Please use this identifier to cite or link to this item:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/97634Full metadata record
| ???org.dspace.app.webui.jsptag.ItemTag.dcfield??? | Value | Language |
|---|---|---|
| dc.contributor.advisor | 林偲妘 | zh_TW |
| dc.contributor.advisor | Szu-Yun Lin | en |
| dc.contributor.author | 黎仲達 | zh_TW |
| dc.contributor.author | Le Trong Dat | en |
| dc.date.accessioned | 2025-07-09T16:10:08Z | - |
| dc.date.available | 2025-07-10 | - |
| dc.date.copyright | 2025-07-09 | - |
| dc.date.issued | 2025 | - |
| dc.date.submitted | 2025-07-01 | - |
| dc.identifier.citation | Aijazi, A. N., Best, R., & Schiavon, S. (2019). Optimizing energy conservation measures in a grocery store using present and future weather files. In V. Corrado, E. Fabrizio, A. Gasparella, & F. Patuzzi (Eds.), Proceedings of Building Simulation 2019: 16th International Conference of the International Building Performance Simulation Association (pp. 2967–2973). International Building Performance Simulation Association. https://doi.org/10.26868/25222708.2019.210726
Aliabadi, A. A., Chen, X., Yang, J., Madadizadeh, A., & Siddiqui, K. (2023). Retrofit optimization of building systems for future climates using an urban physics model. Building and Environment, 243 , 110655. https://doi.org/10.1016/j.buildenv.2023.110655 Al-Kodmany, K. (2014). Green Retrofitting Skyscrapers: A Review. Buildings, 4(4), 683–710. https://doi.org/10.3390/buildings4040683 Andrić, I., Le Corre, O., Lacarrière, B., Ferrão, P., & Al-Ghamdi, S. G. (2021). Initial approximation of the implications for architecture due to climate change. Advances in Building Energy Research, 15(3), 337–367. https://doi.org/10.1080/17512549.2018.1562980 American Society of Heating, Refrigerating and Air-Conditioning Engineers. (2017). ANSI/ASHRAE Standard 55-2017: Thermal environmental conditions for human occupancy (Standard No. 55-2017). Retrieved from https://www.ashrae.org/standards-research--technology/standards-and-guidelines Aram, K., Taherkhani, R., & Šimelytė, A. (2022). Multistage Optimization toward a Nearly Net Zero Energy Building Due to Climate Change. Energies, 15(3), 983. https://doi.org/10.3390/en15030983 Asadi, E., Chenari, B., Gaspar, A. R., & Gameiro da Silva, M. (2023). Development of an optimization model for decision-making in building retrofit projects using RETROSIM. Advances in Building Energy Research, 17(3), 324–344. https://doi.org/10.1080/17512549.2023.2204872 Asadi, E., Silva, M. G. Da, Antunes, C. H., Dias, L., & Glicksman, L. (2014). Multi-objective optimization for building retrofit: A model using genetic algorithm and artificial neural network and an application. Energy and Buildings, 81, 444–456. https://doi.org/10.1016/j.enbuild.2014.06.009 Ashrafian, T. (2023). Impact of Future Weather on Occupant Comfort, Buildings’ Energy Performance, and Cost of School Buildings in Hot and Cold Climates. https://doi.org/10.2139/ssrn.4341941 Athmani, W., Sriti, L., Dabaieh, M., & Younsi, Z. (2022). The Potential of Using Passive Cooling Roof Techniques to Improve Thermal Performance and Energy Efficiency of Residential Buildings in Hot Arid Regions. Buildings, 13(1), 21. https://doi.org/10.3390/buildings13010021 Attia, S., Hensen, J. L. M., Beltrán, L., & De Herde, A. (2012). Selection criteria for building performance simulation tools: contrasting architects’ and engineers’ needs. Journal of Building Performance Simulation, 5(3), 155–169. https://doi.org/10.1080/19401493.2010.549573 Belcher, S. E., Hacker, J. N., & Powell, D. S. (2005). Constructing design weather data for future climates. Building Services Engineering Research and Technology, 26(1), 49–61. https://doi.org/10.1191/0143624405bt112oa Ciardiello, A., Rosso, F., Dell’Olmo, J., Ciancio, V., Ferrero, M., & Salata, F. (2020). Multi-objective approach to the optimization of shape and envelope in building energy design. Applied Energy, 280, 115984. https://doi.org/10.1016/j.apenergy.2020.115984 De Luca, F., & Wortmann, T. (2020). Multi-Objective Optimization for Daylight Retrofit. 57–66. https://doi.org/10.52842/conf.ecaade.2020.1.057 Ding, Z., Li, J., Wang, Z., & Xiong, Z. (2024). Multi-Objective Optimization of Building Envelope Retrofits Considering Future Climate Scenarios: An Integrated Approach Using Machine Learning and Climate Models. Sustainability, 16(18), 8217. https://doi.org/10.3390/su16188217 Elnagar, E., Gendebien, S., Georges, E., Berardi, U., Doutreloup, S., & Lemort, V. (2023). Framework to assess climate change impact on heating and cooling energy demands in building stock: A case study of Belgium in 2050 and 2100. Energy and Buildings, 298, 113547. https://doi.org/10.1016/j.enbuild.2023.113547 Eyring, V., Bony, S., Meehl, G. A., Senior, C. A., Stevens, B., Stouffer, R. J., & Taylor, K. E. (2016). Overview of the Coupled Model Intercomparison Project Phase 6 (CMIP6) experimental design and organization. Geoscientific Model Development, 9(5), 1937–1958. https://doi.org/10.5194/gmd-9-1937-2016 Gao, B., Zhu, X., Ren, J., Ran, J., Kim, M. K., & Liu, J. (2023). Multi-objective optimization of energy-saving measures and operation parameters for a newly retrofitted building in future climate conditions: A case study of an office building in Chengdu. Energy Reports, 9, 2269–2285. https://doi.org/10.1016/j.egyr.2023.01.049 Hammond, G., & Jones, C. I. (2024). ICE v4: Inventory of Carbon & Energy Database v4. https://www.bath.ac.uk/publications/inventory-of-carbon-and-energy/ Heshmati, H. M. (2021). Climate Change: Acting Now May Already Be Too Late. Reports on Global Health Research, 4(3). https://doi.org/10.29011/2690-9480.100138 Hosseinzadeh Lotfi, F., Allahviranloo, T., Pedrycz, W., Shahriari, M., Sharafi, H., & Razipour GhalehJough, S. (2023). Fuzzy Decision Analysis: Multi Attribute Decision Making Approach (Vol. 1121). Springer International Publishing. https://doi.org/10.1007/978-3-031-44742-6 ISO. (2005). ISO 7730: Ergonomics of the thermal environment Analytical determination and interpretation of thermal comfort using calculation of the PMV and PPD indices and local thermal comfort criteria. Management, 3. Li, Z., Zou, Y., Xia, H., & Jin, C. (2023). Multi-objective optimization design of residential area based on microenvironment simulation. Journal of Cleaner Production, 425, 138922. https://doi.org/10.1016/j.jclepro.2023.138922 Liu, S., Wang, Y., Liu, X., Yang, L., Zhang, Y., & He, J. (2023). How does future climatic uncertainty affect multi-objective building energy retrofit decisions? Evidence from residential buildings in subtropical Hong Kong. Sustainable Cities and Society, 92, 104482. https://doi.org/10.1016/j.scs.2023.104482 Liyanage, D. R., Hewage, K., Hussain, S. A., Razi, F., & Sadiq, R. (2024). Climate adaptation of existing buildings: A critical review on planning energy retrofit strategies for future climate. Renewable and Sustainable Energy Reviews, 199, 114476. https://doi.org/10.1016/j.rser.2024.114476 Luo, S. L., Shi, X., & Yang, F. (2024). A Review of Data-Driven Methods in Building Retrofit and Performance Optimization: From the Perspective of Carbon Emission Reductions. In Energies (Vol. 17, Issue 18). Multidisciplinary Digital Publishing Institute (MDPI). https://doi.org/10.3390/en17184641 Luo, X. J., & Oyedele, L. O. (2021). Assessment and optimisation of life cycle environment, economy and energy for building retrofitting. Energy for Sustainable Development, 65, 77–100. https://doi.org/10.1016/j.esd.2021.10.002 Luo, X. J., & Oyedele, L. O. (2022). Life cycle optimisation of building retrofitting considering climate change effects. Energy and Buildings, 258, 111830. https://doi.org/10.1016/j.enbuild.2022.111830 Mostafazadeh, F., Eirdmousa, S. J., & Tavakolan, M. (2023). Energy, economic and comfort optimization of building retrofits considering climate change: A simulation-based NSGA-III approach. Energy and Buildings, 280, 112721. https://doi.org/10.1016/j.enbuild.2022.112721 Ole Fanger, P. (1970). Thermal comfort. Analysis and applications in environmental engineering. Copenhagen: Danish Technical Press, 45(1). Pouriya, J., & Umberto, B. (2019). Building energy demand within a climate change perspective: The need for future weather file. IOP Conference Series: Materials Science and Engineering, 609(7), 072037. https://doi.org/10.1088/1757-899X/609/7/072037 Raju, K. S., & Kumar, D. N. (2020). Review of approaches for selection and ensembling of GCMs. Journal of Water and Climate Change, 11(3), 577–599. https://doi.org/10.2166/wcc.2020.128 Rodrigues, E. C. D. F. M. S. (2022). Future Weather Generator. Association for the Development of Industrial Aerodynamics (ADAI). https://future-weather-generator.adai.pt/ Rodrigues, E., Fernandes, M. S., & Carvalho, D. (2023). Future weather generator for building performance research: An open-source morphing tool and an application. Building and Environment, 233. https://doi.org/10.1016/j.buildenv.2023.110104 Rosso, F., Ciancio, V., Dell’Olmo, J., & Salata, F. (2020). Multi-objective optimization of building retrofit in the Mediterranean climate by means of genetic algorithm application. Energy and Buildings, 216, 109945. https://doi.org/10.1016/j.enbuild.2020.109945 Sadeghipour Roudsari, M., Pak, M., & Viola, A. (2013, August 28). Ladybug: A Parametric Environmental Plugin For Grasshopper To Help Designers Create An Environmentally-conscious Design. https://doi.org/10.26868/25222708.2013.2499 Shen, P., Braham, W., & Yi, Y. (2019). The feasibility and importance of considering climate change impacts in building retrofit analysis. Applied Energy, 233–234, 254–270. https://doi.org/10.1016/j.apenergy.2018.10.041 Tartarini, F., & Schiavon, S. (2020). pythermalcomfort: A Python package for thermal comfort research. SoftwareX, 12, 100578. https://doi.org/10.1016/j.softx.2020.100578 Wang, Z., & Rangaiah, G. P. (2017). Application and Analysis of Methods for Selecting an Optimal Solution from the Pareto-Optimal Front obtained by Multiobjective Optimization. Industrial & Engineering Chemistry Research, 56(2), 560–574. https://doi.org/10.1021/acs.iecr.6b03453 Yu, C.-R., Liu, X., Wang, Q.-C., & Yang, D. (2023). Solving the comfort-retrofit conundrum through post-occupancy evaluation and multi-objective optimisation. Building Services Engineering Research and Technology, 44(4), 381–403. https://doi.org/10.1177/01436244231174354 Zahra Benaddi, F., Boukhattem, L., & Cesar Tabares-Velasco, P. (2024). Multi-objective optimization of building envelope components based on economic, environmental, and thermal comfort criteria. Energy and Buildings, 305, 113909. https://doi.org/10.1016/j.enbuild.2024.113909 Zhang, Z., Tong, S., & Yu, H. (2016). Life Cycle Analysis of Cool Roof in Tropical Areas. Procedia Engineering, 169, 392–399. https://doi.org/10.1016/j.proeng.2016.10.048 Zhao, D., & Mo, Y. (2022). Build New or Retrofit? Leverage Cost Benefits for Building Energy Efficiency. SSRN Electronic Journal. https://doi.org/10.2139/ssrn.4213217 Zhao, D., & Mo, Y. (2023). Construction Cost Decomposition of Residential Building Energy Retrofit. Buildings, 13(6), 1363. https://doi.org/10.3390/buildings13061363 Zhao, J. R., Zheng, R., Tang, J., Sun, H. J., & Wang, J. (2022). A mini-review on building insulation materials from perspective of plastic pollution: Current issues and natural fibres as a possible solution. Journal of Hazardous Materials, 438, 129449. https://doi.org/10.1016/j.jhazmat.2022.129449 | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/97634 | - |
| dc.description.abstract | 過去研究指出,倘若被動式建築外部能源翻修僅以歷史氣象資料評估,將可能低估未來氣候變遷之影響。為解決此問題,本研究建構一套多目標評估架構,於 70 年生命週期內,同時採用基準之典型氣象年(Typical Meteorological Year)與依 CMIP6 情境調整之中期氣候預測氣象檔,評估各項整建方案。本研究以 Rhino, Grasshopper, Honeybee, Eppy, EnergyPlus等工具建構參數化且自動化之流程,模擬多種能源翻修策略;並以 NSGA-II 演算法求解投資成本、生命週期碳排放與熱不舒適時數之帕累托最適解。進一步結合 CRITIC 目標權重法與 TOPSIS 排序法,客觀提出優先翻修建議。結果顯示,於整棟建築全生命週期內,同時考量基準與未來氣候條件,可在僅需中度額外投資下,顯著降低碳排放並提升熱舒適度;其中最終排名第一之方案在兩種氣候情境下皆能維持穩定效益,證實納入未來氣候資訊與系統化最佳化之必要性。所提架構可於不同氣候情境下,提供具實證基礎之建築能源翻修決策參考。未來工作將進一步整合主動式 HVAC系統、建築再生能源與機率化成本分析,以更全面支援建築能源翻修之生命週期規劃。 | zh_TW |
| dc.description.abstract | While passive building envelope retrofits are often evaluated using historical weather data, such assessments may under represent future climate impacts. To address this, a multi-objective framework was developed to assess retrofit options over a 70-year lifecycle using both a baseline Typical Meteorological Year EnergyPlus Weather File (EPW) and a CMIP6-morphed EPW for projected mid-century conditions. A parametric Rhino/Grasshopper–Honeybee–Eppy workflow automated EnergyPlus simulations across various envelope configurations. Subsequently, NSGA-II identified Pareto-optimal trade-offs among investment cost, life-cycle carbon emissions, and thermal discomfort hours. An objective decision-analysis layer, employing CRITIC weighting and TOPSIS ranking, generated prioritized retrofit recommendations. When evaluated over the full service life under both baseline and future-climate inputs, the framework identified strategies that achieved notable emissions reductions and comfort improvements with moderate additional investment. In particular, the highest-ranked solution maintained consistent performance across both weather inputs, demonstrating the value of incorporating future-climate data and systematic optimization. Consequently, the framework provides clear, data-driven guidance for selecting resilient envelope upgrades under a low-forcing scenario. Future work will integrate active HVAC measures, on-site renewables, and probabilistic cost analysis to support comprehensive lifecycle retrofit planning. | en |
| dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2025-07-09T16:10:08Z No. of bitstreams: 0 | en |
| dc.description.provenance | Made available in DSpace on 2025-07-09T16:10:08Z (GMT). No. of bitstreams: 0 | en |
| dc.description.tableofcontents | Acknowledgements i
摘要 ii Abstract iii Table of Contents iv Table of Tables viii Table of Figures ix List of Abbreviations xi 1 Introduction 1 1.1 Background and Motivation 1 1.2 Research Objective 2 1.3 Overview of approach 2 2 Literature Review 3 2.1 Introduction to Building Retrofit 3 2.2 Challenges and Opportunities under Climate Change Impacts 4 2.3 Future Climate Data and Weather File Generation 6 2.3.1 Downscaling Methods and Weather File Generation Tools 7 2.3.2 Applications of Future Weather Files in Simulation Studies 7 2.4 Building Performance Simulation Tools 8 2.4.1 EnergyPlus as a Simulation Engine 8 2.4.2 Visual Interfaces for Early Design and Accessibility 9 2.4.3 Python-Based Tools for Advanced Automation and Optimization 10 2.5 Multi-Objective Optimization in Retrofit Planning 10 2.6 Multi-Criteria Decision Making (MCDM) Methods 12 2.7 Research gap 14 2.7.1 Application of CMIP6 in Downscaling & Future Climate Simulation 14 2.7.2 Integration of CMIP6 into MCDM 14 2.8 Summary 16 3 Methodology 17 3.1 Research process 17 3.2 Generating Future Weather 18 3.3 Creating IDF Models Using Rhino, Grasshopper, and Honeybee 19 3.4 Implementing Retrofit Strategies in IDF Files 20 3.5 Optimization Process (Simulation and Evaluation) 21 3.5.1 Simulation period 23 3.5.2 Objective Function Formulation 23 3.5.3 Optimization setting and data 27 3.6 Criteria Weighting Using the CRITIC Method 29 3.7 Solution Ranking Using the TOPSIS Method 32 3.8 Summary 34 4 Case Study 36 4.1 Description of the Case-Study Building 36 4.2 Simulation Settings and Assumption 36 4.2.1 Simulation Settings and Envelope Properties 36 4.2.2 Model Assumption 37 4.3 Retrofit Scenarios 37 5 Verification 39 5.1 Verification of Weather generation 39 5.1.1 Data and Methods 39 5.1.2 Verification result 40 5.1.3 Summary 42 5.2 Verification of Optimization Analysis 43 5.2.1 Evolution of the Solution Population 43 5.2.2 Crowding-Distance Illustration 45 5.2.3 Summary 46 5.3 TOPSIS and CRITIC 46 5.3.1 Verification procedure 47 5.3.2 TOPSIS verification result 48 5.3.3 CRITIC verification result 49 5.3.4 Summary 49 6 Result and discussion 50 6.1 Analysis of a representative climate scenario 50 6.1.1 Pareto front 50 6.1.2 Prominent solutions 53 6.1.3 CRITIC weighting 55 6.1.4 TOPSIS ranking 56 6.2 Comparison across future climate scenarios 58 6.2.1 Pareto fronts and comparison 58 6.2.2 Decision variables of all scenarios 60 6.2.3 CRITIC weighting for each scenario 63 6.2.4 TOPSIS ranking for whole scenarios 64 6.3 Discussion 67 7 Conclusion 68 Appendix 71 References 73 | - |
| dc.language.iso | en | - |
| dc.subject | 多目標最佳化 | zh_TW |
| dc.subject | 建築能源模擬 | zh_TW |
| dc.subject | 氣候變遷 | zh_TW |
| dc.subject | 建築能源翻修 | zh_TW |
| dc.subject | Multi-objective optimization | en |
| dc.subject | Building retrofit | en |
| dc.subject | Climate change | en |
| dc.subject | Energy simulation | en |
| dc.title | 未來氣候情境下建築能源翻修策略之多目標最佳化:兼顧經濟、環境與人體舒適 | zh_TW |
| dc.title | Multi-Objective Optimization of Energy Retrofit Strategies under Future Climate Scenarios: Balancing Economic, Environmental, and Human Comfort Objectives | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 113-2 | - |
| dc.description.degree | 碩士 | - |
| dc.contributor.oralexamcommittee | 詹瀅潔;許書廷 | zh_TW |
| dc.contributor.oralexamcommittee | Ying-Chieh Chan;Yu-Ting Hsu | en |
| dc.subject.keyword | 建築能源翻修,氣候變遷,建築能源模擬,多目標最佳化, | zh_TW |
| dc.subject.keyword | Building retrofit,Climate change,Energy simulation,Multi-objective optimization, | en |
| dc.relation.page | 80 | - |
| dc.identifier.doi | 10.6342/NTU202501347 | - |
| dc.rights.note | 同意授權(全球公開) | - |
| dc.date.accepted | 2025-07-02 | - |
| dc.contributor.author-college | 工學院 | - |
| dc.contributor.author-dept | 土木工程學系 | - |
| dc.date.embargo-lift | 2028-06-26 | - |
| Appears in Collections: | 土木工程學系 | |
Files in This Item:
| File | Size | Format | |
|---|---|---|---|
| ntu-113-2.pdf Until 2028-06-26 | 2.67 MB | Adobe PDF |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.
