請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/97644完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 邱雅萍 | zh_TW |
| dc.contributor.advisor | Ya-Ping Chiu | en |
| dc.contributor.author | 羅培瑞 | zh_TW |
| dc.contributor.author | Pei-Rui Luo | en |
| dc.date.accessioned | 2025-07-09T16:12:58Z | - |
| dc.date.available | 2025-07-10 | - |
| dc.date.copyright | 2025-07-09 | - |
| dc.date.issued | 2025 | - |
| dc.date.submitted | 2025-06-30 | - |
| dc.identifier.citation | 1. Luo, P.P.-R., et al., Direct evidence of coupling between charge density wave and Kondo lattice in ferromagnet Fe5GeTe2. Nature Communications, 2025. 16(1): p. 5080.
2. Mermin, N.D. and H. Wagner, Absence of Ferromagnetism or Antiferromagnetism in One- or Two-Dimensional Isotropic Heisenberg Models. Physical Review Letters, 1966. 17(22): p. 1133-1136. 3. Gong, C., et al., Discovery of intrinsic ferromagnetism in two-dimensional van der Waals crystals. Nature, 2017. 546(7657): p. 265-269. 4. Deng, Y., et al., Gate-tunable room-temperature ferromagnetism in two-dimensional Fe3GeTe2. Nature, 2018. 563(7729): p. 94-99. 5. May, A.F., et al., Ferromagnetism Near Room Temperature in the Cleavable van der Waals Crystal Fe5GeTe2. ACS Nano, 2019. 13(4): p. 4436-4442. 6. Alahmed, L., et al., Magnetism and spin dynamics in room-temperature van der Waals magnet Fe5GeTe2. 2D Materials, 2021. 8(4): p. 045030. 7. Ly, T.T., et al., Direct Observation of Fe-Ge Ordering in Fe5−xGeTe2 Crystals and Resultant Helimagnetism. Advanced Functional Materials, 2021. 31(17): p. 2009758. 8. Wu, X., et al., Direct observation of competition between charge order and itinerant ferromagnetism in the van der Waals crystal Fe5-xGeTe2. Physical Review B, 2021. 104(16): p. 165101. 9. Huang, Y., et al., Anomalous resistivity upturn in the van der Waals ferromagnet Fe5GeTe2. Applied Physics Letters, 2022. 121(16): p. 162403. 10. May, A.F., et al., Tuning magnetic order in the van der Waals metal Fe5GeTe2 by cobalt substitution. Physical Review Materials, 2020. 4(7): p. 074008. 11. Ershadrad, S., et al., Unusual Magnetic Features in Two-Dimensional Fe5GeTe2 Induced by Structural Reconstructions. The Journal of Physical Chemistry Letters, 2022. 13(22): p. 4877-4883. 12. Hu, X., D.-X. Yao, and K. Cao, (Fe1-xNix)5GeTe2: An antiferromagnetic triangular Ising lattice with itinerant magnetism. Physical Review B, 2022. 106(22): p. 224423. 13. De Haas, W.J. and G.J. Van Den Berg, The electrical resistance of gold and silver at low temperatures. Physica, 1936. 3(6): p. 440-449. 14. Kondo, J., Resistance Minimum in Dilute Magnetic Alloys. Progress of Theoretical Physics, 1964. 32(1): p. 37-49. 15. Ternes, M., A.J. Heinrich, and W.-D. Schneider, Spectroscopic manifestations of the Kondo effect on single adatoms. Journal of Physics: Condensed Matter, 2009. 21(5): p. 053001. 16. Fano, U., Effects of Configuration Interaction on Intensities and Phase Shifts. Physical Review, 1961. 124(6): p. 1866-1878. 17. Madhavan, V., et al., Tunneling into a Single Magnetic Atom: Spectroscopic Evidence of the Kondo Resonance. Science, 1998. 280(5363): p. 567-569. 18. Zhang, Y., et al., Emergence of Kondo lattice behavior in a van der Waals itinerant ferromagnet, Fe3GeTe2. Science Advances, 2018. 