr-and Hf-based nanoscale metal–organic frameworks as contrast agents for computed tomography. J. Mater. Chem. 2012, 22, 18139-18144. [75] Rieter, W. J.; Taylor, K. M.; An, H.; Lin, W.; Lin, W., Nanoscale metal− organic frameworks as potential multimodal contrast enhancing agents. J. Am. Chem. Soc. 2006, 128, 9024-9025. [76] Tian, C.; Zhu, L.; Lin, F.; Boyes, S. G., Poly (acrylic acid) bridged gadolinium metal–organic framework–gold nanoparticle composites as contrast agents for computed tomography and magnetic resonance bimodal imaging. ACS Appl. Mater. Interfaces 2015, 7, 17765-17775. [77] Gielen, J. L.; De Schepper, A. M.; Vanhoenacker, F.; Parizel, P. M.; Wang, X. L.; Sciot, R.; Weyler, J., Accuracy of MRI in characterization of soft tissue tumors and tumor-like lesions. A prospective study in 548 patients. Eur. Radio. 2004, 14, 2320-2330. [78] Gong, T.; Li, Y.; Lv, B.; Wang, H.; Liu, Y.; Yang, W.; Wu, Y.; Jiang, X.; Gao, H.; Zheng, X., Full-process radiosensitization based on nanoscale metal–organic frameworks. ACS Nano 2020, 14, 3032-3040. [79] Liu, Y.; Li, J.; Chen, M.; Chen, X.; Zheng, N., Palladium-based nanomaterials for cancer imaging and therapy. Theranostics 2020, 10, 10057-10074. [80] Hasebroock, K. M.; and Serkova, N. J., Toxicity of MRI and CT contrast agents. Expert Opin. Drug Metab. Toxicol. 2009, 5, 403-416. [81] Kumar, P.; Anand, B.; Tsang, Y. F.; Kim, K.-H.; Khullar, S.; Wang, B., Regeneration, degradation, and toxicity effect of MOFs: Opportunities and challenges. Environ. Res. 2019, 176, 108488. [82] Kumar, S.; Jain, S.; Nehra, M.; Dilbaghi, N.; Marrazza, G.; Kim, K.-H., Green synthesis of metal–organic frameworks: A state-of-the-art review of potential environmental and medical applications. Coord. Chem. Rev. 2020, 420, 213407. | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/97689 | - |
| dc.description.abstract | 非侵入式癌症影像技術能夠提供結構與功能層面的腫瘤綜合資訊,進而提升診斷準確性。本研究中,我們開發了負載鈀奈米顆粒的基於鉿金屬有機框架(Hf-EDB)材料,即 Pd@Hf-EDB,作為高效的電腦斷層掃描(CT)與光聲影像(PAI)雙模態顯影劑。Pd@Hf-EDB 的優異表現來自於三方面的協同作用:(i) 含高原子序元素鉿的MOF具備卓越的X光吸收能力;(ii) H2EDB有機配體具有特殊的π供體與π受體特性,能夠強力錨定貴金屬;(iii) 鈀奈米顆粒則因強烈的能帶間躍遷,在紫外到近紅外區域具有寬廣的吸收範圍。透過X光繞射(XRD)、掃描式電子顯微鏡(SEM)、穿透式電子顯微鏡(TEM)、動態光散射(DLS)與能量散射X光光譜(EDS)等分析技術,成功證實了Pd@Hf-EDB奈米粒子的合成。軟X光斷層掃描(SXT)結果進一步驗證了Pd@Hf-EDB能夠經由胰臟癌細胞株BxPC-3細胞的吞噬作用進入細胞。體外實驗顯示,Pd@Hf-EDB在CT成像中的表現優於傳統分子型對比劑(如Iohexol)。此外,Pd@Hf-EDB在紫外-可見-近紅外區域展現出廣泛的吸收範圍,且相較於金奈米棒(GNRs),在光聲影像方面具有更優異的性能。進一步透過活體異種移植腫瘤模型實驗,證實了Pd@Hf-EDB於腫瘤區域產生明顯的對比增強,展現其在PAI與CT影像的卓越應用潛力。 | zh_TW |
| dc.description.abstract | Noninvasive cancer imaging improves diagnostics by providing comprehensive information on structural and functional tumors. Herein, we explored palladium nanoparticles loaded hafnium-based metal-organic framework (Hf-EDB) i.e., Pd@Hf-EDB as an efficient dual modal contrast agent for computed tomography (CT) and photoacoustic imaging (PAI). The synergistic collaborations between (i) high-Z element Hf based MOF with superior X-rays absorbing capabilities, (ii) H2EDB linkers with special π-donation and π-acceptor characteristics capable of strongly anchoring noble metals and (iii) Pd nanoparticles with broad absorption in the UV to NIR regions due to strong interband transition; are ideal for implementation in CT and PAI. The successful synthesis of Pd@Hf-EDB nanoparticles were confirmed through morphology, crystallinity, and compositional characterizations using XRD, SEM, TEM, DLS, and EDS. Soft X-ray tomography (SXT), verified cellular uptake via phagocytosis of Pd@Hf-EDB by BxPC-3 tumor cells. In-vitro experiments revealed superior CT imaging performance of Pd@Hf-EDB over traditional molecular contrast agents like Iohexol. Broad absorption range in the UV-Vis/NIR regions and superior PAI capabilities of Pd@Hf-EDB relative to gold nanorods (GNRs) is reported. Furthermore, the in vivo xenograft model demonstrated significant contrast enhancements near the tumor highlighting the excellent PAI and CT capabilities of the synthesized Pd@Hf-EDB. | en |
| dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2025-07-11T16:11:46Z No. of bitstreams: 0 | en |
| dc.description.provenance | Made available in DSpace on 2025-07-11T16:11:47Z (GMT). No. of bitstreams: 0 | en |
| dc.description.tableofcontents | 口試委員會審定書 i
致謝 ii 中文摘要 iii Abstract iv Table of Contents vi List of Figures viii List of Tables xii 1. Introduction 1 1.1. Introduction from Published Work 1 1.2. Importance of Cancer Imaging in Early Diagnosis 6 1.3. Principles and Limitations of Computed Tomography (CT) 6 1.4. Advantages of Photoacoustic Imaging and Complementarity to CT 7 1.5. Mechanism and Contrast Agents of Photoacoustic Imaging 9 1.6. Design Strategy for Dual-Modal CT/PA Imaging Agents 10 1.7. Research Objective 12 2. Experimental section 13 2.1. Materials 13 2.2. Synthesis of 4,4'- (ethyne-1,2-diyl) dibenzoic acid (H2EDB) Linker 18 2.2.1 Synthesis of Me2EDB 19 2.2.2 Synthesis of H2EDB 20 2.3. Synthesis of Hf-EDB 20 2.4. Incorporation of Pd NPs in Hf-EDB 21 2.5. Synthesis of Gold Nanorods 23 2.6. Characterization 23 2.6.1 Scanning Electron Microscopy (SEM) 23 2.6.2 X-ray Diffraction (XRD) 24 2.6.3 Zeta Potential 24 2.6.4 Particle Size 24 2.6.5 Specific Surface Area 25 2.6.6 Nuclear Magnetic Resonance (NMR) 25 2.6.7 Transmission Electron Microscope (TEM) 25 2.6.8 Inductively coupled plasma optical emission spectrometer (ICP-OES) 26 2.6.9 Ultraviolet-visible (UV-Vis) 26 2.7. Cell Line 26 2.8. Cell Subculture 26 2.9. Cell Viability 27 2.10. Observing the Cellular Uptake of Pd@Hf-EDB using SXT. 28 2.11. In vitro CT imaging 30 2.12. In vitro PA imaging 31 2.13. Animal Model 32 3. Results and Discussion 34 3.1. Synthesis and Characterization of H2EDB Linker 34 3.2. Synthesis and Characterization of Hf-EDB nanoparticles 37 3.3. Incorporation of Pd NPs and Characterization of Pd@Hf-EDB nanoparticles. 40 3.4. Cell Viability 48 3.5. Observing the Cellular Uptake of Pd@Hf-EDB using SXT 49 3.6. In vitro CT imaging 54 3.7. In vitro PA imaging 58 3.8. In vivo PA imaging 64 3.9. Comparative analysis with leading technologies 66 3.10. Study limitations 70 4. Conclusions 74 5. References 76 Appendix 83 | - |
| dc.language.iso | en | - |
| dc.subject | 電腦掃描斷層 | zh_TW |
| dc.subject | 光聲影像 | zh_TW |
| dc.subject | 雙模態影像 | zh_TW |
| dc.subject | 金屬有機框架 | zh_TW |
| dc.subject | 孔洞材料 | zh_TW |
| dc.subject | 奈米材料 | zh_TW |
| dc.subject | 顯影劑 | zh_TW |
| dc.subject | nanomaterials | en |
| dc.subject | contrast agent | en |
| dc.subject | computed tomography | en |
| dc.subject | photoacoustic imaging | en |
| dc.subject | dual-modal imaging | en |
| dc.subject | metal-organic frameworks | en |
| dc.subject | porous materials | en |
| dc.title | 功能性金屬有機框架材料於雙模態光聲影像與電腦斷層掃描之應用 | zh_TW |
| dc.title | Functional Medal-Organic Frameworks for Dual-Modal Photoacoustic and Computed Tomography Imaging Applications | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 113-2 | - |
| dc.description.degree | 碩士 | - |
| dc.contributor.oralexamcommittee | 鍾仁傑;游佳欣;莊爾元 | zh_TW |
| dc.contributor.oralexamcommittee | Ren-Jei Chung;Jia-Shing Yu;Er-Yuan Chuang | en |
| dc.subject.keyword | 顯影劑,電腦掃描斷層,光聲影像,雙模態影像,金屬有機框架,孔洞材料,奈米材料, | zh_TW |
| dc.subject.keyword | contrast agent,computed tomography,photoacoustic imaging,dual-modal imaging,metal-organic frameworks,porous materials,nanomaterials, | en |
| dc.relation.page | 83 | - |
| dc.identifier.doi | 10.6342/NTU202501342 | - |
| dc.rights.note | 同意授權(全球公開) | - |
| dc.date.accepted | 2025-07-02 | - |
| dc.contributor.author-college | 工學院 | - |
| dc.contributor.author-dept | 化學工程學系 | - |
| dc.date.embargo-lift | 2025-07-12 | - |
| 顯示於系所單位: | 化學工程學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-113-2.pdf | 35.86 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
