Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 生物資源暨農學院
  3. 動物科學技術學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/97665
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor林原佑zh_TW
dc.contributor.advisorYuan-Yu Linen
dc.contributor.author吳文元zh_TW
dc.contributor.authorWun-Yuan Wuen
dc.date.accessioned2025-07-09T16:18:42Z-
dc.date.available2025-09-23-
dc.date.copyright2025-07-09-
dc.date.issued2025-
dc.date.submitted2025-07-01-
dc.identifier.citation[1] European Food Safety Authority and European Centre for Disease Prevention and Control (EFSA and ECDC), “The European Union One Health 2018 Zoonoses Report,” EFSA Journal, vol. 17, no. 12, 2019.
[2] 廖玲敏, 邱淑君, 胡絲絜, and 林智暉, “2018-2020 臺灣常見細菌性食品中毒之實驗室監測與流行病學探討,” 疫情報導, vol. 40, no. 12, pp. 173–182.
[3] 行政院衛生署疾病管制局, 中華民國比較病理學會, 台灣感染症醫學會, and 台灣醫院感染管制學會, 人畜共通傳染病臨床指引. 行政院衛生署疾病管制局, 2ed.
[4] P. L. CHEN, C. Y. LI, T. H. HSIEH, C. M. CHANG, H. C. LEE, N. Y. LEE, C. J. WU, C. C. LEE, H. I. SHIH, and W. C. KO, “Epidemiology, disease spectrum and economic burden of non-typhoidal Salmonella infections in Taiwan, 2006–2008,” Epidemiology and Infection, vol. 140, no. 12, pp. 2256–2263.
[5] M. R. Islam, C. E. Martinez-Soto, J. T. Lin, C. M. Khursigara, S. Barbut, and H. Anany, “A systematic review from basics to omics on bacteriophage applications in poultry production and processing,” Critical Reviews in Food Science and Nutrition, vol. 63, no. 18, pp. 3097–3129.
[6] D. V. T. Nair and A. Kollanoor Johny, “Salmonella in Poultry Meat Production,” in Food Safety in Poultry Meat Production (K. Venkitanarayanan, S. Thakur, and S. C. Ricke, eds.), pp. 1–24, Springer International Publishing.
[7] B. M. Maciel, R. P. Rezende, and N. Sriranganathan, “Salmonella enterica: Latency,” in Current Topics in Salmonella and Salmonellosis (M. Mares, ed.), InTech.
[8] S. Shaji, R. K. Selvaraj, and R. Shanmugasundaram, “Salmonella Infection in Poultry: A Review on the Pathogen and Control Strategies,” Microorganisms, vol. 11, no. 11, p. 2814.
[9] A. Ijaz, E. J. A. Veldhuizen, F. Broere, V. P. M. G. Rutten, and C. A. Jansen, “The Interplay between Salmonella and Intestinal Innate Immune Cells in Chickens,” Pathogens, vol. 10, no. 11, p. 1512.
[10] C.-H. Wang, Y. Hsieh, Z. M. Powers, and C.-Y. Kao, “Defeating Antibiotic-Resistant Bacteria: Exploring Alternative Therapies for a Post-Antibiotic Era,” International Journal of Molecular Sciences, vol. 21.
[11] A. Kirbis and M. Krizman, “Spread of Antibiotic Resistant Bacteria from Food of Animal Origin to Humans and Vice Versa,” Procedia Food Science, vol. 5, pp. 148–151.
[12] D. M. Lin, B. Koskella, and H. C. Lin, “Phage therapy: An alternative to antibiotics in the age of multi-drug resistance,” World Journal of Gastrointestinal Pharmacology and Therapeutics, vol. 8, no. 3, pp. 162–173.
[13] K. Żbikowska, M. Michalczuk, and B. Dolka, “The Use of Bacteriophages in the Poultry Industry,” Animals, vol. 10, no. 5, p. 872.
[14] S. Ca, “Marine viruses–major players in the global ecosystem,” Nature reviews. Microbiology, vol. 5, no. 10.
[15] D. Turner, A. N. Shkoporov, C. Lood, A. D. Millard, B. E. Dutilh, P. Alfenas-Zerbini, L. Zyl, R. K. Aziz, H. M. Oksanen, M. M. Poranen, A. M. Kropinski, J. Barylski, J. R. Brister, N. Chanisvili, R. A. Edwards, F. Enault, A. Gillis, P. Knezevic, M. Krupovic, I. Kurtböke, A. Kushkina, R. Lavigne, S. Lehman, M. Lobocka, C. Moraru, A. Moreno Switt, V. Morozova, J. Nakavuma, A. Reyes Muñoz, B. S. Rūmnieks, Jānis, M. B. Sullivan, J. Uchiyama, J. Wittmann, T. Yigang, and E. M. Adriaenssens, “Abolishment of morphology-based taxa and change to binomial species names: 2022 taxonomy update of the ICTV bacterial viruses subcommittee,” Archives of Virology, vol. 168, no. 2, p. 74.
[16] A. Abd-El Wahab, S. Basiouni, H. R. El-Seedi, M. F. E. Ahmed, L. R. Bielke, B. Hargis, G. Tellez-Isaias, W. Eisenreich, H. Lehnherr, S. Kittler, A. A. Shehata, and C. Visscher, “An overview of the use of bacteriophages in the poultry industry: Successes, challenges, and possibilities for overcoming breakdowns,” Frontiers in Microbiology, vol. 14, p. 1136638.
[17] G. S. Abeysekera, M. J. Love, S. H. Manners, C. Billington, and R. C. J. Dobson, “Bacteriophage-encoded lethal membrane disruptors: Advances in understanding and potential applications,” Frontiers in Microbiology, vol. 13.
[18] N. H. Acheson, Fundamentals of Molecular Virology. Wiley, 2ed.
[19] N. A. Dafale, Z. J. Hathi, S. Bit, and H. J. Purohit, “Bacteriophage Diversity in Different Habitats and Their Role in Pathogen Control,” in Microbial Factories: Biodiversity, Biopolymers, Bioactive Molecules: Volume 2 (V. C. Kalia, ed.), pp. 259–280, Springer India.
[20] J. Yan, J. Mao, and J. Xie, “Bacteriophage Polysaccharide Depolymerases and Biomedical Applications,” BioDrugs, vol. 28, no. 3, pp. 265–274.
[21] U. Sharma, A. Vipra, and S. Channabasappa, “Phage-derived lysins as potential agents for eradicating biofilms and persisters,” Drug Discovery Today, vol. 23, no. 4, pp. 848–856.
[22] C. Chang, X. Yu, W. Guo, C. Guo, X. Guo, Q. Li, and Y. Zhu, “Bacteriophage-Mediated Control of Biofilm: A Promising New Dawn for the Future,” Frontiers in Microbiology, vol. 13.
[23] A. N. Shkoporov, C. J. Turkington, and C. Hill, “Mutualistic interplay between bacteriophages and bacteria in the human gut,” Nature Reviews Microbiology, vol. 20, no. 12, pp. 737–749.
[24] C. Loc-Carrillo and S. T. Abedon, “Pros and cons of phage therapy,” Bacteriophage, vol. 1, no. 2, pp. 111–114.
[25] V. Daubie, H. Chalhoub, B. Blasdel, H. Dahma, M. Merabishvili, T. Glonti, N. De Vos, J. Quintens, J.-P. Pirnay, M. Hallin, and O. Vandenberg, “Determination of phage susceptibility as a clinical diagnostic tool: A routine perspective,” Frontiers in Cellular and Infection Microbiology, vol. 12, p. 1000721.
[26] T. Glonti and J.-P. Pirnay, “In Vitro Techniques and Measurements of Phage Characteristics That Are Important for Phage Therapy Success,” Viruses, vol. 14, no. 7, p. 1490.
[27] A. Thierauf, G. Perez, and a. S. Maloy, “Generalized Transduction,” in Bacteriophages: Methods and Protocols, Volume 1: Isolation, Characterization, and Interactions (M. R. Clokie and A. M. Kropinski, eds.), pp. 267–286, Humana Press.
[28] Q. Chen, T. Dharmaraj, P. C. Cai, E. B. Burgener, N. L. Haddock, A. J. Spakowitz, and P. L. Bollyky, “Bacteriophage and Bacterial Susceptibility, Resistance, and Tolerance to Antibiotics,” Pharmaceutics, vol. 14, no. 7, p. 1425.
[29] S. Sevilla-Navarro, P. Catalá-Gregori, and C. Marin, “Salmonella Bacteriophage Diversity According to Most Prevalent Salmonella Serovars in Layer and Broiler Poultry Farms from Eastern Spain,” Animals, vol. 10, no. 9, p. 1456.
[30] S. Evran, E. K. Tayyarcan, E. Acar-Soykut, and I. H. Boyaci, “Applications of Bacteriophage Cocktails to Reduce Salmonella Contamination in Poultry Farms,” Food and Environmental Virology, vol. 14, no. 1, pp. 1–9.
[31] P. Korzeniowski, P. Śliwka, M. Kuczkowski, D. Mišić, A. Milcarz, and M. Kuźmińska-Bajor, “Bacteriophage Cocktail Can Effectively Control Salmonella Biofilm in Poultry Housing,” Frontiers in Microbiology, vol. 13, p. 901770.
[32] G. Hao, P. Li, J. Huang, K. Cui, L. Liang, F. Lin, Z. Lu, and S. Sun, “Research Note: Therapeutic effect of a Salmonella phage combination on chicks infected with Salmonella Typhimurium,” Poultry Science, vol. 102, no. 7, p. 102715.
[33] J. Huang, L. Liang, K. Cui, P. Li, G. Hao, and S. Sun, “Salmonella phage CKT1 significantly relieves the body weight loss of chicks by normalizing the abnormal intestinal microbiome caused by hypervirulent Salmonella Pullorum,” Poultry Science, vol. 101, no. 3, p. 101668.
[34] Q. Yang, S. Le, T. Zhu, and N. Wu, “Regulations of phage therapy across the world,” Frontiers in Microbiology, vol. 14.
[35] S. Zia and K. A. Alkheraije, “Recent trends in the use of bacteriophages as replacement of antimicrobials against food-animal pathogens,” Frontiers in Veterinary Science, vol. 10.
[36] European Commission. Joint Research Centre., Overview and Outlook of Phage Therapy and Phage Biocontrol. Publications Office.
[37] P. Adhikari, D. Cosby, N. Cox, J. Lee, and W. Kim, “Effect of dietary bacteriophage supplementation on internal organs, fecal excretion, and ileal immune response in laying hens challenged by Salmonella Enteritidis,” Poultry Science, vol. 96, no. 9, pp. 3264–3271.
[38] Z. Sarrami, M. Sedghi, I. Mohammadi, M. Bedford, H. Miranzadeh, and R. Ghasemi, “Effects of bacteriophage on Salmonella Enteritidis infection in broilers,” Scientific Reports, vol. 13, no. 1, p. 12198.
[39] L. Lorenzo-Rebenaque, C. Casto-Rebollo, G. Diretto, S. Frusciante, J. C. Rodríguez, M.-P. Ventero, C. Molina-Pardines, S. Vega, C. Marin, and F. Marco-Jiménez, “Modulation of Caecal Microbiota and Metabolome Profile in Salmonella-Infected Broilers by Phage Therapy,” International Journal of Molecular Sciences, vol. 24, no. 20, p. 15201.
[40] R. H. Wang, S. Yang, Z. Liu, Y. Zhang, X. Wang, Z. Xu, J. Wang, and S. C. Li, “PhageScope: A well-annotated bacteriophage database with automatic analyses and visualizations,” Nucleic Acids Research, vol. 52, no. D1, pp. D756–D761.
[41] A. Jurczak-Kurek, T. Gąsior, B. Nejman-Faleńczyk, S. Bloch, A. Dydecka, G. Topka, A. Necel, M. Jakubowska-Deredas, M. Narajczyk, M. Richert, A. Mieszkowska, B. Wróbel, G. Węgrzyn, and A. Węgrzyn, “Biodiversity of bacteriophages: Morphological and biological properties of a large group of phages isolated from urban sewage,” Scientific Reports, vol. 6, no. 1, p. 34338.
[42] P. A. De Jonge, F. L. Nobrega, S. J. Brouns, and B. E. Dutilh, “Molecular and Evolutionary Determinants of Bacteriophage Host Range,” Trends in Microbiology, vol. 27, no. 1, pp. 51–63.
[43] S. T. Abedon, “Lysis from without,” Bacteriophage, vol. 1, no. 1, pp. 46–49.
[44] J. E. Egido, A. R. Costa, C. Aparicio-Maldonado, P.-J. Haas, and S. J. J. Brouns, “Mechanisms and clinical importance of bacteriophage resistance,” FEMS Microbiology Reviews, vol. 46, no. 1, p. fuab048.
[45] F. L. Nobrega, M. Vlot, P. A. De Jonge, L. L. Dreesens, H. J. E. Beaumont, R. Lavigne, B. E. Dutilh, and S. J. J. Brouns, “Targeting mechanisms of tailed bacteriophages,” Nature Reviews Microbiology, vol. 16, no. 12, pp. 760–773.
[46] J. Tu, T. Park, D. R. Morado, K. T. Hughes, I. J. Molineux, and J. Liu, “Dual host specificity of phage SP6 is facilitated by tailspike rotation,” Virology, vol. 507, pp. 206–215.
[47] D. Schwarzer, F. F. R. Buettner, C. Browning, S. Nazarov, W. Rabsch, A. Bethe, A. Oberbeck, V. D. Bowman, K. Stummeyer, M. Mühlenhoff, P. G. Leiman, and R. Gerardy-Schahn, “A Multivalent Adsorption Apparatus Explains the Broad Host Range of Phage phi92: A Comprehensive Genomic and Structural Analysis,” Journal of Virology, vol. 86, no. 19, pp. 10384–10398.
[48] Y. Shao and I.-N. Wang, “Bacteriophage Adsorption Rate and Optimal Lysis Time,” Genetics, vol. 180, no. 1, pp. 471–482.
[49] R. Daugelavičius, G. Daujotaitė, and D. H. Bamford, “Lysis Physiology of Pseudomonas aeruginosa Infected with ssRNA Phage PRR1,” Viruses, vol. 16, no. 4, p. 645.
[50] R. Barron-Montenegro, D. Rivera, M. J. Serrano, R. García, D. M. Álvarez, J. Benavides, F. Arredondo, F. P. Álvarez, R. Bastías, S. Ruiz, C. Hamilton-West, E. Castro-Nallar, and A. I. Moreno-Switt, “Long-Term Interactions of Salmonella Enteritidis With a Lytic Phage for 21 Days in High Nutrients Media,” Frontiers in Cellular and Infection Microbiology, vol. 12.
[51] D. Harper, H. Parracho, J. Walker, R. Sharp, G. Hughes, M. Werthén, S. Lehman, and S. Morales, “Bacteriophages and Biofilms,” Antibiotics, vol. 3, pp. 270–284.
[52] H. Steenackers, K. Hermans, J. Vanderleyden, and S. C. J. De Keersmaecker, “Salmonella biofilms: An overview on occurrence, structure, regulation and eradication,” Food Research International, vol. 45, no. 2, pp. 502–531.
[53] S. Stepanović, I. Ćirković, L. Ranin, and M. Svabić-Vlahović, “Biofilm formation by Salmonella spp. and Listeria monocytogenes on plastic surface,” Letters in Applied Microbiology, vol. 38, no. 5, pp. 428–432.
[54] L. Meneses, A. C. Brandão, T. Coenye, A. C. Braga, D. P. Pires, and J. Azeredo, “A systematic review of the use of bacteriophages for in vitro biofilm control,” European Journal of Clinical Microbiology & Infectious Diseases, vol. 42, no. 8, pp. 919–928.
[55] B. M. Coffey and G. G. Anderson, “Biofilm Formation in the 96-Well Microtiter Plate,” in Pseudomonas Methods and Protocols (A. Filloux and J.-L. Ramos, eds.), Methods in Molecular Biology, pp. 631–641, Springer.
[56] R. W. Hendrix, “Bacteriophage genomics,” Current Opinion in Microbiology, vol. 6, no. 5, pp. 506–511.
[57] G. F. Hatfull, “Bacteriophage genomics,” Current Opinion in Microbiology, vol. 11, no. 5, pp. 447–453.
[58] M. Bailly-Bechet, M. Vergassola, and E. Rocha, “Causes for the intriguing presence of tRNAs in phages,” Genome Research, vol. 17, no. 10, pp. 1486–1495.
[59] D. F. Van Den Berg, B. A. Van Der Steen, A. R. Costa, and S. J. Brouns, “Phage tRNAs evade tRNA-targeting host defenses through anticodon loop mutations,” eLife, vol. 12, p. e85183.
[60] R. Kongari, M. Rajaure, J. Cahill, E. Rasche, E. Mijalis, J. Berry, and R. Young, “Phage spanins: Diversity, topological dynamics and gene convergence,” BMC Bioinformatics, vol. 19, no. 1, p. 326.
[61] H. Gerstmans, B. Criel, and Y. Briers, “Synthetic biology of modular endolysins,” Biotechnology Advances, vol. 36, no. 3, pp. 624–640.
[62] A. Zampara, M. C. H. Sørensen, D. Grimon, F. Antenucci, A. R. Vitt, V. Bortolaia, Y. Briers, and L. Brøndsted, “Exploiting phage receptor binding proteins to enable endolysins to kill Gram-negative bacteria,” Scientific Reports, vol. 10, no. 1, p. 12087.
[63] K. Heller and V. Braun, “Polymannose O-antigens of Escherichia coli, the binding sites for the reversible adsorption of bacteriophage T5+ via the L-shaped tail fibers,” Journal of Virology, vol. 41, no. 1, pp. 222–227.
[64] I. Vasquez, J. Retamales, B. Parra, V. Machimbirike, J. Robeson, and J. Santander, “Comparative Genomics of a Polyvalent Escherichia-Salmonella Phage fp01 and In Silico Analysis of Its Receptor Binding Protein and Conserved Enterobacteriaceae Phage Receptor,” Viruses, vol. 15, no. 2, p. 379.
[65] K. Kosznik-Kwaśnicka, L. Grabowski, M. Grabski, M. Kaszubski, M. Górniak, A. Jurczak-Kurek, G. Węgrzyn, and A. Węgrzyn, “Bacteriophages vB_Sen-TO17 and vB_Sen-E22, Newly Isolated Viruses from Chicken Feces, Specific for Several Salmonella enterica Strains,” International Journal of Molecular Sciences, vol. 21, no. 22, p. 8821.
[66] M. Kim, S. Kim, B. Park, and S. Ryu, “Core Lipopolysaccharide-Specific Phage SSU5 as an Auxiliary Component of a Phage Cocktail for Salmonella Biocontrol,” Applied and Environmental Microbiology, vol. 80, no. 3, pp. 1026–1034.
[67] H. Shin, J.-H. Lee, H. Kim, Y. Choi, S. Heu, and S. Ryu, “Receptor Diversity and Host Interaction of Bacteriophages Infecting Salmonella enterica Serovar Typhimurium,” PLOS ONE, vol. 7, no. 8, p. e43392, 2012-8-21.
[68] H.-W. Ackermann, D. Tremblay, and S. Moineau, “Long-Term Bacteriophage Preservation,” Researchgate net publication.
[69] S.-J. Kong and J.-H. Park, “Acid tolerance and morphological characteristics of five Weissella cibaria bacteriophages isolated from kimchi,” Food Science and Biotechnology, vol. 29, no. 6, pp. 873–878.
[70] U. Kim, E. Paul, and A. Diaz, “Characterization of Phages YuuY, KaiHaiDragon, and OneinaGillian Isolated from Microbacterium foliorum,” International Journal of Molecular Sciences, vol. 23.
[71] N. Bonilla, M. I. Rojas, G. Netto Flores Cruz, S.-H. Hung, F. Rohwer, and J. J. Barr, “Phage on tap–a quick and efficient protocol for the preparation of bacteriophage laboratory stocks,” PeerJ, vol. 4, p. e2261.
[72] R. A. Governal and C. P. Gerba, “Persistence of MS-2 and PRD-1 bacteriophages in an ultrapure water system,” Journal of Industrial Microbiology and Biotechnology, vol. 18, no. 5, pp. 297–301.
[73] B. Szermer-Olearnik and J. Boratyński, “Removal of Endotoxins from Bacteriophage Preparations by Extraction with Organic Solvents,” PLOS ONE, vol. 10, no. 3, p. e0122672, 2015-3.
[74] S. Branston, J. L. Wright, and E. Keshavarz‐Moore, “A non-chromatographic method for the removal of endotoxins from bacteriophages,” Biotechnology and bioengineering, vol. 1128, pp. 1714–9.
[75] C. Pereira, C. Moreirinha, M. Lewicka, P. Almeida, C. Clemente, A. Cunha, I. Delgadillo, J. L. Romalde, M. L. Nunes, and A. Almeida, “Bacteriophages with potential to inactivate Salmonella Typhimurium: Use of single phage suspensions and phage cocktails,” Virus Research, vol. 220, pp. 179–192.
[76] F. Forti, D. R. Roach, M. Cafora, M. E. Pasini, D. S. Horner, E. V. Fiscarelli, M. Rossitto, L. Cariani, F. Briani, L. Debarbieux, and D. Ghisotti, “Design of a Broad-Range Bacteriophage Cocktail That Reduces Pseudomonas aeruginosa Biofilms and Treats Acute Infections in Two Animal Models,” Antimicrobial Agents and Chemotherapy, vol. 62, no. 6, pp. 10.1128/aac.02573–17.
[77] J. Marchi, S. Zborowsky, L. Debarbieux, and J. S. Weitz, “The dynamic interplay of bacteriophage, bacteria and the mammalian host during phage therapy,” iScience, vol. 26, no. 2, p. 106004.
[78] I. H. E. Korf, J. P. Meier-Kolthoff, E. M. Adriaenssens, A. M. Kropinski, M. Nimtz, M. Rohde, M. J. v. Raaij, and J. Wittmann, “Still Something to Discover: Novel Insights into Escherichia coli Phage Diversity and Taxonomy,” Viruses, vol. 11, no. 5, p. 454.
[79] R. C. T. Wright, V.-P. Friman, M. C. M. Smith, and M. A. Brockhurst, “Resistance Evolution against Phage Combinations Depends on the Timing and Order of Exposure,” mBio, vol. 10, no. 5, pp. e01652–19.
[80] A. M. Comeau, F. Tétart, S. N. Trojet, M.-F. Prère, and H. M. Krisch, “Phage-Antibiotic Synergy (PAS): β-Lactam and Quinolone Antibiotics Stimulate Virulent Phage Growth,” PLOS ONE, vol. 2, no. 8, p. e799, 2007.
[81] F. Kamal and J. J. Dennis, “Burkholderia cepacia Complex Phage-Antibiotic Synergy (PAS): Antibiotics Stimulate Lytic Phage Activity,” Applied and Environmental Microbiology, vol. 81, no. 3, pp. 1132–1138.
[82] A. Salim, A. Madhavan, S. Subhash, M. Prasad, B. G. Nair, and S. Pal, “Escherichia coli ST155 as a production-host of three different polyvalent phages and their characterisation with a prospect for wastewater disinfection,” Scientific Reports, vol. 12, no. 1, p. 19406.
[83] M. A. Torres-Acosta, V. Clavijo, C. Vaglio, A. F. González-Barrios, M. J. Vives-Flórez, and M. Rito-Palomares, “Economic evaluation of the development of a phage therapy product for the control of Salmonella in poultry,” Biotechnology Progress, vol. 35, no. 5, p. e2852.
[84] P. A. Barrow, M. B. Huggins, M. A. Lovell, and J. M. Simpson, “Observations on the pathogenesis of experimental Salmonella typhimurium infection in chickens,” Research in Veterinary Science, vol. 42, no. 2, pp. 194–199.
[85] B. B. Hsu, T. E. Gibson, V. Yeliseyev, Q. Liu, L. Lyon, L. Bry, P. A. Silver, and G. K. Gerber, “Dynamic Modulation of the Gut Microbiota and Metabolome by Bacteriophages in a Mouse Model,” Cell Host & Microbe, vol. 25, no. 6, pp. 803–814.e5.
[86] R. C. MacLean, C. Torres-Barceló, and R. Moxon, “Evaluating evolutionary models of stress-induced mutagenesis in bacteria,” Nature Reviews Genetics, vol. 14, no. 3, pp. 221–227.
[87] E. S. Arguijo-Hernández, J. Hernandez-Sanchez, S. J. Briones-Peña, N. Oviedo, G. Mendoza-Hernández, G. Guarneros, and L. Kameyama, “Cor interacts with outer membrane proteins to exclude FhuA-dependent phages,” Archives of Virology, vol. 163, no. 11, pp. 2959–2969.
[88] M. J. Bucher and D. M. Czyż, “Phage against the Machine: The SIE-ence of Superinfection Exclusion,” Viruses, vol. 16, no. 9, p. 1348.
[89] R. J. H. Payne and V. A. A. Jansen, “Phage therapy: The peculiar kinetics of self-replicating pharmaceuticals,” Clinical Pharmacology & Therapeutics, vol. 68, no. 3, pp. 225–230.
[90] M. Hasan and J. Ahn, “Evolutionary Dynamics between Phages and Bacteria as a Possible Approach for Designing Effective Phage Therapies against Antibiotic-Resistant Bacteria,” Antibiotics, vol. 11, no. 7, p. 915.
[91] M. Mahagna, I. Nir, M. Larbier, and Z. Nitsan, “Effect of age and exogenous amylase and protease on development of the digestive tract, pancreatic enzyme activities and digestibility of nutrients in young meat-type chicks,” Reproduction, Nutrition, Development, vol. 35, no. 2, pp. 201–212.
[92] M. Kuźmińska-Bajor, P. Śliwka, P. Korzeniowski, M. Kuczkowski, D. S. Moreno, A. Woźniak-Biel, E. Śliwińska, and K. Grzymajło, “Effective reduction of Salmonella Enteritidis in broiler chickens using the UPWr_S134 phage cocktail,” Frontiers in Microbiology, vol. 14.
[93] L. Lorenzo-Rebenaque, D. J. Malik, P. Catalá-Gregori, J. Torres-Boncompte, C. Marin, and S. Sevilla-Navarro, “Microencapsulated bacteriophages incorporated in feed for Salmonella control in broilers,” Veterinary Microbiology, vol. 274, p. 109579.
[94] M. Naghizadeh, M. A. Karimi Torshizi, S. Rahimi, R. M. Engberg, and T. Sørensen Dalgaard, “Effect of serum anti-phage activity on colibacillosis control by repeated phage therapy in broilers,” Veterinary Microbiology, vol. 234, pp. 61–71.
[95] Y. H. Hong, H. S. Lillehoj, S. Hyen Lee, D. Woon Park, and E. P. Lillehoj, “Molecular cloning and characterization of chicken lipopolysaccharide-induced TNF-α factor (LITAF),” Developmental & Comparative Immunology, vol. 30, no. 10, pp. 919–929.
[96] A. Hosseindoust, S. Ha, A. Lokhande, J. Mun, Y. I. Kim, and J. Kim, “The targeted anti-Salmonella bacteriophage attenuated the inflammatory response of laying hens challenged with Salmonella Gallinarum,” Poultry Science, vol. 102, no. 1, p. 102296.
[97] J. R. Kurtz, J. A. Goggins, and J. B. McLachlan, “Salmonella infection: Interplay between the bacteria and host immune system,” Immunology letters, vol. 190, pp. 42–50.
[98] S. Khan and K. K. Chousalkar, “Salmonella Typhimurium infection disrupts but continuous feeding of Bacillus based probiotic restores gut microbiota in infected hens,” Journal of Animal Science and Biotechnology, vol. 11, no. 1, p. 29.
[99] S. Hemert, A. J. W. Hoekman, M. A. Smits, and J. M. J. Rebel, “Gene expression responses to a Salmonella infection in the chicken intestine differ between lines,” Veterinary Immunology and Immunopathology, vol. 114, no. 3, pp. 247–258.
[100] A. Górski, R. Międzybrodzki, J. Borysowski, K. Dąbrowska, P. Wierzbicki, M. Ohams, G. Korczak-Kowalska, N. Olszowska-Zaremba, M. Łusiak Szelachowska, M. Kłak, E. Jończyk, E. Kaniuga, A. Gołaś, S. Purchla, B. Weber-Dąbrowska, S. Letkiewicz, W. Fortuna, K. Szufnarowski, Z. Pawełczyk, P. Rogóż, and D. Kłosowska, “Phage as a modulator of immune responses: Practical implications for phage therapy,” Advances in Virus Research, vol. 83, pp. 41–71.
[101] S. Kaur, K. Harjai, and S. Chhibber, “Bacteriophage-aided intracellular killing of engulfed methicillin-resistant Staphylococcus aureus (MRSA) by murine macrophages,” Applied Microbiology and Biotechnology, vol. 98, no. 10, pp. 4653–4661.
[102] J. D. Van Belleghem, F. Clement, M. Merabishvili, R. Lavigne, and M. Vaneechoutte, “Pro- and anti-inflammatory responses of peripheral blood mononuclear cells induced by Staphylococcus aureus and Pseudomonas aeruginosa phages,” Scientific Reports, vol. 7, no. 1, p. 8004.
[103] J. D. Van Belleghem, K. Dąbrowska, M. Vaneechoutte, J. J. Barr, and P. L. Bollyky, “Interactions between Bacteriophage, Bacteria, and the Mammalian Immune System,” Viruses, vol. 11, no. 1, p. 10.
[104] J. Borysowski and A. Górski, “Is phage therapy acceptable in the immunocompromised host?,” International journal of infectious diseases, vol. 12, no. 5, pp. 466–471.
[105] A. M. Abudabos, M. A. Murshed, M. M. Qaid, and A. G. Abdelrahman, “Effect of Probiotics on Serum Biochemical and Blood Constituents in Chicken Challenged with Salmonella enterica Subsp Typhimurium,” Tropical Journal of Pharmaceutical Research, vol. 15, no. 3, pp. 461–467.
[106] S. Asghar, M. Arif, M. Nawaz, K. Muhammad, M. A. Ali, M. D. Ahmad, S. Iqbal, A. A. Anjum, M. Khan, and J. Nazir, “Selection, characterisation and evaluation of potential probiotic Lactobacillus spp. isolated from poultry droppings,” Beneficial Microbes, vol. 7, no. 1, pp. 35–44, 2016.
[107] C. Ding, H. Wu, X. Cao, X. Ma, X. Gao, Z. Gao, S. Liu, W. Fan, B. Liu, and S. Song, “Lactobacillus johnsonii 3-1 and Lactobacillus crispatus 7-4 promote the growth performance and ileum development and participate in lipid metabolism of broilers,” Food & Function, vol. 12, no. 24, pp. 12535–12549.
[108] C. Xie, J. Cheng, P. Chen, X. Yan, C. Luo, H. Qu, D. Shu, and J. Ji, “Integrating gut and IgA-coated microbiota to identify Blautia as a probiotic for enhancing feed efficiency in chickens,” iMeta, vol. 4, no. 1, p. e264.
[109] V. Eeckhaut, J. Wang, A. Van Parys, F. Haesebrouck, M. Joossens, G. Falony, J. Raes, R. Ducatelle, and F. Van Immerseel, “The Probiotic Butyricicoccus pullicaecorum Reduces Feed Conversion and Protects from Potentially Harmful Intestinal Microorganisms and Necrotic Enteritis in Broilers,” Frontiers in Microbiology, vol. 7.
[110] M. Khan, F. Li, X. Huang, M. Nouman, R. Bibi, X. Fan, H. Zhou, Z. Shan, L. Wang, Y. Jiang, W. Cui, X. Qiao, Y. Li, X. Wang, and L. Tang, “Oral Immunization of Chickens with Probiotic Lactobacillus crispatus Constitutively Expressing the α-Β2-ε-Β1 Toxoids to Induce Protective Immunity,” Vaccines, vol. 10, no. 5, p. 698. -
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/97665-
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2025-07-09T16:18:42Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2025-07-09T16:18:42Z (GMT). No. of bitstreams: 0en
dc.language.isozh_TW-
dc.subject噬菌體zh_TW
dc.subject家禽飼養zh_TW
dc.subject抗生素替代zh_TW
dc.subject沙門氏菌zh_TW
dc.subject雞隻腸道菌相zh_TW
dc.subjectbacteriophageen
dc.subjectSalmonellaen
dc.subjectantibiotic alternativeen
dc.subjectchicken microbiotaen
dc.subjectpoultry farmingen
dc.title噬菌體 vB_SalS-KY05 特性鑑定及其作為控制雞隻沙門氏菌感染之研究zh_TW
dc.typeThesis-
dc.date.schoolyear113-2-
dc.description.degree碩士-
dc.contributor.oralexamcommittee游玉祥;王如邦zh_TW
dc.contributor.oralexamcommitteeYu-Hsiang Yu;Reuben Wangen
dc.subject.keyword噬菌體,沙門氏菌,抗生素替代,雞隻腸道菌相,家禽飼養,zh_TW
dc.subject.keywordbacteriophage,Salmonella,antibiotic alternative,chicken microbiota,poultry farming,en
dc.relation.page116-
dc.identifier.doi10.6342/NTU202501252-
dc.rights.note同意授權(全球公開)-
dc.date.accepted2025-07-02-
dc.contributor.author-college生物資源暨農學院-
dc.contributor.author-dept動物科學技術學系-
dc.date.embargo-lift2030-06-19-
顯示於系所單位:動物科學技術學系

文件中的檔案:
檔案 大小格式 
ntu-113-2.pdf
  此日期後於網路公開 2030-06-19
17.14 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved