Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 電機資訊學院
  3. 電信工程學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/97567
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor王暉zh_TW
dc.contributor.advisorHuei Wangen
dc.contributor.author陳聖鈞zh_TW
dc.contributor.authorSheng-Chun Chenen
dc.date.accessioned2025-07-02T16:29:58Z-
dc.date.available2025-07-03-
dc.date.copyright2025-07-02-
dc.date.issued2025-
dc.date.submitted2025-06-18-
dc.identifier.citation[1] J. Pang et al., "A 28-GHz CMOS Phased-Array Transceiver Based on LO Phase-Shifting Architecture With Gain Invariant Phase Tuning for 5G New Radio," IEEE Journal of Solid-State Circuits, vol. 54, no. 5, pp. 1228-1242, 2019, doi: 10.1109/jssc.2019.2899734.
[2] 陳重均, "應用於超寬頻鎖相迴路之毫米波關鍵零組件," 博士, 電子工程學研究所, 國立臺灣大學, 台北市, 2009. [Online]. Available: https://hdl.handle.net/11296/36tns7
[3] H. Razavi and B. Razavi, "A Study of Injection Locking in Oscillators and Frequency Dividers," IEEE Journal of Solid-State Circuits, vol. 58, no. 8, pp. 2129-2140, 2023, doi: 10.1109/jssc.2023.3244910.
[4] A. S. Institute of Astronomy and Astrophysics. "ALMA Band 1 Science Workshop." Institute of Astronomy and Astrophysics, Academia Sinica. https://events.asiaa.sinica.edu.tw/workshop/20170116/ (accessed 2025, April 27).
[5] J. Carpenter, D. Iono, F. Kemper, and A. Wootten, "The ALMA Development Program: Roadmap to 2030," arXiv e-prints, p. arXiv:2001.11076, 2020, doi: 10.48550/arXiv.2001.11076.
[6] D. D. Kim, J. Kim, and C. Cho, "A 94GHz Locking Hysteresis-Assisted and Tunable CML Static Divider in 65nm SOI CMOS," in 2008 IEEE International Solid-State Circuits Conference - Digest of Technical Papers, 3-7 Feb. 2008 2008, pp. 460-628, doi: 10.1109/ISSCC.2008.4523256.
[7] J. O. Plouchart, K. Jonghae, V. Karam, R. Trzcinski, and J. Gross, "Performance Variations of a 66GHz Static CML Divider in 90nm CMOS," in 2006 IEEE International Solid State Circuits Conference - Digest of Technical Papers, 6-9 Feb. 2006 2006, pp. 2142-2151, doi: 10.1109/ISSCC.2006.1696274.
[8] Y. H. Lin and H. Wang, "A 35.7–64.2 GHz low power Miller Divider with Weak Inversion Mixer in 65 nm CMOS," IEEE Microwave and Wireless Components Letters, vol. 26, no. 11, pp. 948-950, 2016, doi: 10.1109/LMWC.2016.2615013.
[9] W. L. Chen et al., "A 53.6 GHz direct injection-locked frequency divider with a 72% locking range in 65 nm CMOS technology," in 2013 IEEE MTT-S International Microwave Symposium Digest (MTT), 2-7 June 2013 2013, pp. 1-3, doi: 10.1109/MWSYM.2013.6697536.
[10] J.-H. Cheng, J.-H. Tsai, and T.-W. Huang, "Design of a 90.9% Locking Range Injection-Locked Frequency Divider With Device Ratio Optimization in 90-nm CMOS," IEEE Transactions on Microwave Theory and Techniques, vol. 65, no. 1, pp. 187-197, 2017, doi: 10.1109/tmtt.2016.2608898.
[11] G. Dong, Y. Shen, and S. Hu, "A 33.5–92.6-GHz CMOS Injection-Locked Frequency Divider Using Fourth-Order Resonator," IEEE Microwave and Wireless Technology Letters, vol. 34, no. 10, pp. 1190-1193, 2024, doi: 10.1109/lmwt.2024.3444001.
[12] B. Hong and A. Hajimiri, "A General Theory of Injection Locking and Pulling in Electrical Oscillators—Part I: Time-Synchronous Modeling and Injection Waveform Design," IEEE Journal of Solid-State Circuits, vol. 54, no. 8, pp. 2109-2121, 2019, doi: 10.1109/jssc.2019.2908753.
[13] B. Hong and A. Hajimiri, "A Phasor-Based Analysis of Sinusoidal Injection Locking in LC and Ring Oscillators," IEEE Transactions on Circuits and Systems I: Regular Papers, vol. 66, no. 1, pp. 355-368, 2019, doi: 10.1109/tcsi.2018.2860045.
[14] B.-Y. Lin and S.-I. Liu, "Analysis and Design of D-Band Injection-Locked Frequency Dividers," IEEE Journal of Solid-State Circuits, vol. 46, no. 6, pp. 1250-1264, 2011, doi: 10.1109/jssc.2011.2131750.
[15] Y.-H. Lin and H. Wang, "Design and Analysis of W-Band Injection-Locked Frequency Divider Using Split Transformer-Coupled Oscillator Technique," IEEE Transactions on Microwave Theory and Techniques, vol. 66, no. 1, pp. 177-186, 2018, doi: 10.1109/tmtt.2017.2750666.
[16] B. Razavi, "A study of injection locking and pulling in oscillators," IEEE Journal of Solid-State Circuits, vol. 39, no. 9, pp. 1415-1424, 2004, doi: 10.1109/jssc.2004.831608.
[17] L. Tang-Nian and Y. J. E. Chen, "A 0.8-mW 55-GHz Dual-Injection-Locked CMOS Frequency Divider," IEEE Transactions on Microwave Theory and Techniques, vol. 56, no. 3, pp. 620-625, 2008, doi: 10.1109/tmtt.2008.916868.
[18] J. Zhang, Y. Cheng, C. Zhao, Y. Wu, and K. Kang, "Analysis and Design of Ultra-Wideband mm-Wave Injection-Locked Frequency Dividers Using Transformer-Based High-Order Resonators," IEEE Journal of Solid-State Circuits, vol. 53, no. 8, pp. 2177-2189, 2018, doi: 10.1109/jssc.2018.2822710.
[19] J. Zhang, H. Liu, Y. Wu, C. Zhao, and K. Kang, "A 27.9–53.5-GHz transformer-based injection-locked frequency divider with 62.9% locking range," in 2017 IEEE Radio Frequency Integrated Circuits Symposium (RFIC), 4-6 June 2017 2017, pp. 324-327, doi: 10.1109/RFIC.2017.7969083.
[20] J. Zhu, Q. Jiang, H. Mosalam, C. Zhan, and Q. Pan, "A 19–48.3-GHz 6th-Order Transformer-Based Injection-Locked Frequency Divider With 87.1% Locking Range in 40-nm CMOS," IEEE Transactions on Circuits and Systems II: Express Briefs, vol. 68, no. 9, pp. 3053-3057, 2021, doi: 10.1109/tcsii.2021.3085499.
[21] C. Chung-Chun, T. Hen-Wai, and W. Huei, "Design and Analysis of CMOS Frequency Dividers With Wide Input Locking Ranges," IEEE Transactions on Microwave Theory and Techniques, vol. 57, no. 12, pp. 3060-3069, 2009, doi: 10.1109/tmtt.2009.2033239.
[22] Z. D. Huang, C. Y. Wu, and B. C. Huang, "Design of 24-GHz 0.8-V 1.51-mW Coupling Current-Mode Injection-Locked Frequency Divider With Wide Locking Range," IEEE Transactions on Microwave Theory and Techniques, vol. 57, no. 8, pp. 1948-1958, 2009, doi: 10.1109/TMTT.2009.2025409.
[23] K. H. Chien, J. Y. Chen, and H. K. Chiou, "Designs of K-Band Divide-by-2 and Divide-by-3 Injection-Locked Frequency Divider With Darlington Topology," IEEE Transactions on Microwave Theory and Techniques, vol. 63, no. 9, pp. 2877-2888, 2015, doi: 10.1109/TMTT.2015.2449853.
[24] S. P. Sah and H. Deukhyoun, "A 12 GHz IF bandwidth low power 5–17 GHz V-band positive transformer-feedback down-conversion mixer," in 2014 IEEE MTT-S International Microwave Symposium (IMS2014), 1-6 June 2014 2014, pp. 1-4, doi: 10.1109/MWSYM.2014.6848561.
[25] Z. Jian, Y. Yu, and S. Xiao-Wei, "A W-band high conversion gain, single-balanced subharmonically gate-pumped mixer with novel size-reduced marchand balun," in 2015 IEEE MTT-S International Microwave Symposium, 17-22 May 2015 2015, pp. 1-3, doi: 10.1109/MWSYM.2015.7166980.
[26] D. Parveg, M. Varonen, M. Kärkkäinen, D. Karaca, A. Vahdati, and K. A. I. Halonen, "Wideband millimeter-wave active and passive mixers in 28 nm bulk CMOS technology," in 2015 10th European Microwave Integrated Circuits Conference (EuMIC), 7-8 Sept. 2015 2015, pp. 116-119, doi: 10.1109/EuMIC.2015.7345082.
[27] Y. Li, W. L. Goh, and Y. Z. Xiong, "A Broadband Mixer Up to 110 GHz With I–Q Outputs," IEEE Transactions on Terahertz Science and Technology, vol. 5, no. 2, pp. 251-259, 2015, doi: 10.1109/TTHZ.2015.2394736.
[28] T. Kojima, M. Kroug, K. Uemizu, Y. Niizeki, H. Takahashi, and Y. Uzawa, "Performance and Characterization of a Wide IF SIS-Mixer-Preamplifier Module Employing High-J c SIS Junctions," IEEE Transactions on Terahertz Science and Technology, vol. 7, no. 6, pp. 694-703, 2017, doi: 10.1109/TTHZ.2017.2758260.
[29] Y. A. Lai, C. N. Chen, S. H. Hung, and Y. H. Wang, "Compact double-balanced star mixers with novel dual 180° hybrids," in 2012 IEEE 11th International Conference on Solid-State and Integrated Circuit Technology, 29 Oct.-1 Nov. 2012 2012, pp. 1-4, doi: 10.1109/ICSICT.2012.6466754.
[30] Z. Chen, X. Jiang, W. Hong, and J. Chen, "A Q-band doubly balanced mixer in 0.15um GaAs pHEMT technology," in 2014 IEEE International Wireless Symposium (IWS 2014), 24-26 March 2014 2014, pp. 1-4, doi: 10.1109/IEEE-IWS.2014.6864189.
[31] H. Yuh-Jing, H. Wang, and C. Tah-Hsiung, "A W-band subharmonically pumped monolithic GaAs-based HEMT gate mixer," IEEE Microwave and Wireless Components Letters, vol. 14, no. 7, pp. 313-315, 2004, doi: 10.1109/LMWC.2004.829256.
[32] Z. M. Tsai, J. C. Kao, K. Y. Lin, and H. Wang, "A 24–48 GHz cascode HEMT mixer with DC to 15 GHz IF bandwidth for astronomy radio telescope," in 2009 European Microwave Integrated Circuits Conference (EuMIC), 28-29 Sept. 2009 2009, pp. 5-8.
[33] J. C. Kao, K. Y. Lin, C. C. Chiong, C. Y. Peng, and H. Wang, "A $W$ -band High LO-to-RF Isolation Triple Cascode Mixer With Wide IF Bandwidth," IEEE Transactions on Microwave Theory and Techniques, vol. 62, no. 7, pp. 1506-1514, 2014, doi: 10.1109/TMTT.2014.2323020.
[34] C. N. Chen, Y. H. Lin, Y. C. Chen, C. C. Chiong, and H. Wang, "A High LO-to-RF Isolation 34–53 GHz Cascode Mixer for ALMA Observatory Applications," in 2018 IEEE/MTT-S International Microwave Symposium - IMS, 10-15 June 2018 2018, pp. 686-689, doi: 10.1109/MWSYM.2018.8439582.
[35] W. Yi-Ching, C. C. Chiong, and H. Wang, "A novel 30–90 GHz singly balanced mixer with broadband LO/IF," in 2016 IEEE MTT-S International Microwave Symposium (IMS), 22-27 May 2016 2016, pp. 1-4, doi: 10.1109/MWSYM.2016.7540369.
[36] W. C. Ma, C. C. Chiong, Y. S. Wang, and H. Wang, "A High LO-to-RF Isolation E-band Mixer with 30 GHz Instantaneous IF Bandwidth in 90nm CMOS," in 2023 IEEE/MTT-S International Microwave Symposium - IMS 2023, 11-16 June 2023 2023, pp. 139-142, doi: 10.1109/IMS37964.2023.10188008.
[37] X. Luo, W. Feng, H. Zhu, L. Wu, W. Che, and Q. Xue, "A Millimeter-Wave Variable-Gain Power Amplifier With P₁ dB Improvement Technique in 65-nm CMOS," IEEE Microwave and Wireless Components Letters, vol. 32, no. 12, pp. 1427-1430, 2022, doi: 10.1109/lmwc.2022.3177656.
[38] H. C. Yeh, S. Aloui, C. C. Chiong, and H. Wang, "A Wide Gain Control Range V-Band CMOS Variable-Gain Amplifier With Built-In Linearizer," IEEE Transactions on Microwave Theory and Techniques, vol. 61, no. 2, pp. 902-913, 2013, doi: 10.1109/TMTT.2012.2233211.
[39] X. Zhang et al., "A 39-GHz Phase-Inverting Variable Gain Power Amplifier in 65-nm CMOS for 5G Communication," IEEE Microwave and Wireless Components Letters, vol. 32, no. 11, pp. 1303-1306, 2022, doi: 10.1109/lmwc.2022.3180999.
[40] C.-H. Lai, Y. Wang, Y.-S. Ng, C.-C. Chiong, and H. Wang, "A 29-48 GHz Variable Gain Low Noise Amplifier Using Active Load in 90-nm CMOS Process," presented at the 2024 IEEE/MTT-S International Microwave Symposium - IMS 2024, 2024.
[41] C. Elgaard, S. Andersson, P. Caputa, E. Westesson, and H. Sjöland, "A 27 GHz Adaptive Bias Variable Gain Power Amplifier and T/R Switch in 22nm FD-SOI CMOS for 5G Antenna Arrays," in 2019 IEEE Radio Frequency Integrated Circuits Symposium (RFIC), 2-4 June 2019 2019, pp. 303-306, doi: 10.1109/RFIC.2019.8701819.
[42] R. Bagger and H. Sjoland, "An 11 GHz–Bandwidth Variable Gain Ka–Band Power Amplifier for 5G Applications," in ESSCIRC 2019 - IEEE 45th European Solid State Circuits Conference (ESSCIRC), 23-26 Sept. 2019 2019, pp. 181-184, doi: 10.1109/ESSCIRC.2019.8902927.
[43] L. Wang et al., "A Variable Gain Power Amplifier Based on Switched-Capacitor Array With Stable Linearity," IEEE Transactions on Circuits and Systems II: Express Briefs, vol. 69, no. 2, pp. 289-293, 2022, doi: 10.1109/TCSII.2021.3099799.
[44] X. Li, D. Cheng, X. Jiang, D. Wang, and L. Li, "A 57-71-GHz Accurate dB-Linear Variable Gain Power Amplifier with Ultralow Gain Error Using Particle Swarm Optimization Algorithm," presented at the 2024 IEEE/MTT-S International Microwave Symposium - IMS 2024, 2024.
[45] Q. Jiang and Q. Pan, "Analysis and Design of Tuning-Less mm-Wave Injection-Locked Frequency Dividers With Wide Locking Range Using 8th-Order Transformer-Based Resonator in 40 nm CMOS," IEEE Journal of Solid-State Circuits, vol. 57, no. 9, pp. 2812-2828, 2022, doi: 10.1109/jssc.2022.3152346.
[46] B. Razavi, Design of CMOS Phase-Locked Loops: From Circuit Level to Architecture Level. Cambridge, 2020.
[47] 鄭人豪, "應用於生命訊號偵測雷達之2-30-GHz接收機與寬頻鎖相迴路前端電路之設計," 博士, 電信工程學研究所, 國立臺灣大學, 台北市, 2017. [Online]. Available: https://hdl.handle.net/11296/ubu6j5
[48] 高瑞智, "微波及毫米波寬頻系統關鍵元件之研究," 博士, 電信工程學研究所, 國立臺灣大學, 台北市, 2013. [Online]. Available: https://hdl.handle.net/11296/wh553x
[49] 陳俊年, "應用於第五代行動通訊毫米波系統之相位陣列系統與接收機電路元件之研製," 博士, 電信工程學研究所, 國立臺灣大學, 台北市, 2020. [Online]. Available: https://hdl.handle.net/11296/w9q2s3
[50] 吳依靜, "毫米波寬頻混頻器及高增益低功耗之次諧波混頻器研究," 博士, 電信工程學研究所, 國立臺灣大學, 台北市, 2018. [Online]. Available: https://hdl.handle.net/11296/sxgdwc
[51] C. S. Lin, H. Y. Chang, P. S. Wu, K. Y. Lin, and H. Wang, "A 35-50 GHz IQ-Demodulator in 0.13-μm CMOS Technology," in 2007 IEEE/MTT-S International Microwave Symposium, 3-8 June 2007 2007, pp. 1397-1400, doi: 10.1109/MWSYM.2007.380492.
[52] Y. H. Lin, J. L. Kuo, and H. Wang, "A 60-GHz sub-harmonic IQ modulator and demodulator using drain-body feedback technique," in 2012 7th European Microwave Integrated Circuit Conference, 29-30 Oct. 2012 2012, pp. 365-368.
[53] Z. M. Tsai, H. C. Liao, Y. H. Hsiao, and H. Wang, "V-Band High Data-Rate I/Q Modulator and Demodulator With a Power-Locked Loop LO Source in 0.15-/spl mu/m GaAs pHEMT Technology," IEEE Transactions on Microwave Theory and Techniques, vol. 61, no. 7, pp. 2670-2684, 2013, doi: 10.1109/TMTT.2013.2261537.
[54] C. A. Hsieh, Y. H. Lin, and H. Wang, "A miniature 52–66 GHz sub-harmonic IQ demodulator with low LO power in 65-nm CMOS," in 2014 Asia-Pacific Microwave Conference, 4-7 Nov. 2014 2014, pp. 1199-1201.
[55] Y. T. Chou, Y. H. Lin, and H. Wang, "A high image rejection E-band sub-harmonic IQ demodulator with low power consumption in 90-nm CMOS process," in 2016 11th European Microwave Integrated Circuits Conference (EuMIC), 3-4 Oct. 2016 2016, pp. 488-491, doi: 10.1109/EuMIC.2016.7777598.
[56] Y.-T. Chang and H.-C. Lu, "A $V$ -Band Low-Power Digital Variable-Gain Low-Noise Amplifier Using Current-Reused Technique With Stable Matching and Maintained OP1dB," IEEE Transactions on Microwave Theory and Techniques, vol. 67, no. 11, pp. 4404-4417, 2019, doi: 10.1109/tmtt.2019.2938752.
[57] 吳振緯, "微波與毫米波分佈式放大器及變壓器之電壓式功率結合技術之堆疊式功率放大器研究," 碩士, 電信工程學研究所, 國立臺灣大學, 台北市, 2017. [Online]. Available: https://hdl.handle.net/11296/mmt72d
[58] 周正峯, "微波低雜訊放大器及使用寬頻變壓器對稱放射狀功率結合技術之毫米波功率放大器研究," 碩士, 電信工程學研究所, 國立臺灣大學, 台北市, 2016. [Online]. Available: https://hdl.handle.net/11296/c3u7e5
[59] 張洋, "毫米波高功率及高效率功率放大器之設計," 碩士, 電信工程學研究所, 國立臺灣大學, 台北市, 2019. [Online]. Available: https://hdl.handle.net/11296/3v685v
[60] 黃煒程, "應用於天文接收機之差動低雜訊放大器與應用於5G通訊之K-頻高效率CMOS功率放大器設計," 碩士, 電信工程學研究所, 國立臺灣大學, 台北市, 2018. [Online]. Available: https://hdl.handle.net/11296/mm5chr
[61] J. Rollett, "Stability and Power-Gain Invariants of Linear Twoports," IRE Transactions on Circuit Theory, vol. 9, no. 1, pp. 29-32, 1962, doi: 10.1109/TCT.1962.1086854.
[62] B. Philippe and P. Reynaert, "24.7 A 15dBm 12.8%-PAE Compact D-Band Power Amplifier with Two-Way Power Combining in 16nm FinFET CMOS," in 2020 IEEE International Solid-State Circuits Conference - (ISSCC), 16-20 Feb. 2020 2020, pp. 374-376, doi: 10.1109/ISSCC19947.2020.9062920.
[63] 張譽騰, "使用CMOS製程之60 GHz WiGig接收機與D頻段訊號源設計," 博士, 電子工程學研究所, 國立臺灣大學, 台北市, 2019. [Online]. Available: https://hdl.handle.net/11296/2wcfuu
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/97567-
dc.description.abstract本論文包含三個部分。第一部分是應用於28 GHz相位陣列收發系統的毫米波注入鎖定除頻器設計與量測結果,使用90奈米金氧半場效電晶體製程。第二部分為應用於天文接收機之Q頻段鏡像抑制混頻器之設計與結果,使用90奈米金氧半場效電晶體製程。第三部分是應用於天文接收機之Q頻段可變增益功率放大器設計與量測結果,使用90奈米金氧半場效電晶體製程。
第一部分為應用於28 GHz相位陣列收發系統的注入鎖定除頻器設計。該電路採用Class-C偏壓架構以有效降低功耗,並藉由雙混頻技術,在不額外增加功耗的情況下增加操作頻寬;此外,利用諧波抑制電容設計以縮小晶片核心面積。量測結果顯示,所提出的除頻器具備21–36 GHz的鎖定範圍,功耗僅0.7 毫瓦,且晶片核心面積僅為0.043 平方毫米。
第二部分為應用於天文接收機之Q頻段鏡像抑制混頻器。該電路採用被動式電晶體設計以實現超寬頻中頻響應,並透過雙平衡式混頻器架構以達成優異的隔離度表現。此外,利用威金森功率分配器與耦合器,有效抑制鏡像訊號。量測結果顯示,所提出電路的中頻頻寬範圍為4至40 GHz,轉換損耗介於–11.5 dB至–14 dB之間,且鏡像抑制比在整個操作頻寬內皆優於30 dB。值得一提的是,本電路無直流功耗。
第三部分提出一個應用於天文接收機之Q頻段可變增益功率放大器。該電路於輸出級採用三明治結構的變壓器,以降低插入損耗;此外,提出一種新型增益調控架構,使在增益變化時輸入與輸出阻抗維持不變,以提升電路穩定度。量測結果顯示,該放大器3-dB頻寬為36.8 GHz至52.6 GHz,增益調控範圍為5.5 dB,且飽和輸出功率(Psat)達17.2 dBm。值得一提的是,一分貝壓縮點輸出功率(OP1dB)在不同增益設定下變化極小。
zh_TW
dc.description.abstractThis thesis is composed of three parts. The first part presents the design and measurement results of a millimeter-wave injection-locked frequency divider (ILFD) intended for 28GHz phased-array transceiver systems, implemented using a 90-nm CMOS process. The second part describes the design and measurement of a Q-band image-rejection mixer for astronomical receivers, fabricated using the 90-nm CMOS technology. The third part focuses on the design and measurement results of a Q-band variable-gain power amplifier (VGPA) targeted for astronomical receiver applications, likewise implemented in a 90-nm CMOS process.
In the first part, an injection-locked frequency divider is proposed for a 28 GHz phased-array system. The circuit adopts a Class-C biasing technique to reduce power consumption significantly and employs a dual-mixing technique to extend the locking range without additional power consumption. Furthermore, harmonic suppression capacitors are utilized to minimize the core chip area. Measurement results show a locking range from 21 to 36 GHz, with a low power consumption of 0.7 mW and a compact core area of only 0.043 mm².
The second part presents a Q-band image-rejection mixer designed for astronomical receivers. The mixer utilizes a cold-biasing technique to achieve a wide IF bandwidth and adopts a double-balanced architecture to enhance isolation. A Wilkinson power divider and a coupler are incorporated to suppress the image signal effectively. Measurement results demonstrate an IF bandwidth ranging from 4 to 40 GHz, with a conversion loss between –11.5 dB and –14 dB, and an image rejection ratio exceeding 30 dB across the operational bandwidth. Notably, this design operates with zero DC power consumption.
The third part proposes a Q-band variable-gain power amplifier for astronomical receivers. A sandwiched transformer is employed at the output stage to reduce insertion loss, and a new gain-control architecture is introduced to maintain stable input and output impedances across different gain settings, thereby improving circuit stability. Measurement results indicate a 3-dB bandwidth from 36.8 GHz to 52.6 GHz, a gain control range of 5.5 dB, and a saturated output power (Psat) of 17.2 dBm. It is worth mentioning that the OP1dB exhibits minimal variation under different gain conditions.
en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2025-07-02T16:29:58Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2025-07-02T16:29:58Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontents口試委員審定書 i
致謝 ii
中文摘要 iii
ABSTRACT iv
CONTENTS vi
LIST OF FIGURES ix
LIST OF TABLES xvi
Chapter 1 Introduction 1
1.1 Background and Motivation 1
1.1.1 5G Phase-Array Transceiver System 1
1.1.2 ALMA Receiver System 2
1.2 Literature Surveys 3
1.2.1 Millimeter-wave Frequency Divider 3
1.2.2 Wide Instantaneous IF Bandwidth Mixers 5
1.2.3 Variable Gain Power Amplifiers 7
1.3 Contributions 9
1.3.1 Millimeter-Wave Ultralow-Power ILFD in CMOS Process 9
1.3.2 Q-Band Image-Rejection Down-Conversion Mixer with Ultra-Wideband IF in CMOS Process 10
1.3.3 Q-Band VGPA with Stable OP1dB in CMOS Process 10
1.4 Thesis Organization 11
Chapter 2 A Millimeter-Wave Ultralow-Power Injection-Locked Frequency Divider in CMOS Process in 90-nm CMOS Process 12
2.1 Introduction 12
2.2 Design of the ILFD 14
2.2.1 Device Size and Bias Selection 14
2.2.2 Proposed Dual-Mixing Technique 20
2.2.3 Harmonic Suppression Technique [10, 47] 23
2.3 Circuit Schematic and Simulation 27
2.4 Measurement Results 30
2.5 Summary 34
Chapter 3 A Q-Band Image-Rejection Down-Conversion Mixer with Ultra-Wideband IF in 90nm CMOS for Astronomical Observation. 36
3.1 Introduction 36
3.2 The Design of the Mixer 38
3.2.1 Cold-Biasing Technique [36, 48, 49] 38
3.2.2 Device Size and Bias Selection 42
3.2.3 Marchand Balun Design [50] 44
3.2.4 Image Rejection Design 46
3.3 Circuit Schematic and Simulation 52
3.4 Measurement Results 59
3.5 Summary 65
Chapter 4 A Q-Band Broadband Variable Gain Power Amplifier in 90nm CMOS for Astronomical Observation. 68
4.1 Introduction 68
4.2 Design of the VGPA 70
4.2.1 Neutralization Technique [57-60] 70
4.2.2 Power Stage Design 76
4.2.3 Driver Stage Design 88
4.2.4 Variable Gain Stage Design 96
4.3 Circuit Schematic and Simulation 102
4.4 Measurement Result 113
4.5 Summary 121
Chapter 5 Conclusions 123
REFERENCES 124
-
dc.language.isoen-
dc.subject注入鎖定除頻器zh_TW
dc.subject28 GHz相位陣列收發系統zh_TW
dc.subject鏡像抑制zh_TW
dc.subject天文收發機zh_TW
dc.subjectQ頻段zh_TW
dc.subject可變增益功率放大器zh_TW
dc.subject混頻器zh_TW
dc.subject互補式金氧半導體zh_TW
dc.subject28 GHz phased-arrays transceiver systemen
dc.subjectCMOSen
dc.subjectinjection-locked frequency divideren
dc.subjectmixeren
dc.subjectvariable gain power amplifieren
dc.subjectQ-Banden
dc.subjectastronomical receiveren
dc.subjectimage rejectionen
dc.title應用於天文接收機之Q頻段鏡像抑制降頻混頻器、可變增益功率放大器及毫米波除頻器之研究zh_TW
dc.titleResearch of Millimeter-Wave Frequency Dividers, Q-Band Image-Rejection Down-Conversion Mixer, and Variable Gain Power Amplifier for Astronomical Receiveren
dc.typeThesis-
dc.date.schoolyear113-2-
dc.description.degree碩士-
dc.contributor.oralexamcommittee林坤佑;章朝盛;黃天偉;王雲杉zh_TW
dc.contributor.oralexamcommitteeKun-You Lin;Chau-Ching Chiong;Tian-Wei Huang;Yun-Shan Wangen
dc.subject.keyword互補式金氧半導體,注入鎖定除頻器,混頻器,可變增益功率放大器,Q頻段,天文收發機,鏡像抑制,28 GHz相位陣列收發系統,zh_TW
dc.subject.keywordCMOS,injection-locked frequency divider,mixer,variable gain power amplifier,Q-Band,astronomical receiver,image rejection,28 GHz phased-arrays transceiver system,en
dc.relation.page128-
dc.identifier.doi10.6342/NTU202501187-
dc.rights.note未授權-
dc.date.accepted2025-06-18-
dc.contributor.author-college電機資訊學院-
dc.contributor.author-dept電信工程學研究所-
dc.date.embargo-liftN/A-
顯示於系所單位:電信工程學研究所

文件中的檔案:
檔案 大小格式 
ntu-113-2.pdf
  未授權公開取用
4.85 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved