請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/97540完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 駱尚廉 | zh_TW |
| dc.contributor.advisor | Shang-Lien Lo | en |
| dc.contributor.author | 黃士昕 | zh_TW |
| dc.contributor.author | Shih-Hsin Huang | en |
| dc.date.accessioned | 2025-07-02T16:22:25Z | - |
| dc.date.available | 2025-07-03 | - |
| dc.date.copyright | 2025-07-02 | - |
| dc.date.issued | 2025 | - |
| dc.date.submitted | 2025-06-03 | - |
| dc.identifier.citation | Antunes, M., Santos, R. L., Pereira, J., Rocha, P., Horta, R. B., & Colaço, R. (2021). Alternative clinker technologies for reducing carbon emissions in cement industry: a critical review. Materials, 15(1), 209.
Bouckaert, S., Pales, A. F., McGlade, C., Remme, U., Wanner, B., Varro, L., D'Ambrosio, D. & Spencer, T. (2021). Net zero by 2050: A roadmap for the global energy sector. Cement, G. (2021). Global Cement and Concrete Association. Czigler, T., Reiter, S., Schulze, P., & Somers, K. (2020). Laying the foundation for zero-carbon cement. McKinsey & Company, 9. De Beer, J., Cihlar, J., Hensing, I., & Zabeti, M. (2017). Status and prospects of co-processing of waste in EU cement plants. Ecofys, Cembureau. Retrieved September, 22, 2020. European Cement Research Academy; Cement Sustainability Initiative, Ed. Development of State of the Art-Techniques in Cement Manufacturing: Trying to Look Ahead; CSI/ECRATechnology Papers 2017. Duesseldorf, Geneva, 2017 Available at: http://www.wbcsdcement.org/technology. Fantini, P., Pinzone, M., & Taisch, M. (2020). Placing the operator at the centre of Industry 4.0 design: Modelling and assessing human activities within cyber-physical systems. Computers & Industrial Engineering, 139, 105058. Filonchyk, M., Peterson, M. P., Yan, H., Gusev, A., Zhang, L., He, Y., & Yang, S. (2024). Greenhouse gas emissions and reduction strategies for the world's largest greenhouse gas emitters. Science of The Total Environment, 944, 173895. Fleiter, T., Schleich, J., & Ravivanpong, P. (2012). Adoption of energy-efficiency measures in SMEs—An empirical analysis based on energy audit data from Germany. Energy policy, 51, 863-875. Guo, Y., Luo, L., Liu, T., Hao, L., Li, Y., Liu, P., & Zhu, T. (2024). A review of low-carbon technologies and projects for the global cement industry. Journal of Environmental Sciences, 136, 682-697. Hanemann, W. M. (2007). How California came to pass AB 32, the global warming solutions act of 2006. Hildebrandt, J., Brende, B., & Sicars, S. (2022). Green Public Procurement: Catalysing the net zero economy. In World Economic Forum. Available at: https://www3. weforum. org/docs/WEF_Green_Public_Procurement_2022. pdf. Huang, Y. H., Wu, J. H., & Liu, T. Y. (2022). Bottom-up analysis of energy conservation and carbon dioxide mitigation potentials by extended marginal abatement cost curves for pulp and paper industry. Energy Strategy Reviews, 42, 100893. IEA (2023), Cement, IEA, Paris https://www.iea.org/reports/cement-3, Licence: CC BY 4.0. IEA (2023), Direct emissions intensity of cement production in the Net Zero Scenario, 2015-2030, IEA, Paris https://www.iea.org/data-and-statistics/charts/direct-emissions-intensity-of-cement-production-in-the-net-zero-scenario-2015-2030-2, Licence: CC BY 4.0. IEA, C. (2018). Technology Roadmap Low-Carbon Transition in the Cement Industry. France/WBCSD, Geneva, Switzerland. IEA, Paris. Ige, O. E., Von Kallon, D. V., & Desai, D. (2024). Carbon emissions mitigation methods for cement industry using a systems dynamics model. Clean Technologies and Environmental Policy, 26(3), 579-597. Kearns, D., Liu, H., & Consoli, C. (2021). Technology readiness and costs of CCS. Global CCS institute, 3. Lau, H. C., & Tsai, S. C. (2024). Toward Cleaner and More Sustainable Cement Production in Vietnam via Carbon Capture and Storage. Sustainability, 16(2), 942. Lee, H., Calvin, K., Dasgupta, D., Krinner, G., Mukherji, A., Thorne, P., Trisos, C., Romero, J., Aldunce, P., & Ruane, A. C. (2024). Climate change 2023 synthesis report summary for policymakers. CLIMATE CHANGE 2023 Synthesis Report: Summary for Policymakers. Li, X., Ma, W., Li, S., Hou, S., Chen, Y., Wen, X., Dan, J., Huang, J., & Lv, Y. (2024). Study on the properties and carbon footprint of low heat cement clinker prepared by recycled concrete powder and calcium carbide slag. Construction and Building Materials, 441, 137542. Liu, H., Consoli, C., & Zapantis, A. (2018, October). Overview of Carbon Capture and Storage (CCS) facilities globally. In 14th Greenhouse Gas Control Technologies Conference Melbourne (pp. 21-26). Nemitallah, M. A., Habib, M. A., Badr, H. M., Said, S. A., Jamal, A., Ben‐Mansour, R., Mokheimer, E. M. A., & Mezghani, K. (2017). Oxy‐fuel combustion technology: current status, applications, and trends. International Journal of Energy Research, 41(12), 1670-1708. Obrist, M. D., Kannan, R., Schmidt, T. J., & Kober, T. (2022). Long-term energy efficiency and decarbonization trajectories for the Swiss pulp and paper industry. Sustainable Energy Technologies and Assessments, 52, 101937. Ojan, M. (2015). Solar Power and new concrete applications: a pilot plant in Morocco. no. May. Owttrim, C. G., Davis, M., & Kumar, A. (2022). Development of technology-explicit energy saving bandwidths: A case study for the pulp and paper sector. Energy Conversion and Management, 258, 115535. “Partnership for Market Readiness. 2017. A Guide to Greenhouse Gas Benchmarking for Climate Policy Instruments. © World Bank. http://hdl.handle.net/10986/26848 License: CC BY 3.0 IGO.”. PCA (Portland Cement Association), 2020. Reduce Your Carbon Footprint With PLC. PCA Available. Sarkar, S., Chaudhury, S. K., & Rath, S. (2025). Constructing the Road to Future: Challenges and Implications for Indian Cement Industry. International Journal of Multidisciplinary Research and Growth Evaluation, 6(1), 1614-1620. https://doi.org/10.54660/.IJMRGE.2025.6.1.1614-1620. Semkiv, O. MAJOR ASPECTS OF METHOGOLOGICAL APPROACHES TO TAXONOMY OF TRANSACTION COSTS ASSOCIATED WITH IMPLEMENTATION OF DIRECTIVE 2003/87/EC. Sethi, V. K., & Vyas, S. (2017). An innovative approach for carbon capture & sequestration on a thermal power plant through conversion to multi-purpose fuels–a feasibility study in indian context. Energy Procedia, 114, 1288-1296. Sousa, V., & Bogas, J. A. (2021). Comparison of energy consumption and carbon emissions from clinker and recycled cement production. Journal of cleaner production, 306, 127277. Tan, C., Yu, X., & Guan, Y. (2022). A technology-driven pathway to net-zero carbon emissions for China's cement industry. Applied Energy, 325, 119804. Tan, C., Yu, X., & Guan, Y. (2022). A technology-driven pathway to net-zero carbon emissions for China's cement industry. Applied Energy, 325, 119804. Traedal, S., Berstad, D., & Stang, J. (2018, October 21-25). Experimental Investigation of Low-Temperature CO2 Separation for Carbon Capture in the Cement Industry. 14th International Conference on Greenhouse Gas Control Technologies, Melbourne, Australia. United Nations Environment Programme. (2023). Emissions gap report 2023: broken record—temperatures hit new highs, yet world fails to cut emissions (again). United Nations Environ. Programme. Zhang, J., Terrones, M., Park, C. R., Mukherjee, R., Monthioux, M., Koratkar, N., Kim, Y. S., Hurt, R., Frackowiak, E., Enoki, T., Chen, Y., Chen, Y., & Bianco, A. (2016). Carbon science in 2016: Status, challenges and perspectives. Carbon, 98, 708-732. Mengesha, I., & Roy, D. (2025). Carbon pricing drives critical transition to green growth. Nature Communications, 16(1), 1321. 環境部氣候變遷署(2024)。2024年中華民國國家溫室氣體排放清冊報告。https://www.cca.gov.tw/information-service/publications/national-ghg-inventory-report/12003.html 吳珮瑛(2024)。EU ETS免費排放許可核配與碳洩漏名單篩選經驗-對結合棍棒與蘿蔔達標低碳費(稅)率政策之啟示。台灣國際研究季刊,20(3),1-103。 中國关于北京市在严格控制碳排放总量前提下开展碳排放权交易试点工作的决定。http://www.pcet.cn/detail/56d74582-68e8-4351-bdd0-765bc1dfb6b4、 https://www.mee.gov.cn/xxgk2018/xxgk/xxgk06/202302/t20230207_1015569.html。 日本促進全球變暖對策法(1998年法律第117號)。https://elaws.e-gov.go.jp/document?lawid=410AC0000000117。 臺灣水泥股份有限公司(2024)。2023年永續報告書。https://www.tccgroupholdings.com/tw/esgReport.html 台灣區水泥工業同業公會(2024)。2019-2024年公會年報。https://tcmaorg.tw/download。 左峻德(2014)。我國減碳目標下之市場機制政策與配套措施設計及評估。行政院原子能委員會委託研究計畫研究報告。 亞洲水泥股份有限公司(2024)。2023年永續報告書。 https://esg.acc.com.tw/resource_center/esg_report。 幸福水泥股份有限公司(2024)。2023年永續報告書。https://www.luckygrp.com.tw/tw/index.asp?au_id=11&sub_id=53。 信大水泥股份有限公司(2024)。2023年永續報告書。https://www.hsingta.com.tw/SupportDetail.asp?lv=-1&id=7。 南韓溫室氣體排放交易體系報告與認證指南。https://www.law.go.kr/admRulLsInfoP.do?admRulSeq=2100000229302。 施文真(2023)。歐盟碳邊境調整措施與其在WTO下之合法性初探。 月旦知識庫,(340),6。https://doi.org/10.53106/1025593134001。 柯翰勝,2011。低二氧化碳排放的無機聚合綠色水泥開發研究。國立臺北科技大學資源工程研究所學位論文。 吳榮華,(2020)。能源轉型下之造紙業節能減碳潛力評估。http://ir.lib.ncku.edu.tw/handle/987654321/208008。 吳榮華,(2018)。能源轉型下耗能產業的節能減碳潛力評估-水泥業範例研究。https://www.grb.gov.tw/search/planDetail?id=12679457。 國家發展委員會、行政院環境保護署、經濟部、科技部、交通部、內政部行政院農業委員會、金融監督管理委員會(2022)。臺灣2050淨零排放路徑及策略總說明。https://ncsd.ndc.gov.tw/Fore/nsdn/about0/2050Path 張育誠、吳國光、焦鴻文(2016)。水泥業節能技術之淺談。冷凍空調與能源科技雜誌,(98),64-70。 郭孟芸(2024)。整合氣候法制與企業 ESG 能源與碳排放績效評量制度研析。臺灣大學環境工程學研究所學位論文。 陳光熙、林尚毅、章興國(2019)。水泥廠在循環經濟與減碳的思維及作為-台灣水泥。土木水利,46(5),4-8。 陳志賢、曾昱中、邱子杰、陳志宗(2024)。水泥業2050 年淨零排放路徑圖計算方法學研析。工業污染防治刊物第162期。https://proj.ftis.org.tw/eta/download2.aspx?mno=2415 温珮伶、羅凱凌、李孟穎、邱雅暄(2023)。零碳能源本土化的知識共構機制:以去碳能源工作圈為例。發展研究年會2023。 黃啟峰、潘子欽(2018)。台灣水泥業能源效率與替代燃料使用分析。 燃燒季刊,(102),67-80。 黃韻勳、張憶琳(2015)。以能源效率模型評估我國水泥業的製程節能潛力,2(2)。 經濟部統計處。工業產銷存動態調查-產品統計(瀏覽日期:2025年1月)。 潤泰精密材料股份有限公司(2024)。2023年永續報告書。https://www.rtm.com.tw/chinese/esg/esg-report.php。 蔣本基、顧洋、鄭耀文、林志森(2006)。我國溫室氣體減量整體因應策略。科學與工程技術期刊,2(1),1-8。 蔣本基、李志賢、張章堂、陳耀德、簡又新(2023)。水泥業淨零轉型精進策略。工業污染防治刊物。(159),65-88。 https://proj.ftis.org.tw/eta/download2.aspx?mno=2415。 駱尚廉、蕭代基(2007)。環境經濟分析。曉園。 環境部氣候變遷署溫室氣體排放量資訊平台。https://ghgregistry.moenv.gov.tw/epa_ghg/。 簡慧貞、劉家介(2013)。我國產業溫室氣體排放申報與運用標竿工具做為減量績效認可機制之探討。工業污染防治,(125),31-60。 顧洋、申永順(2005)。國際間溫室氣體管理標準化之發展及因應策略。 科學與工程技術期刊,1(3),1-22。 | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/97540 | - |
| dc.description.abstract | 全球氣候變遷的影響,水泥業在全球淨零轉型下的溫室氣體減量勢在必行,惟我國水泥產業近年來面臨內需下降、進口競爭加劇及碳排放壓力等挑戰,使水泥業在減碳路徑遇到了些困難,本研究以問題釐清、問題分析及解決方案3個步驟逐步分析水泥業正在面臨的問題及政府如何推動相關政策確保水泥持續永續經營。
本研究利用減碳成本分析模型,以國際上減碳技術節能潛力及維運、投資成本計算參考依據,製作各項成熟減碳技術成本與節能潛力分析圖,在碳費每公噸CO2計新臺幣300元條件下即有可採行具有投資效益之減碳措施,以提高生質燃料之二氧化碳減量潛力為最高,另以問卷調查方法確認以前述模型計算具有投資效益之減碳措施在我國水泥業之採用情形,發現調查結果與模型評估結果相近,另問卷調查結果比較各國對水泥業的減排目標及政策工具與我國之差異性,顯示我國水泥業減碳進程相對落後,提供短、中、長期減決方案促使水泥業積極減碳。 另以簡單經濟學模型分析國際上常見減碳政策作法包含碳稅(費)及總量管制排放交易制度,因總量管制排放交易制度有相對高的碳定價格,對於減碳措施的投入具有相對誘因,也反映碳的「名目價格」的提升也足以讓企業在決策時改變投資方向,轉向低碳或再生能源,並產生長期且不可逆的減碳效果,但該名目價格是否足夠誘因推動減碳措施,建議應先調查我國目前採取減碳措施及減碳成本,以提供最具減碳誘因之碳定價格,促使水泥業持續永續經營。 | zh_TW |
| dc.description.abstract | Global climate change has made greenhouse gas reduction in the cement industry imperative under the global net-zero transition. However, in recent years, Taiwan's cement industry has faced challenges such as declining domestic demand, intensified import competition, and increasing pressure from carbon emissions, making the path to decarbonization difficult. This study analyzes the issues currently faced by the cement industry and how the government can promote relevant policies to ensure the industry's sustainable operation, following three steps: problem clarification, problem analysis, and solution development.
This study employs a carbon reduction cost analysis model, referencing the international energy-saving potential of carbon reduction technologies as well as their operation, maintenance, and investment costs. It produces a cost and energy-saving potential analysis chart for various mature carbon reduction technologies. Under the condition of a carbon fee set at NT$300 per metric ton of CO2, there are carbon reduction measures with investment benefits that can be adopted, with increasing the use of biomass fuel offering the highest CO2 reduction potential. Furthermore, a questionnaire survey was conducted to confirm the adoption of these investment-beneficial carbon reduction measures in Taiwan’s cement industry, as calculated by the aforementioned model. The survey results were found to be consistent with the model evaluation. The questionnaire also compared the emission reduction targets and policy tools for the cement industry in various countries with those in Taiwan, revealing that Taiwan’s cement industry is relatively lagging in carbon reduction progress. The study offers short-, medium-, and long-term solutions to encourage the cement industry to actively reduce carbon emissions. Furthermore, using a simple economic model, this study analyzes common international carbon reduction policies, including carbon taxes (fees) and cap-and-trade emission trading systems. Since cap-and-trade systems generally result in relatively high carbon prices, they provide stronger incentives for investment in carbon reduction measures. This also demonstrates that an increase in the “nominal price” of carbon alone can be sufficient to shift corporate investment decisions toward low-carbon or renewable energy options, leading to long-term and irreversible carbon reduction effects. However, whether this nominal price is sufficient to effectively incentivize carbon reduction measures should first be evaluated by investigating the current carbon reduction actions and costs in Taiwan. This would help determine the most effective carbon pricing level to incentivize decarbonization and promote the sustainable development of the cement industry. | en |
| dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2025-07-02T16:22:25Z No. of bitstreams: 0 | en |
| dc.description.provenance | Made available in DSpace on 2025-07-02T16:22:25Z (GMT). No. of bitstreams: 0 | en |
| dc.description.tableofcontents | 誌謝(ii)
中文摘要(iv) 英文摘要(vi) 目次(viii) 圖次(x) 表次(xiii) 第1章 緒論(1) 1.1研究緣起(1) 1.2研究目的(3) 1.3研究內容(4) 第2章 文獻回顧(5) 2.1全球溫室氣體排放現況分析(5) 2.2國際與國內水泥產業現況分析(11) 2.3水泥業排放特性(15) 2.4國際溫室氣體排放管制作法(18) 2.5水泥業減量作法整理(22) 2.6排放許可交易制度作法(30) 第3章 研究方法(32) 3.1研究架構及流程(32) 3.2研究方法(32) 第4章 結果與討論(34) 4.1我國整體排放量分析及2030年減量目標說明(34) 4.2水泥業製程與我國水泥業現況(35) 4.3評估水泥業減碳責任(40) 4.4水泥業目前面臨減碳困境(43) 4.5了解我國水泥業減碳措施 (45) 4.6我國水泥業減碳成本分析(52) 4.7與國際水泥業減碳措施比較(62) 4.8碳稅(費)制度及排放交易總量管制制度(ETS)對於水泥業減碳誘因分析(71) 4.9綜合分析並研擬水泥業最佳減碳措施選擇及國家政策建議(78) 第5章 結論與建議(84) 參考文獻(87) 附錄(95) | - |
| dc.language.iso | zh_TW | - |
| dc.subject | 碳定價 | zh_TW |
| dc.subject | 淨零路徑 | zh_TW |
| dc.subject | 減碳分析 | zh_TW |
| dc.subject | 能源效率 | zh_TW |
| dc.subject | 碳費 | zh_TW |
| dc.subject | 總量管制排放交易制度 | zh_TW |
| dc.subject | 溫室氣體 | zh_TW |
| dc.subject | 水泥業減碳 | zh_TW |
| dc.subject | Net-zero pathway | en |
| dc.subject | Carbon reduction in the cement industry | en |
| dc.subject | Carbon pricing | en |
| dc.subject | Greenhouse gases | en |
| dc.subject | Cap-and-trade system | en |
| dc.subject | Carbon fee | en |
| dc.subject | Energy efficiency | en |
| dc.subject | Carbon reduction analysis | en |
| dc.title | 水泥業淨零轉型下之溫室氣體減量分析 | zh_TW |
| dc.title | Analysis of Greenhouse Gas Reduction Under Net-Zero Transformation for the Cement Industry | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 113-2 | - |
| dc.description.degree | 碩士 | - |
| dc.contributor.oralexamcommittee | 王雅玢;顏秀慧 | zh_TW |
| dc.contributor.oralexamcommittee | Ya-Fen Wang;Shui-Hway Yen | en |
| dc.subject.keyword | 水泥業減碳,碳定價,溫室氣體,總量管制排放交易制度,碳費,能源效率,減碳分析,淨零路徑, | zh_TW |
| dc.subject.keyword | Carbon reduction in the cement industry,Carbon pricing,Greenhouse gases,Cap-and-trade system,Carbon fee,Energy efficiency,Carbon reduction analysis,Net-zero pathway, | en |
| dc.relation.page | 95 | - |
| dc.identifier.doi | 10.6342/NTU202501001 | - |
| dc.rights.note | 同意授權(限校園內公開) | - |
| dc.date.accepted | 2025-06-03 | - |
| dc.contributor.author-college | 工學院 | - |
| dc.contributor.author-dept | 環境工程學研究所 | - |
| dc.date.embargo-lift | 2030-06-03 | - |
| 顯示於系所單位: | 環境工程學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-113-2.pdf 未授權公開取用 | 4.9 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