4(1): p. eaao6791. 19. Stewart, G.R., Heavy-fermion systems. Reviews of Modern Physics, 1984. 56(4): p. 755-787. 20. Paglione, J. and R.L. Greene, High-temperature superconductivity in iron-based materials. Nature Physics, 2010. 6(9): p. 645-658. 21. Yadav, R.L., et al., Thermal history-dependent characteristics in van der Waals ferromagnet Fe5−xGeTe2 (x ∼ 0.16). APL Materials, 2024. 12(8): p. 081103. 22. Peierls, R.E., Quantum Theory of Solids. 1996: Clarendon Press. 23. Grüner, G., The dynamics of charge-density waves. Reviews of Modern Physics, 1988. 60(4): p. 1129-1181. 24. Grüner, G., Density Waves In Solids. 1994: Basic Books. 25. Zhu, X., et al., Classification of charge density waves based on their nature. Proceedings of the National Academy of Sciences, 2015. 112(8): p. 2367-2371. 26. Gao, Y., et al., Spontaneous (Anti)meron Chains in the Domain Walls of van der Waals Ferromagnetic Fe5−xGeTe2. Advanced Materials, 2020. 32(48): p. 2005228. 27. Carpinelli, J.M., et al., Direct observation of a surface charge density wave. Nature, 1996. 381(6581): p. 398-400. 28. Pásztor, Á., et al., Multiband charge density wave exposed in a transition metal dichalcogenide. Nature Communications, 2021. 12(1): p. 6037. 29. Rossnagel, K., On the origin of charge-density waves in select layered transition-metal dichalcogenides. Journal of Physics: Condensed Matter, 2011. 23(21): p. 213001. 30. Ruan, W., et al., Evidence for quantum spin liquid behaviour in single-layer 1T-TaSe2 from scanning tunnelling microscopy. Nature Physics, 2021. 17(10): p. 1154-1161. 31. Kim, Y., et al., Kondo interaction in FeTe and its potential role in the magnetic order. Nature Communications, 2023. 14(1): p. 4145. 32. Peters, R., et al., Charge order in Kondo lattice systems. Physical Review B, 2013. 87(16): p. 165133. 33. Misawa, T., J. Yoshitake, and Y. Motome, Charge Order in a Two-Dimensional Kondo Lattice Model. Physical Review Letters, 2013. 110(24): p. 246401. 34. Yamagami, K., et al., Itinerant ferromagnetism mediated by giant spin polarization of the metallic ligand band in the van der Waals magnet Fe5GeTe2. Physical Review B, 2021. 103(6): p. L060403. 35. Singha, R., et al., Lattice dynamics of the topological Dirac semimetal LaAgSb2 with charge density wave ordering. Physical Review B, 2020. 102(20): p. 205103. 36. Binnig, G. and H. Rohrer, Scanning tunneling microscopy. Surface Science, 1983. 126(1): p. 236-244. 37. Nadj-Perge, S., et al., Observation of Majorana fermions in ferromagnetic atomic chains on a superconductor. Science, 2014. 346(6209): p. 602-607. 38. Nagaoka, K., et al., Temperature Dependence of a Single Kondo Impurity. Physical Review Letters, 2002. 88(7): p. 077205. 39. Fermi, E. and J. Orear, Nuclear Physics: A Course Given by Enrico Fermi at the University of Chicago. 1974: University of Chicago Press. 40. Shankar, R., Principles of Quantum Mechanics. 2012: Springer US. 41. Bardeen, J., Tunnelling from a Many-Particle Point of View. Physical Review Letters, 1961. 6(2): p. 57-59. 42. Oppenheimer, J.R., Three Notes on the Quantum Theory of Aperiodic Effects. Physical Review, 1928. 31(1): p. 66-81. 43. Merzbacher, E., The Early History of Quantum Tunneling. Physics Today, 2002. 55(8): p. 44-49. 44. Chen, C.J., Introduction to Scanning Tunneling Microscopy Third Edition. 2021: Oxford University Press. 45. Foner, S., Versatile and Sensitive Vibrating‐Sample Magnetometer. Review of Scientific Instruments, 1959. 30(7): p. 548-557. 46. Jaklevic, R.C., et al., Quantum Interference Effects in Josephson Tunneling. Physical Review Letters, 1964. 12(7): p. 159-160. 47. Josephson, B.D., Possible new effects in superconductive tunnelling. Physics Letters, 1962. 1(7): p. 251-253. 48. Liu, Q., et al., Layer-dependent magnetic phase diagram in FenGeTe2 (3 ≤ n ≤ 7) ultrathin films. Communications Physics, 2022. 5(1): p. 140. 49. Ribeiro, M., et al., Large-scale epitaxy of two-dimensional van der Waals room-temperature ferromagnet Fe5GeTe2. npj 2D Materials and Applications, 2022. 6(1): p. 10. 50. Schmidt, A.R., et al., Imaging the Fano lattice to ‘hidden order’ transition in URu2Si2. Nature, 2010. 465(7298): p. 570-576. 51. Wu, H., et al., Reversible non-volatile electronic switching in a near-room-temperature van der Waals ferromagnet. Nature Communications, 2024. 15(1): p. 2739. 52. Chen, L., et al., Emergent flat band and topological Kondo semimetal driven by orbital-selective correlations. Nature Communications, 2024. 15(1): p. 5242. 53. Li, Z., et al., Robust Weak Antilocalization Effect Up to ∼120 K in the van der Waals Crystal Fe5–xGeTe2 with Near-Room-Temperature Ferromagnetism. The Journal of Physical Chemistry Letters, 2023. 14(23): p. 5456-5465. 54. Yamagami, K., et al., Enhanced d-p hybridization intertwined with anomalous ground state formation in the van der Waals itinerant magnet Fe5GeTe2. Physical Review B, 2022. 106(4): p. 045137. 55. Wölfle, P., Y. Dubi, and A.V. Balatsky, Tunneling into Clean Heavy Fermion Compounds: Origin of the Fano Line Shape. Physical Review Letters, 2010. 105(24): p. 246401. 56. Aynajian, P., et al., Visualizing the formation of the Kondo lattice and the hidden order in URu2Si2. Proceedings of the National Academy of Sciences of the United States of America, 2010. 107(23): p. 10383-10388. 57. Zhao, M., et al., Kondo Holes in the Two-Dimensional Itinerant Ising Ferromagnet Fe3GeTe2. Nano Letters, 2021. 21(14): p. 6117-6123. 58. Pirie, H., et al., Visualizing the atomic-scale origin of metallic behavior in Kondo insulators. Science, 2023. 379(6638): p. 1214-1218. 59. Hamidian, M.H., et al., How Kondo-holes create intense nanoscale heavy-fermion hybridization disorder. Proceedings of the National Academy of Sciences, 2011. 108(45): p. 18233-18237. 60. Kohsaka, Y., et al., An Intrinsic Bond-Centered Electronic Glass with Unidirectional Domains in Underdoped Cuprates. Science, 2007. 315(5817): p. 1380-1385. 61. Huang, K., et al., Measurement of electronic structure in van der Waals ferromagnet Fe5–xGeTe2. Chinese Physics B, 2022. 31(5): p. 057404. 62. Duvjir, G., et al., Fine structure of the charge density wave in bulk VTe2. APL Materials, 2022. 10(11): p. 111102. 63. Spera, M., et al., Insight into the Charge Density Wave Gap from Contrast Inversion in Topographic STM Images. Physical Review Letters, 2020. 125(26): p. 267603. 64. Hewson, A.C., The Kondo Problem to Heavy Fermions. Cambridge Studies in Magnetism. 1993, Cambridge: Cambridge University Press. 65. Ishizuka, H. and Y. Motome, Partial Disorder in an Ising-Spin Kondo Lattice Model on a Triangular Lattice. Physical Review Letters, 2012. 108(25): p. 257205. 66. Wan, W., et al., Evidence for ground state coherence in a two-dimensional Kondo lattice. Nature Communications, 2023. 14(1): p. 7005. 67. Giannakis, I., et al., Orbital-selective Kondo lattice and enigmatic f electrons emerging from inside the antiferromagnetic phase of a heavy fermion. Science Advances, 2019. 5(10): p. eaaw9061. 68. Huse, D.A. and V. Elser, Simple Variational Wave Functions for Two-Dimensional Heisenberg Spin-1/2 Antiferromagnets. Physical Review Letters, 1988. 60(24): p. 2531-2534. 69. Nakatsuji, S., et al., Spin Disorder on a Triangular Lattice. Science, 2005. 309(5741): p. 1697-1700. 70. Chen, T.-K., et al., Fe-vacancy order and superconductivity in tetragonal β-Fe1-xSe. Proceedings of the National Academy of Sciences, 2014. 111(1): p. 63-68. 71. Wahl, P., et al., Exchange Interaction between Single Magnetic Adatoms. Physical Review Letters, 2007. 98(5): p. 056601. 72. Figgins, J., et al., Quantum engineered Kondo lattices. Nature Communications, 2019. 10(1): p. 5588. 73. Liu, L., et al., Revealing the Atomic Site-Dependent g Factor within a Single Magnetic Molecule via the Extended Kondo Effect. Physical Review Letters, 2015. 114(12): p. 126601. | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/97644 | - |
| dc.description.abstract | 電荷與自旋自由度之間的交互作用,一直是凝態物理中的核心議題之一。近藤交互作用(Kondo interactions)雖然能促進局域自旋矩與傳導電子之間的耦合,然而傳統上近藤系統(Kondo system)大多與 f 電子相關,而 f 電子高度局域化的特性限制了其對電子能帶結構(band structure)的影響,並使得電荷與磁性之間的有序連結更加困難。
電荷序(charge order)與近藤晶格(Kondo lattice)共存的直接實驗證據一直未被觀測到,儘管在過去十多年裡早已被理論學家所預測。近期一種范德瓦耳斯(van der Waals)鐵磁材料 Fe5GeTe2 的發現填補了這項空白。由於其遷移性磁性(itinerant magnetism)的本質,此 d 電子近藤系統成為研究電荷-自旋耦合的理想平台,連結了磁序與電荷序。在本論文中,我們利用掃描式穿隧顯微術與光譜技術(scanning tunneling microscopy and spectroscopy, STM/STS)來探究 Fe5GeTe2 的原子尺度形貌與電子結構,闡明其背後的物理原理。 論文的第一部分,我們進行樣品的特性分析,探討其磁性與結構。 Fe5GeTe2 在磁化率-溫度曲線(M–T curves)中展現出明顯的磁各向異性(magnetic anisotropy)與多重相變點。此外,其中一個特定的鐵位置—— Fe(I) 原子,不僅對居里溫度的提升至關重要,也為材料引入了顯著的結構複雜性。我們發現源自 Fe(I) 原子不同排列構型而導致的各種周期性結構,而這些結構變化也造成了電性的差異。 在第二部分,我們呈現了 Fe5GeTe2 電子行為中更引人注目的現象。我們觀測到其電子結構中出現一個 √3×√3 R30° 調變(modulation),並伴隨相位反轉,這一現象證實了電荷密度波(charge density wave, CDW)的形成。同時,在費米能量(Fermi energy)附近出現的法諾共振(Fano resonance),證明了其近藤晶格的行為。此外, Fe(I) 缺陷處形成的近藤空穴(Kondo hole)則突顯了 Fe(I) 原子在促進近藤交互作用中的關鍵角色。更值得注意的是,我們發現電荷密度波與近藤晶格之間具有同調的振盪行為,顯示了兩者之間的強耦合關聯。我們亦建立了簡化模型來說明這兩種現象如何交織影響。 總結而言,本論文對 Fe5GeTe2 進行了原子級的深入研究,凸顯了 Fe(I) 原子在引發結構多樣性與介導電荷密度波-近藤晶格耦合中扮演的關鍵角色。我們的發現強調了 Fe5GeTe2 作為研究低維鐵磁系統中關聯有序現象的有力平台,並增進了對 d 電子重費米子系統(d-electron heavy fermion system)中近藤物理學的理解。 | zh_TW |
| dc.description.abstract | The interplay between charge and spin degrees of freedom is one of the central themes in condensed matter physics. While Kondo interactions facilitate the coupling between local spin moments and conduction electrons, traditional Kondo systems are associated with f-electrons, whose localized nature limits their influence on the electronic band structure and impedes the connection between charge and magnetic orderings.
Direct experimental evidence of the coexistence of charge order and Kondo lattice has remained elusive for more than a decade, despite theoretical predictions. The recent discovery of Fe5GeTe2, a van der Waals ferromagnetic material, has bridged this gap. Due to its itinerant magnetic nature, this d-electron Kondo system offers an ideal platform for investigating charge-spin coupling. Here, we use scanning tunneling microscopy and spectroscopy (STM/STS) to probe the atomic-scale topographic and electronic landscape of Fe5GeTe2, elucidating its underlying principles. In the first part of this thesis, we perform sample characterization, examining both magnetic and structural properties. In its magnetization–temperature (M–T) curves, Fe5GeTe2 exhibits strong magnetic anisotropy and multiple transition points. One particular iron site, the Fe(I) atom, which is crucial for enhancing the Curie temperature, also introduces structural complexities to the material. We identify distinct periodic arrangements originating from different configurations of Fe(I) atoms within the crystal. These structural variations further result in contrasting electronic properties. Beyond this structural diversity, we reveal even more intriguing phenomena arising from Fe5GeTe2’s electronic behaviors, described in the second part of this thesis. We observe a √3×√3 R30° modulation in the electronic structure, accompanied by phase inversion, demonstrating the formation of a charge density wave (CDW). Simultaneously, the emergence of a Fano resonance line shape near the Fermi energy confirms its Kondo lattice behavior. In addition, the formation of Kondo holes at Fe(I) vacancy sites emphasizes the critical role of Fe(I) atoms in facilitating Kondo interactions. More intriguingly, we discover coherent oscillatory behavior between the CDW and the Kondo lattice, revealing their strong correlation. A simplified model is further developed to illustrate how the two phenomena are intertwined. In summary, this thesis presents a thorough investigation of Fe5GeTe2 at the atomic scale, highlighting the key role played by the Fe(I) atoms in inducing structural diversity and mediating the CDW-Kondo lattice coupling. Our findings establish Fe5GeTe2 as a promising platform for studying correlated orderings in low-dimensional ferromagnetic systems and deepen the understanding of Kondo physics in d-electron heavy fermion systems. | en |
| dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2025-07-09T16:12:58Z No. of bitstreams: 0 | en |
| dc.description.provenance | Made available in DSpace on 2025-07-09T16:12:58Z (GMT). No. of bitstreams: 0 | en |
| dc.description.tableofcontents | ACCEPTANCE CERTIFICATE ii
ACKNOWLEDGEMENTS iii CHINESE ABSTRACT vi ABSTRACT viii CONTENTS x CITATION TO PREVIOUSLY PUBLISHED WORK xii 1 INTRODUCTION 1 1.1 Van der Waals Ferromagnets 1 1.1.1 Fe5GeTe2 Sample Information 2 1.2 Kondo Effect and Kondo Resonance 4 1.2.1 Kondo physics in Fe5GeTe2 5 1.3 d-Electron Heavy Fermion System 5 1.4 Charge Density Wave (CDW) 7 1.4.1 Principles of CDW 7 1.4.2 CDW in Kondo lattice model 8 1.4.3 Emergence of CDW in Fe5GeTe2 9 1.5 Thesis Outline 9 2 EXPERIMENTAL METHODS 11 2.1 Scanning Tunneling Microscopy (STM) 11 2.1.1 Theory of Tunneling 12 2.1.2 Operation Modes of STM 15 2.1.3 Quasiparticle Interference (QPI) 19 2.1.4 The STM Systems at National Taiwan University 20 2.2 Superconducting Quantum Interference Device Magnetometry (SQUID) 22 2.2.1 Background and History 22 2.2.2 Principles of SQUID Operation 22 2.2.3 Experimental Implementation 23 3 STRUCTURAL COMPLEXITIES OF FE5GETE2 24 3.1 Large-scale Topography 25 3.2 Region I 26 3.3 Fe(I) Vacancy Diffusion 27 3.4 Region II 29 3.5 Summary: Distinct Configurations in Fe5GeTe2 Structure 31 4 EMERGENCE OF KONDO LATTICE 33 4.1 Spectroscopic Measurements 33 4.1.1 Fano-like Characteristic 34 4.1.2 Temperature-dependent Behavior 36 4.2 Kondo Hole 37 5 CHARGE DENSITY WAVE 39 5.1 √3 × √3R30° Charge Modulation 39 5.2 Quasiparticle Interference (QPI) 41 5.3 Phase Inversion 42 5.4 Charge Density Wave Formation 43 6 DISCUSSION 45 6.1 Coherent Behaviors 45 6.2 Coupling between Kondo Lattice and Charge Density Wave 48 6.2.1 A Simplified Model 49 6.3 Conclusion 50 REFERENCES 52 APPENDIX 57 | - |
| dc.language.iso | en | - |
| dc.subject | 掃描式穿隧顯微術 | zh_TW |
| dc.subject | d 電子重費米子系統 | zh_TW |
| dc.subject | 范德瓦耳斯鐵磁材料 | zh_TW |
| dc.subject | 近藤晶格 | zh_TW |
| dc.subject | 電荷密度波 | zh_TW |
| dc.subject | d-electron heavy fermion system | en |
| dc.subject | charge density wave | en |
| dc.subject | Kondo lattice | en |
| dc.subject | van der Waals ferromagnetic material | en |
| dc.subject | scanning tunneling microscopy | en |
| dc.title | 利用原子級掃描探針技術觀察范德瓦耳斯鐵磁材料中近藤晶格與電荷密度波之交互作用 | zh_TW |
| dc.title | Atomic-Scale Observation of Kondo Lattice and Charge Density Wave in a van der Waals Ferromagnet | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 113-2 | - |
| dc.description.degree | 碩士 | - |
| dc.contributor.oralexamcommittee | 魏金明;呂欽山;李尚凡;林文欽;周至品 | zh_TW |
| dc.contributor.oralexamcommittee | Ching-Ming Wei;Chin-Shan Lue;Shang-Fan Lee;Wen-Chin Lin;Jyh-Pin Chou | en |
| dc.subject.keyword | 電荷密度波,近藤晶格,范德瓦耳斯鐵磁材料,掃描式穿隧顯微術,d 電子重費米子系統, | zh_TW |
| dc.subject.keyword | charge density wave,Kondo lattice,van der Waals ferromagnetic material,scanning tunneling microscopy,d-electron heavy fermion system, | en |
| dc.relation.page | 61 | - |
| dc.identifier.doi | 10.6342/NTU202501281 | - |
| dc.rights.note | 未授權 | - |
| dc.date.accepted | 2025-07-02 | - |
| dc.contributor.author-college | 理學院 | - |
| dc.contributor.author-dept | 物理學系 | - |
| dc.date.embargo-lift | N/A | - |
| 顯示於系所單位: | 物理學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-113-2.pdf 未授權公開取用 | 4.48 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
