請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/97627完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 陳士元 | zh_TW |
| dc.contributor.advisor | Shih-Yuan Chen | en |
| dc.contributor.author | 許瑞福 | zh_TW |
| dc.contributor.author | Rui-Fu Xu | en |
| dc.date.accessioned | 2025-07-09T16:07:55Z | - |
| dc.date.available | 2025-07-10 | - |
| dc.date.copyright | 2025-07-09 | - |
| dc.date.issued | 2025 | - |
| dc.date.submitted | 2025-06-18 | - |
| dc.identifier.citation | [1] J. L. Volakis, C.-C. Chen, and K. Fujimoto, Small antennas: miniaturization techniques & applications. New York: McGraw-Hill, 2010.
[2] H. A. Wheeler, “Fundamental Limitations of Small Antennas,” Proceedings of the IRE, vol. 35, no. 12, pp. 1479-1484, 1947, doi: 10.1109/jrproc.1947.226199. [3] L. J. Chu, “Physical Limitations of Omni‐Directional Antennas,” Journal of Applied Physics, vol. 19, no. 12, pp. 1163-1175, 1948, doi: 10.1063/1.1715038. [4] D. Nikolayev, M. Zhadobov, L. L. Coq, P. Karban, and R. Sauleau, “Robust Ultraminiature Capsule Antenna for Ingestible and Implantable Applications,” IEEE Transactions on Antennas and Propagation, vol. 65, no. 11, pp. 6107-6119, 2017, doi: 10.1109/TAP.2017.2755764. [5] A. K. Skrivervik, “Implantable antennas: The challenge of efficiency,” presented at the 7th European Conference on Antennas and Propagation (EuCAP), Gothenburg, Sweden, Apr. 8-12, 2013. [6] A. K. Skrivervik, M. Bosiljevac, and Z. Sipus, “Fundamental Limits for Implanted Antennas: Maximum Power Density Reaching Free Space,” IEEE Transactions on Antennas and Propagation, vol. 67, no. 8, pp. 4978-4988, 2019, doi: 10.1109/TAP.2019.2891697. [7] S. A. Cummer, “Modeling electromagnetic propagation in the Earth-ionosphere waveguide,” IEEE Transactions on Antennas and Propagation, vol. 48, no. 9, pp. 1420-1429, 2000, doi: 10.1109/8.898776. [8] H. Kaushal and G. Kaddoum, “Underwater Optical Wireless Communication,” IEEE Access, vol. 4, pp. 1518-1547, 2016, doi: 10.1109/ACCESS.2016.2552538. [9] E.-M. Newman, “The Biggest Little Antenna in the World: The Navy’s VLF antenna at Cutler Maine,” Nov. 14, 2012. [Online]. Available: https://arlassociates.net/Newman%20AP%20Presentation.pdf [10] J. S. McLean, “A re-examination of the fundamental limits on the radiation Q of electrically small antennas,” IEEE Transactions on Antennas and Propagation, vol. 44, no. 5, p. 672, 1996, doi: 10.1109/8.496253. [11] D. F. Sievenpiper et al., “Experimental Validation of Performance Limits and Design Guidelines for Small Antennas,” IEEE Transactions on Antennas and Propagation, vol. 60, no. 1, pp. 8-19, Jan 2012, doi: 10.1109/tap.2011.2167938. [12] A. D. Yaghjian and S. R. Best, “Impedance, bandwidth, and Q of antennas,” IEEE Transactions on Antennas and Propagation, vol. 53, no. 4, pp. 1298-1324, 2005, doi: 10.1109/TAP.2005.844443. [13] J. A. Bickford, A. E. Duwel, M. S. Weinberg, R. S. McNabb, D. K. Freeman, and P. A. Ward, “Performance of Electrically Small Conventional and Mechanical Antennas,” IEEE Transactions on Antennas and Propagation, vol. 67, no. 4, pp. 2209-2223, 2019, doi: 10.1109/TAP.2019.2893329. [14] Z. Yao, Y. E. Wang, S. Keller, and G. P. Carman, “Bulk Acoustic Wave-Mediated Multiferroic Antennas: Architecture and Performance Bound,” IEEE Transactions on Antennas and Propagation, vol. 63, no. 8, pp. 3335-3344, 2015, doi: 10.1109/TAP.2015.2431723. [15] Z. Yao et al., “Modeling of Multiple Dynamics in the Radiation of Bulk Acoustic Wave Antennas,” IEEE Journal on Multiscale and Multiphysics Computational Techniques, vol. 5, pp. 5-18, 2020, doi: 10.1109/JMMCT.2019.2959596. [16] Ting-Ta Yen, “High-Q Aluminum Nitride RF MEMS Lamb Wave Resonators and Narrowband Filters,” Ph.D dissertation, College of Eng., Univ. of California, Berkeley, 2012. [Online]. Available: https://escholarship.org/uc/item/2q120220 [17] Shih-Yung Pao, Class Lecture, Waves in Piezoelectric Crystals and Acoustic Wave Devices, Institute of Applied Mechanics, National Taiwan University, Taipei, Taiwan, May. 2017. [18] V. Kochervinskii, “Piezoelectricity in crystallizing ferroelectric polymers: Poly (vinylidene fluoride) and its copolymers (A review),” Crystallography Reports, vol. 48, pp. 649-675, 2003. [19] J. F. Rosenbaum, Bulk Acoustic Wave Theory and Devices: Artech House, Inc., 1988. [20] COMSOL Multiphysics. (6.0). COMSOL Inc. Accessed: Jan. 6, 2025. [21] S. B. Krupanidhi, N. Maffei, M. Sayer, and K. Elassal, “RF planar magnetron sputtering and characterization of ferroelectric Pb(Zr, Ti)O3 films,” Journal of Applied Physics, vol. 54, pp. 6601-6609, 1983. [22] Y. Sakashita, T. Ono, H. Segawa, K. Tominaga, and M. Okada, “Preparation and electrical-properties of MOCVD-deposited PZT thin-films,” Journal of Applied Physics, vol. 69, pp. 8352-8357, Jun 15 1991. [23] M. Schreiter, R. Gabl, D. Pitzer, R. Primig, and W. Wersing, “Electro-acoustic hysteresis behaviour of PZT thin film bulk acoustic resonators,” Journal of the European Ceramic Society, vol. 24, pp. 1589-1592, 2004. [24] T. Ikeda, Fundamentals of Piezoelectricity: Oxford University Press, 1990. [25] H. Morkoç and Ü. Özgür, Zinc Oxide: Fundamentals, Materials and Device Technology: Wiley-VCH, 2009. [26] S. Mishin and Y. Oshmyansky, Thin Films Deposition for BAW Devices in K. Hashimoto, RF Bulk Acoustic Wave Filters for Communications: Artech House, 2009. [27] J. A. Vanvecht, “Quantum dielectric theory of electronegativity in covalent systems .3. pressure temperature phase-diagrams, heats of mixing, and distribution coefficients,” Physical Review B, vol. 7, pp. 1479-1507, 1973. [28] L. I. Berger, Semiconductor Materials: CRC Press, 1997. [29] R. Ruby, “Review and comparison of bulk acoustic wave FBAR, SMR technology,” presented at IEEE Ultrasonics Symposium, 2007, pp. 1029-40. [30] R. Ruby, “Review and comparison of bulk acoustic wave FBAR, SMR technology,” in Proc. IEEE Ultrasonics Symposium, Oct. 2007. [31] G. Piazza, P. J. Stephanou, and A. P. Pisano, “One and two port piezoelectric higher order contour-mode MEMS resonators for mechanical signal processing,” Solid-State Electronics, vol. 51, pp. 1596-1608, Nov-Dec 2007. [32] H. Campanella, Acoustic Wave and Electromechanical Resonators: Concept to Key Applications: Artech House, 2010. [33] R. Jin, Z. Cao, M. Patel, B. Abbott, D. Molinero, and D. Feld, “An Improved Formula for Estimating Stored Energy in a BAW Resonator by its Measured S11 Parameters,” presented at IEEE International Ultrasonics Symposium (IUS), Xi'an, China, Sept. 11-16, 2021. [34] J. Larson III, P. Bradley, S. Wartenberg, R. Ruby, “Modified Butterworth-Van Dyke Circuit for FBAR Resonators and Automated Measurement System,” in Proceedings of IEEE Ultrasonics Symposium, Oct. 22-25, 2000. [35] K.M. Lakin, “Equivalent Circuit Modeling of Stacked Crystal Filters”, in Proc. 35th Ann. Freq. Control Symposium, USAERADCON, Ft. Monmouth, NJ 07703, May 1981. [36] D. Feld, R. Parker, R. Ruby, P. Bradley, S. Dong, “After 60 Years: A New Formula for Computing Quality Factor is Warranted”, in Proceedings of IEEE Ultrasonics Symposium, Mar. 2-5, 2008. [37] Sidhant Tiwari, “Dynamics of Multiferroic Coupling,” Ph.D dissertation, College of Electrical and Computer Engineering, Univ. of California, Los Angeles, 2020. [Online]. Available: https://escholarship.org/uc/item/1s30r1kj [38] R. C. O’Handley, Modern Magnetic Materials: Principles and Applications. John Wiley & Sons, Inc., 2000. [39] H. Sohn et al., “Electrically driven magnetic domain wall rotation in multiferroic heterostructures to manipulate suspended on-chip magnetic particles,” ACS Nano, vol. 9, no. 5, pp. 4814–4826, May 2015, doi: 10.1021/nn5056332. [40] M. Kläui et al., “Direct observation of spin configurations and classification of switching processes in mesoscopic ferromagnetic rings,” Phys. Rev. B - Condens. Matter Mater. Phys., vol. 68, no. 13, p. 134426, Oct. 2003, doi: 10.1103/PhysRevB.68.134426. [41] J. Raabe, C. Quitmann, C. H. Back, F. Nolting, S. Johnson, and C. Buehler, “Quantitative analysis of magnetic excitations in landau flux-closure structures using synchrotron-radiation microscopy,” Phys. Rev. Lett., vol. 94, no. 21, p. 217204, Jun. 2005, doi: 10.1103/PhysRevLett.94.217204. [42] S. Wintz et al., “Magnetic vortex cores as tunable spin-wave emitters,” Nat. Nanotechnol., vol. 11, no. 11, pp. 948–953, Nov. 2016, doi: 10.1038/nnano.2016.117. [43] H. Sohn et al., “Deterministic multi-step rotation of magnetic single-domain state in Nickel nanodisks using multiferroic magnetoelastic coupling,” J. Magn. Magn. Mater., vol. 439, pp. 196–202, Oct. 2017, doi: 10.1016/j.jmmm.2017.04.077. [44] V. G. Harris, “Modern microwave ferrites,” IEEE Trans. Magn., vol. 48, no. 3, pp. 1075–1104, 2012, doi: 10.1109/TMAG.2011.2180732. [45] J. D. Adam, L. E. Davis, G. F. Dionne, E. F. Schloemann, and S. N. Stitzer, “Ferrite devices and materials,” IEEE Trans. Microw. Theory Tech., vol. 50, no. 3, pp. 721–737, Mar. 2002, doi: 10.1109/22.989957. [46] W. Palmer, D. Kirkwood, S. Gross, M. Steer, H. S. Newman, and S. Johnson, “A Bright Future for Integrated Magnetics: Magnetic Components Used in Microwave and mm-Wave Systems, Useful Materials, and Unique Functionalities,” IEEE Microw. Mag., vol. 20, no. 6, pp. 36–50, Jun. 2019, doi: 10.1109/MMM.2019.2904381. [47] T. Kampfrath et al., “Coherent terahertz control of antiferromagnetic spin waves,” Nat. Photonics, vol. 5, no. 1, pp. 31–34, Jan. 2011, doi: 10.1038/nphoton.2010.259. [48] V. G. Harris, “Modern microwave ferrites,” IEEE Trans. Magn., vol. 48, no. 3, pp. 1075–1104, 2012, doi: 10.1109/TMAG.2011.2180732. [49] J. D. Adam, L. E. Davis, G. F. Dionne, E. F. Schloemann, and S. N. Stitzer, “Ferrite devices and materials,” IEEE Trans. Microw. Theory Tech., vol. 50, no. 3, pp. 721–737, Mar. 2002, doi: 10.1109/22.989957. [50] W. Palmer, D. Kirkwood, S. Gross, M. Steer, H. S. Newman, and S. Johnson, “A Bright Future for Integrated Magnetics: Magnetic Components Used in Microwave and mm-Wave Systems, Useful Materials, and Unique Functionalities,” IEEE Microw. Mag., vol. 20, no. 6, pp. 36–50, Jun. 2019, doi: 10.1109/MMM.2019.2904381. [51] D. M. Pozar, Microwave engineering, 4th ed. Hoboken, NJ: Wiley, 2012. [52] T.-J. Hwang, J. Lee, K. H. Kim, and D. H. Kim, "Magnetic properties and high frequency characteristics of FeCoN thin films," AIP Advances, vol. 6, no. 5, 2016, doi: 10.1063/1.4943358. [53] L. Nian et al., "Demonstration of Thin Film Bulk Acoustic Resonator Based on AlN/AlScN Composite Film with a Feasible Keff2," Micromachines, vol. 13, no. 12, p. 2044, 2022. [54] M. S. Sodha and N. C. Srivastava, Microwave Propagation in Ferrimagnetics. New York: Springer, 1981. [55] A. G. Gurevich and G. A. Melkov, Magnetization Oscillations and Waves. CRC press, 1996. [56] D. Jiles, Introduction to Magnetism and Magnetic Materials, 2nd ed. London, UK: Chapman & Hall, 1998. [57] R. Eisberg and R. Resnick, Quantum Physics of Atoms, Molecules, Solids, Nuclei, and Particles, 2nd ed. John Wiley & Sons, Inc., 1985. [58] G. F. Dionne, “Magnetic Relaxation and Anisotropy Effects on High-Frequency Permeability,” IEEE Trans. Magn., vol. 39, no. 5 II, pp. 3121–3126, Sep. 2003, doi: 10.1109/TMAG.2003.816026. [59] B. D. Cullity and C. D. Graham, Introduction to Magnetic Materials, 2nd ed. Hoboken, New Jersey: John Wiley & Sons, Inc., 2009, pp. 241-273, pp. 463-466. [60] Z. Yao et al., “Modeling of Multiple Dynamics in the Radiation of Bulk Acoustic Wave Antennas,” IEEE Journal on Multiscale and Multiphysics Computational Techniques, vol. 5, pp. 5-18, 2020, doi: 10.1109/JMMCT.2019.2959596. [61] Z. Yao, S. Tiwari, J. Schneider, R. N. Candler, G. P. Carman, and Y. E. Wang, "Enhanced Planar Antenna Efficiency Through Magnetic Thin-Films," IEEE Journal on Multiscale and Multiphysics Computational Techniques, vol. 6, pp. 249-258, 2021, doi: 10.1109/jmmct.2021.3136877. [62] X. Cai et al., “Finite Element Analysis and Optimization of Acoustically-actuated Magnetoelectric Microantennas,” IEEE Transactions on Antennas and Propagation, pp. 1-1, 2023, doi: 10.1109/TAP.2023.3260651. [63] J. P. Domann and G. P. Carman, “Strain powered antennas,” Journal of Applied Physics, vol. 121, no. 4, 2017, doi: 10.1063/1.4975030. [64] L. C. Ippet-Letembet, R. F. Xu, R. Jeanty, Z. Yao, R. N. Candler, and S. Y. Chen, “Modeling of Multiferroic Antennas in the Akhiezer Regime: Effects of Acoustic Resonator Excitation and Topology on Radiation,” IEEE Transactions on Antennas and Propagation, pp. 1-1, 2024, doi: 10.1109/TAP.2024.3481651. [65] T. Nan et al., “Acoustically actuated ultra-compact NEMS magnetoelectric antennas,” Nature Communications, vol. 8, 2017, doi: 10.1038/s41467-017-00343-8. [66] X. Yun et al., “Bandwidth-enhanced magnetoelectric antenna based on composite bulk acoustic resonators,” Applied Physics Letters, vol. 121, no. 3, 2022, doi: 10.1063/5.0098323. [67] X. Liang et al., “Mechanically Driven Solidly Mounted Resonator-Based Nanoelectromechanical Systems Magnetoelectric Antennas,” Advanced Engineering Materials, vol. 15, no. 21, 2023, doi: https://doi.org/10.1002/adem.202300425. [68] B. Luo, X. Liang, H. Chen, N. Sun, H. Lin, and N.-X. Sun, “Gain Enhancement and Ground Plane Immunity of Mechanically Driven Thin-Film Bulk Acoustic Resonator Magnetoelectric Antenna Arrays,” Advanced Functional Materials, vol. 34, no. 39, 2024, doi: https://doi.org/10.1002/adfm.202403244. [69] M. Ma et al., “High-Frequency Magnetoelectric Antenna by Acoustic Excitation for 5G Communication,” IEEE Antennas and Wireless Propagation Letters, vol. 23, no. 5, pp. 1518-1522, 2024, doi: 10.1109/LAWP.2024.3360947. [70] T. Nan, Y. Hui, M. Rinaldi, and N. X. Sun, “Self-Biased 215MHz Magnetoelectric NEMS Resonator for Ultra-Sensitive DC Magnetic Field Detection,” Scientific Reports, vol. 3, no. 1, 2013, doi: 10.1038/srep01985. [71] X. Yun et al., “Biaxial film bulk acoustic resonator magnetic sensor based on the Fe80Ga20 anisotropic ΔE effect,” Journal of Physics D: Applied Physics, vol. 55, no. 13, p. 135002, 2022, doi: 10.1088/1361-6463/ac4452. [72] B. Spetzler, E. V. Golubeva, C. Müller, J. McCord, and F. Faupel, “Frequency Dependency of the Delta-E Effect and the Sensitivity of Delta-E Effect Magnetic Field Sensors,” Sensors, vol. 19, no. 21, p. 4769, 2019. [Online]. Available: https://www.mdpi.com/1424-8220/19/21/4769. [73] D. Labanowski, A. Jung, and S. Salahuddin, “Power absorption in acoustically driven ferromagnetic resonance,” Applied Physics Letters, vol. 108, no. 2, p. 022905, 2016, doi: 10.1063/1.4939914. [74] D. Labanowski, A. Jung, and S. Salahuddin, “Effect of magnetoelastic film thickness on power absorption in acoustically driven ferromagnetic resonance,” Applied Physics Letters, vol. 111, no. 10, 2017, doi: 10.1063/1.4994933. [75] D. Labanowski et al., “Voltage-driven, local, and efficient excitation of nitrogen-vacancy centers in diamond” Science Advances, vol. 4, no. 9, 2018, doi: doi:10.1126/sciadv.aat6574. [76] D. Milyutin, S. Gentil, and P. Muralt, “Shear mode bulk acoustic wave resonators based on c-axis oriented AlN thin film,” J. Appl. Phys., vol. 104, Oct. 2008. [77] D. Chen, J. Wang, D. Li, L. Zhang and X. Wang, “The c-axis oriented AlN solidly mounted resonator operated in thickness shear mode using lateral electric field excitation,” Appl. Phy. A, vol. 100, pp. 239-244, Mar. 2010. [78] C. A. Balanis, Antenna Theory: Analysis and Design. New Jersey, USA: John Wiley & Sons, 2005. [79] R.-F. Xu, “Broadband Polarization Control of Bulk Acoustic Wave-Mediated Multiferroic Antenna Based on Thickness Shear Modes,” M.S. thesis, College of Elec. Eng. and Comput. Sci., National Taiwan Univ., Taipei, 2019. [80] R.-F. Xu et al., “Experimental validation of multiferroic antennas in GHz frequency range,” Applied Physics Letters, vol. 123, no. 16, 2023, doi: 10.1063/5.0165393. | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/97627 | - |
| dc.description.abstract | 多鐵性材料因其獨特的磁電耦合特性,在GHz頻段微型化天線設計深具應用潛力。本論文探討多鐵性天線的設計、開發與性能表現,最後得到的實驗結果與既有的理解與理論預測迥異。本研究的主要貢獻在於提供一個全新的實驗觀點,挑戰既有的假設與研究結論,進一步開啟對多鐵性天線輻射機制深入探討之可能性。論文中,我們首先回顧了電氣小天線(ESA)的基本理論,包括其理論限制、頻寬與效率之間的權衡,及其在生醫遙測與軍事通訊等領域之應用。ESA設計的主要挑戰在於如何克服尺寸縮小、頻寬及輻射效率之間的折衷,為了解決此問題,近年來學界提出一種新型機械驅動天線,稱為「機械天線」。這類天線透過機械運動來產生電磁輻射,而非依賴傳統的電流驅動機制,提供了一種可接近天線效能理論極限的新方法。然而,在GHz頻段實現機械激發仍面臨挑戰,因此需要尋求替代策略多鐵性天線。本論文進一步介紹以體聲波為驅動機制的多鐵性天線,這類天線利用壓電-磁致伸縮複合結構,在GHz頻率範圍內實現機械共振,若結合鐵磁性共振,這種設計能有效降低歐姆損耗並進而提升電磁輻射效率。最後,我們的實驗結果表明,相較於以往的研究成果,多鐵性天線在GHz頻段展現出根本性的差異,顯示出磁電輻射機制仍有待進一步深入探討,以利推動未來的研究發展。 | zh_TW |
| dc.description.abstract | Multiferroic materials have emerged as a promising solution for antenna miniaturization in GHz-band applications, leveraging their unique magnetoelectric coupling properties. This dissertation explores the design, development, and performance of multiferroic antennas. Our experimental results presented herein are among the few existing experimental verifications in the open literature, and they represent entirely new findings that differ significantly from existing theoretical predictions and understanding. The key contribution of this work lies in presenting a new experimental perspective that challenges prevailing assumptions and established conclusions, thereby paving the way for deeper inquiry into the underlying mechanisms of radiation from multiferroic antennas.
The thesis begins with a review of electrically small antenna (ESA) fundamentals, including their theoretical limitations, bandwidth-efficiency constraints, and various practical applications in biomedical telemetry and military communications. A key challenge in ESA design is overcoming the inherent trade-off between size, bandwidth, and radiation efficiency. To address this, a new class of mechanically actuated antennas, known as “mechtennas,” was proposed. These antennas generate electromagnetic radiation through mechanical motion rather than conventional current-based mechanisms, offering a novel approach to approaching the Chu’s limit. Yet, GHz-frequency actuation remains a challenge, necessitating alternative strategies, such as strain-mediated antennas. The dissertation introduces bulk acoustic wave (BAW)-driven multiferroic antennas, which utilize a piezoelectric-magnetostrictive composite structure to achieve resonances at GHz frequencies. The design allows for efficient electromagnetic radiation with reduced ohmic losses. Finally, our experimental validation reveals that multiferroic antennas demonstrate fundamental differences in the GHz band compared to the previous findings. These findings call for further investigation into the underlying mechanism of magnetoelectric radiation in the future. | en |
| dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2025-07-09T16:07:55Z No. of bitstreams: 0 | en |
| dc.description.provenance | Made available in DSpace on 2025-07-09T16:07:55Z (GMT). No. of bitstreams: 0 | en |
| dc.description.tableofcontents | 口試委員審定書 ii
誌謝 iii 中文摘要 iv ABSTRACT v CONTENTS vii LIST OF FIGURES ix LIST OF TABLES xvi LIST OF SYMBOLS xx Chapter 1 Introduction 1 1.1 Definition of Electrically Small Antennas 1 1.2 Applications for Electrically Small Antennas 2 1.3 Theoretical Limits in Miniaturization Theory 9 1.4 Mechanical Anntennas 16 1.5 Dissertation Outline 21 Chapter 2 Theoritical Framwork of Multiferroic Antennas 23 2.1 Basic Properties of Piezoelectric Materials 23 2.2 Eqivalent Circuits and Design Principles of Piezoelectric Resonators 34 2.3 Basic Properties of Ferromagnetic and Magnetoealstic Materials 42 2.4 Non-magnetostrictive Materials 58 2.5 Modelling on Multiferroic Antenna 66 Chapter 3 Review Work Regarding Experimental Proof of Multiferroic Antenna 77 3.1 Magnetoelectric Antennas 77 3.2 Magnetic Sensors 84 3.3 Acoustically Driven Ferromagnetic Resonances 88 Chapter 4 Multiferroic Antenna Validation by Composite Comparisons 94 4.1 Multiferroic Antenna Based on Lateral Electrodes Excitation 94 4.2 Device Simulation 101 4.3 Fabrication Process 108 4.4 Measurements Setup 116 4.5 Results and Discussions 125 Chapter 5 Multiferroic Materials for Antenna Application at GHz Band 136 5.1 Device Simulation 136 5.2 Fabrication Process 141 5.3 Measurements 147 Chapter 6 Conlusions and Future Works 148 References 150 | - |
| dc.language.iso | en | - |
| dc.subject | 多鐵性天線 | zh_TW |
| dc.subject | 體聲波共振器 | zh_TW |
| dc.subject | 磁電耦合 | zh_TW |
| dc.subject | 壓電共振器 | zh_TW |
| dc.subject | 壓電材料 | zh_TW |
| dc.subject | 磁彈性材料 | zh_TW |
| dc.subject | 磁致伸縮材料 | zh_TW |
| dc.subject | 小天線 | zh_TW |
| dc.subject | Bulk acoustic wave resonator | en |
| dc.subject | Electrically small antenna | en |
| dc.subject | Multiferroic antenna | en |
| dc.subject | Magnetostrictive material | en |
| dc.subject | Magnetoelastic material | en |
| dc.subject | Piezoelectric material | en |
| dc.subject | Piezoelectric resonator | en |
| dc.subject | Magnetoelectric coupling | en |
| dc.title | 基於多鐵性材料之GHz頻段電氣小天線之設計與實驗驗證及其操作機制之探究 | zh_TW |
| dc.title | Design, Experimental Validation, and Operational Mechanism Investigation of GHz-Band Electrically Small Antennas Based on Multiferroic Materials | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 113-2 | - |
| dc.description.degree | 博士 | - |
| dc.contributor.oralexamcommittee | 陳念偉;劉建豪;李尉彰;吳文中;李銘晃;Rob Candler | zh_TW |
| dc.contributor.oralexamcommittee | Nan-Wei Chen;Chien-Hao Liu;Wei-Chang Li;Wen-Jong Wu;Ming-Huang Li;Rob Candler | en |
| dc.subject.keyword | 小天線,多鐵性天線,磁致伸縮材料,磁彈性材料,壓電材料,壓電共振器,磁電耦合,體聲波共振器, | zh_TW |
| dc.subject.keyword | Electrically small antenna,Multiferroic antenna,Magnetostrictive material,Magnetoelastic material,Piezoelectric material,Piezoelectric resonator,Magnetoelectric coupling,Bulk acoustic wave resonator, | en |
| dc.relation.page | 159 | - |
| dc.identifier.doi | 10.6342/NTU202501094 | - |
| dc.rights.note | 同意授權(全球公開) | - |
| dc.date.accepted | 2025-06-18 | - |
| dc.contributor.author-college | 電機資訊學院 | - |
| dc.contributor.author-dept | 電信工程學研究所 | - |
| dc.date.embargo-lift | 2025-07-10 | - |
| 顯示於系所單位: | 電信工程學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-113-2.pdf | 9.87 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
