Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 環境工程學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/97632
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor駱尚廉zh_TW
dc.contributor.advisorShang-Lien Loen
dc.contributor.author孫銓zh_TW
dc.contributor.authorChuan Sunen
dc.date.accessioned2025-07-09T16:09:32Z-
dc.date.available2025-07-10-
dc.date.copyright2025-07-09-
dc.date.issued2025-
dc.date.submitted2025-06-24-
dc.identifier.citationAlhanif, M., Sanyoto, G. J., & Widayat, W. (2020). Process integration of sulfuric acid plant based on contact process. Frontiers in Heat and Mass Transfer, 15(17), 1–6.
Amini, A. (2017). The sustainability of ion exchange water treatment technology.
Arena, N., Lee, J., & Clift, R. (2016). Life Cycle Assessment of activated carbon production from coconut shells. Journal of cleaner production, 125, 68–77.
Bare, J., Young, D., QAM, S., Hopton, M., & Chief, S. A. B. (2012). Tool for the Reduction and Assessment of Chemical and other Environmental Impacts (TRACI).
Bonton, A., Bouchard, C., Barbeau, B., & Jedrzejak, S. (2012). Comparative life cycle assessment of water treatment plants. Desalination, 284, 42–54.
Chlor, E. (2022). An Eco-profile and environmental product declaration of the European chlor-alkali industry: Chlorine (the chlor-alkali process).
Choi, J., & Chung, J. (2019). Effect of dissolved oxygen on efficiency of TOC reduction by UV at 185 nm in an ultrapure water production system. Water research, 154, 21–27.
Crittenden, J. C., Trussell, R. R., Hand, D. W., Howe, K. J., & Tchobanoglous, G. (2012). MWH's water treatment: principles and design. John Wiley & Sons.
DuPont. (2020). Recommended operating conditions for separate beds in water treatment.
Enuh, B. M. (2023). Sustainable Water Practices in the Semiconductor Industry.
Fayyaz, S., Masjedi, S. K., Kazemi, A., Khaki, E., Moeinaddini, M., & Olsen, S. I. (2023). Life cycle assessment of reverse osmosis for high-salinity seawater desalination process: Potable and industrial water production. Journal of cleaner production, 382, 135299.
Finnveden, G., Hauschild, M. Z., Ekvall, T., Guinée, J., Heijungs, R., Hellweg, S., Koehler, A., Pennington, D., & Suh, S. (2009). Recent developments in life cycle assessment. Journal of environmental management, 91(1), 1–21.
Flowers, R. C., & Singer, P. C. (2013). Anion exchange resins as a source of nitrosamines and nitrosamine precursors. Environmental science & technology, 47(13), 7365–7372.
Garrett, P., & Collins, M. (2009). Life cycle assessment of product stewardship options for mercurycontaining lamps in New Zealand: final report. Wellington, New Zealand: Ministry for the Environment.
Green, J. (2022). Detailed Introduction to Three Generations of Semiconductor Materials. Último acceso, 18(06).
Guinée, J. B. (2002). Handbook on life cycle assessment: operational guide to the ISO standards (Vol. 7). Springer Science & Business Media.
Guinée, J. B., Heijungs, R., Huppes, G., Zamagni, A., Masoni, P., Buonamici, R., Ekvall, T., & Rydberg, T. (2011). Life cycle assessment: past, present, and future. In: ACS Publications.
Han, W., Zhang, P., Zhu, W., Yin, J., & Li, L. (2004). Photocatalysis of p-chlorobenzoic acid in aqueous solution under irradiation of 254 nm and 185 nm UV light. Water research, 38(19), 4197–4203.
Hassan, A. M., & Price, K. (2010). MICROFILTRATION AND ULTRAFILTRATION.
Heiranian, M., Fan, H., Wang, L., Lu, X., & Elimelech, M. (2023). Mechanisms and models for water transport in reverse osmosis membranes: history, critical assessment, and recent developments. Chemical society reviews, 52(24), 8455–8480.
Huijbregts, M. A., Steinmann, Z. J., Elshout, P. M., Stam, G., Verones, F., Vieira, M., Zijp, M., Hollander, A., & Van Zelm, R. (2017). ReCiPe2016: a harmonised life cycle impact assessment method at midpoint and endpoint level. The international journal of life cycle assessment, 22, 138–147.
ISO. (2006). Life cycle assessment — Principles and framework.
Jin, Y., Lee, H., Zhan, M., & Hong, S. (2018). UV radiation pretreatment for reverse osmosis (RO) process in ultrapure water (UPW) production. Desalination, 439, 138–146.
Jolliet, O., Margni, M., Charles, R., Humbert, S., Payet, J., Rebitzer, G., & Rosenbaum, R. (2003). IMPACT 2002+: a new life cycle impact assessment methodology. The international journal of life cycle assessment, 8, 324–330.
Jones, C. H., Terry, L. G., Summers, R. S., & Cook, S. M. (2018). Environmental life cycle comparison of conventional and biological filtration alternatives for drinking water treatment. Environmental Science: Water Research & Technology, 4(10), 1464–1479.
Kalinichenko, M. Y., Stojanov, N., Abornev, D., & Ovchinnikova, S. (2020). Optimization of the regeneration of the sodium-cation ion-exchange filter. IOP Conference Series: Materials Science and Engineering,
Kang, Y., Kwon, J., Kim, J., & Hong, S. (2023). Fate of low molecular weight organic matters in reverse osmosis and vacuum ultraviolet process for high-quality ultrapure water production in the semiconductor industry. Journal of cleaner production, 423, 138714.
Kotobuki, M., Gu, Q., Zhang, L., & Wang, J. (2021). Ceramic-polymer composite membranes for water and wastewater treatment: Bridging the big gap between ceramics and polymers. Molecules, 26(11), 3331.
Lee, S., Myung, S., Hong, J., & Har, D. (2016). Reverse osmosis desalination process optimized for maximum permeate production with renewable energy. Desalination, 398, 133–143.
Lin, E. T., & Chiang, S.-h. (2023). Systems and methods for producing ultrapure water for semiconductor fabrication processes. In: US Patent App. 17/699,371.
Lin, Y.-C. (2023). A Study on the improvement of Turbidity and Water Quality Performance of Dual-Channel Rapid Filter for Tseng-wen Purification Plant.
Muzarpar, M. S., Leman, A., Maghpor, N., Hassan, N. N. M., & Misdana, N. (2020). the adsorption mechanism of activated carbon and its application-A review. International Journal of Advanced Technology in Mechanical, Mechatronics and Materials, 1(3), 118–124.
Pui, W. K., Yusoff, R., & Aroua, M. K. (2019). A review on activated carbon adsorption for volatile organic compounds (VOCs). Reviews in Chemical Engineering, 35(5), 649–668.
Remy, C., Wencki, K., Pieron, M., Kounina, A., Hugi, C., & Gross, T. (2015). Final guidelines for sustainability assessment of water technologies.
Saetta, D., Ishii, S. K., III, W. E. P., & Boyer, T. H. (2015). Case study and LCA of coastal utility experiencing saltwater intrusion.
Santos, A. B. d., Giacobbo, A., Rodrigues, M. A. S., & Bernardes, A. M. (2024). Electrodeionization for Wastewater Reuse in Petrochemical Plants. Water, 16(3), 401.
Silva, D., Nunes, A. O., da Silva Moris, A., Moro, C., & Piekarski, T. O. R. (2017). How important is the LCA software tool you choose Comparative results from GaBi, openLCA, SimaPro and Umberto. Proceedings of the VII Conferencia Internacional de Análisis de Ciclo de Vida en Latinoamérica, Medellin, Colombia,
Standard, A. (2013). Standard Guide for Ultra Pure Water Used in the Electronics and Semiconductor Industries.
Stewart, D., Ramachandran, K., Mitra, B., & Simons, C. (2023). Semiconductor sustainability: Chips take a smaller byte out of resources.
Yinglong, C., Hanyue, G., Shide, M., Tingting, Z., & Bigui, W. (2022). Preparation of special wettability quartz sand filter media and its synchronous oil/water mixture separation and dye adsorption. Sustainability, 14(16), 9860.
Yuan, Y., Qian, F., Lu, J., Gu, D., Lou, Y., Xue, N., Li, G., Liao, W., & Zhang, N. (2022). Design optimization and carbon footprint analysis of an electrodeionization system with flexible load regulation. Sustainability, 14(23), 15957.
Zamagni, A. (2012). Life cycle sustainability assessment. In (Vol. 17, pp. 373–376): Springer.
Zhang, D., Wu, J., Liu, Z., Wang, T., Zhang, Y., Hu, D., & Peng, L. (2023). HCFC-141b (CH3CCl2F) Emission Estimates for 2000–2050 in Eastern China. Aerosol and Air Quality Research, 23(7), 230001.
Zhang, X., Yang, Y., Ngo, H. H., Guo, W., Wen, H., Wang, X., Zhang, J., & Long, T. (2021). A critical review on challenges and trend of ultrapure water production process. Science of The Total Environment, 785, 147254.
甘其銓, 楊惠玲, & 吳志超. (2023). 以濾池評估結果執行具策略性之換補砂作業—以屏東淨水場為例. 自來水會刊.
吳明炘. (2003). 半導體超純水製程之生命週期評估. 中華大學科技管理研究所碩士論文.
莊順興, 柯貴城, & 歐陽嶠暉. (2008). 超純水製造技術. 工業污染防治.
許桓瑜. (2014). 都市污水處理廠之生命週期評估. 國立台灣大學環境工程學研究所碩士論文.
黃禮棟, 邱相文, & 鄭皓文. (2018). 自動排汙過濾系統之研發及應用於設施廢水處理之研究. 產業現況及研究發展國際設施研討會論文專刊.
葉俊明. (2019). 化學藥劑導入自動化設備混拌之研究. 義守大學工業管理學系碩士論文.
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/97632-
dc.description.abstract本研究依據 ISO 14040/44 生命週期評估方法,運用 SimaPro 9.6.0.1 與 CML IA Baseline 2000 方法,研究台灣地區晶圓製造廠超純水系統(Ultrapure Water, UPW),並透過文獻及資料庫收集投入產出數據,評估各處理單元對環境之衝擊。系統邊界涵蓋前處理(砂濾、活性碳、軟水)、一次處理(逆滲透、陰陽離子脫氣塔)、電去離子與二次處理(UV185/254、超濾),功能單位定義為 1 m³ 產出水。利用特徵化數據評估各處理單元內投入產出對環境之衝擊,並利用標準化數據比較各單元間之環境衝擊。
結果顯示,11 項中點指標中以海水生態毒性(METP)貢獻最高,單元比較中,以RO系統、軟水系統、2B3T系統之環境衝擊較高,並且電力使用為所有單元環境衝擊之主要貢獻。化學品使用對於再生能源枯竭類別影響較大,軟水系統之化學品使用占比為79.04 %、2B3T系統為45.82 %、RO系統為62.85 %、UF系統為77.49 %。
敏感度分析顯示,電力相較於化學品,在各單元間較為敏感。當電力消耗變動 ±50 % 時,RO系統、軟水系統、2B3T系統之敏感度分別為79.53 %、71.59 % 及81.01 %,相比之下,化學品僅為9.96 %、18.59 % 及11.07 %。
zh_TW
dc.description.abstractThis study applied the ISO 14040/44 Life Cycle Assessment(LCA)framework, using SimaPro 9.6.0.1 and the CML IA Baseline 2000 method, to evaluate ultrapure water system units for wafer fabrication plants in Taiwan. Input and output data were gathered from literature sources and databases. The system boundary encompassed pretreatment(sand filtration, granular activated carbon, and water softening), primary treatment(RO, 2B3T, and EDI), and secondary treatment(UV 185/254 nm and ultrafiltration). The functional unit was defined as 1 m³ of product water. Characterized results were used to evaluate the impacts of individual units, and normalized results were used to compare impacts across units.
Among the eleven midpoint impact categories, METP dominated overall impacts. Unit comparisons showed that the RO, softening, and 2B3T had the higher impacts, respectively with electricity use emerging as the major contributor across all units. Chemical consumption strongly affected the abiotic resource depletion, accounting for 79.04 % of the impact in the softening, 45.82 % in 2B3T, 62.85 % in RO, and 77.49 % in UF.
Sensitivity analysis revealed that electricity used is more influential than chemical used. ±50 % variation in electricity produced sensitivities of 79.53 %, 71.59 %, and 81.01 % for the RO, softening, and 2B3T, respectively, whereas the corresponding sensitivities for chemical use were only 9.96 %, 18.59 %, and 11.07 %.
en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2025-07-09T16:09:32Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2025-07-09T16:09:32Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontents口試委員審定書 I
致謝 II
中文摘要 III
ABSTRACT IV
目次 V
圖次 VII
表次 VIII
第一章 緒論 1
1.1 研究動機 1
1.2 研究目的 1
第二章 文獻回顧 2
2.1 晶圓製造業 2
2.2 超純水 3
2.2.1 超純水定義 3
2.2.2 超純水水質標準 3
2.3 超純水系統流程 7
2.3.1 前處理 7
2.3.1.1 自動砂濾系統 7
2.3.1.2 自動多介質過濾系統 9
2.3.1.3 活性碳吸附系統 10
2.3.1.4 自動軟水系統 11
2.3.2 一次處理 12
2.3.2.1 逆滲透系統 12
2.3.2.2 2B3T系統 13
2.3.2.3 電透析離子交換系統 14
2.3.3 二次處理 14
2.3.3.1 UV系統 14
2.3.3.2 超濾系統 15
2.4 生命週期評估 16
2.4.1 目標與範疇界定 16
2.4.2 生命週期清單分析 17
2.4.3 生命週期影響評估 18
2.4.4 結果闡釋 19
2.4.5 生命週期評估工具 20
2.4.6 生命週期評估方法 21
第三章 研究方法及流程 23
3.1 研究範疇與功能單位 23
3.2 盤查分析 26
3.3 衝擊評估方法 31
第四章 結果討論 34
4.1 各單元內之環境衝擊及相對貢獻 34
4.2 各流程環境衝擊之比較 46
4.3 敏感度分析 48
第五章 結論與建議 52
參考文獻 54
-
dc.language.isozh_TW-
dc.subject敏感度分析zh_TW
dc.subject超純水zh_TW
dc.subject生命週期評估zh_TW
dc.subjectSensitivity analysisen
dc.subjectUltrapure wateren
dc.subjectLife cycle assessmenten
dc.title台灣地區晶圓製造廠超純水系統各單元之生命週期評估zh_TW
dc.titleLife Cycle Assessment of Ultrapure Water System Units for Wafer Fabrication Plants in Taiwanen
dc.typeThesis-
dc.date.schoolyear113-2-
dc.description.degree碩士-
dc.contributor.oralexamcommittee闕蓓德;胡景堯zh_TW
dc.contributor.oralexamcommitteePei-Te Chiueh;Ching-Yao Huen
dc.subject.keyword超純水,生命週期評估,敏感度分析,zh_TW
dc.subject.keywordUltrapure water,Life cycle assessment,Sensitivity analysis,en
dc.relation.page58-
dc.identifier.doi10.6342/NTU202501254-
dc.rights.note同意授權(限校園內公開)-
dc.date.accepted2025-06-25-
dc.contributor.author-college工學院-
dc.contributor.author-dept環境工程學研究所-
dc.date.embargo-lift2025-07-10-
顯示於系所單位:環境工程學研究所

文件中的檔案:
檔案 大小格式 
ntu-113-2.pdf
授權僅限NTU校內IP使用(校園外請利用VPN校外連線服務)
3.23 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved