請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/97531完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 駱尚廉 | zh_TW |
| dc.contributor.advisor | Shang-Lien Lo | en |
| dc.contributor.author | 王盈之 | zh_TW |
| dc.contributor.author | Ying-Zhi Wang | en |
| dc.date.accessioned | 2025-07-02T16:19:40Z | - |
| dc.date.available | 2025-07-03 | - |
| dc.date.copyright | 2025-07-02 | - |
| dc.date.issued | 2025 | - |
| dc.date.submitted | 2025-06-15 | - |
| dc.identifier.citation | Ai, S., Wu, X., Wang, J., Li, X., Hao, X., & Meng, Y. (2024). Research Progress on Solid-State Electrolytes in Solid-State Lithium Batteries: Classification, Ionic Conductive Mechanism, Interfacial Challenges. Nanomaterials, 14(22), 1773. https://www.mdpi.com/2079-4991/14/22/1773
Anil, M., & Rejikumar, G. (2023, 24-26 Jan. 2023). Life Cycle Analysis of Lithium-ion Batteries: An Assessment of Sustainability Impact. 2023 International Conference for Advancement in Technology (ICONAT), Antony Jose, S., Gallant, A., Gomez, P. L., Jaggers, Z., Johansson, E., LaPierre, Z., & Menezes, P. L. (2025). Solid-State Lithium Batteries: Advances, Challenges, and Future Perspectives. Batteries, 11(3), 90. https://www.mdpi.com/2313-0105/11/3/90 Batuecas, E., Martínez-Cisneros, C. S., Serrano, D., & Várez, A. (2024). Life cycle assessment of lab-scale solid sodium-ion batteries: A sustainable alternative to liquid lithium-ion batteries. Journal of Energy storage, 80, 110355. https://doi.org/https://doi.org/10.1016/j.est.2023.110355 Blömeke, S., Scheller, C., Cerdas, F., Thies, C., Hachenberger, R., Gonter, M., Herrmann, C., & Spengler, T. S. (2022). Material and energy flow analysis for environmental and economic impact assessment of industrial recycling routes for lithium-ion traction batteries. Journal of Cleaner Production, 377, 134344. https://doi.org/https://doi.org/10.1016/j.jclepro.2022.134344 Chen, Q., Lai, X., Gu, H., Tang, X., Gao, F., Han, X., & Zheng, Y. (2022). Investigating carbon footprint and carbon reduction potential using a cradle-to-cradle LCA approach on lithium-ion batteries for electric vehicles in China. Journal of Cleaner Production, 369, 133342. https://doi.org/https://doi.org/10.1016/j.jclepro.2022.133342 Chen-Glasser, M., Landis, A. E., & DeCaluwe, S. C. (2023). Carbon footprint of Li-Oxygen batteries and the impact of material and structure selection. Journal of Energy storage, 60, 106684. https://doi.org/https://doi.org/10.1016/j.est.2023.106684 Costa, C. M., Pinto, R. S., Serra, J. P., Barbosa, J. C., Gonçalves, R., & Lanceros-Méndez, S. (2025). Next generation sustainable lithium-ion batteries: Micro and nanostructured materials and processes. Chemical Engineering Journal, 509, 161337. https://doi.org/https://doi.org/10.1016/j.cej.2025.161337 Dai, Q., Kelly, J. C., Gaines, L., & Wang, M. (2019). Life Cycle Analysis of Lithium-Ion Batteries for Automotive Applications. Batteries, 5(2), 48. https://www.mdpi.com/2313-0105/5/2/48 Degen, F., Mitterfellner, M., & Kampker, A. (2025). Comparative life cycle assessment of lithium-ion, sodium-ion, and solid-state battery cells for electric vehicles. Journal of Industrial Ecology, 29(1), 113-128. https://doi.org/https://doi.org/10.1111/jiec.13594 Degen, F., Winter, M., Bendig, D., & Tübke, J. (2023). Energy consumption of current and future production of lithium-ion and post lithium-ion battery cells. Nature Energy, 8(11), 1284-1295. https://doi.org/10.1038/s41560-023-01355-z Dodds, P. E., & Garvey, S. D. (2016). Chapter 1 - The Role of Energy Storage in Low-Carbon Energy Systems. In T. M. Letcher (Ed.), Storing Energy (pp. 3-22). Elsevier. https://doi.org/https://doi.org/10.1016/B978-0-12-803440-8.00001-4 Dolla, T. H., Ajayi, S. O., Sikeyi, L. L., Mathe, M. K., & Palaniyandy, N. (2025). Advances in solid-state batteries fabrication strategies for their manufacture. Journal of Energy storage, 106, 114737. https://doi.org/https://doi.org/10.1016/j.est.2024.114737 Kim, H. C., Lee, S., & Wallington, T. J. (2023). Cradle-to-Gate and Use-Phase Carbon Footprint of a Commercial Plug-in Hybrid Electric Vehicle Lithium-Ion Battery. Environmental Science & Technology, 57(32), 11834-11842. https://doi.org/10.1021/acs.est.3c01346 Le Varlet, T., Schmidt, O., Gambhir, A., Few, S., & Staffell, I. (2020). Comparative life cycle assessment of lithium-ion battery chemistries for residential storage. Journal of Energy storage, 28, 101230. https://doi.org/https://doi.org/10.1016/j.est.2020.101230 Liu, Z., Li, X., Zhang, H., Huang, K., & Yu, Y. (2024). Are solid-state batteries absolutely more environmentally friendly compared to traditional batteries-analyzing from the footprint family viewpoint. Journal of Cleaner Production, 447, 141452. https://doi.org/https://doi.org/10.1016/j.jclepro.2024.141452 Machín, A., Cotto, M. C., Díaz, F., Duconge, J., Morant, C., & Márquez, F. (2024). Environmental Aspects and Recycling of Solid-State Batteries: A Comprehensive Review. Batteries, 10(7), 255. https://www.mdpi.com/2313-0105/10/7/255 Mandade, P., Weil, M., Baumann, M., & Wei, Z. (2023). Environmental life cycle assessment of emerging solid-state batteries: A review. Chemical Engineering Journal Advances, 13, 100439. https://doi.org/https://doi.org/10.1016/j.ceja.2022.100439 Nordelöf, A., Poulikidou, S., Chordia, M., Bitencourt de Oliveira, F., Tivander, J., & Arvidsson, R. (2019). Methodological Approaches to End-Of-Life Modelling in Life Cycle Assessments of Lithium-Ion Batteries. Batteries, 5(3), 51. https://www.mdpi.com/2313-0105/5/3/51 Nzereogu, P. U., Oyesanya, A., Ogba, S. N., Ayanwunmi, S. O., Sobajo, M. S., Chimsunum, V. C., Ayanwunmi, V. O., Amoo, M. O., Adefemi, O. T., & Chukwudi, C. C. (2025). Solid-State lithium-ion battery electrolytes: Revolutionizing energy density and safety. Hybrid Advances, 8, 100339. https://doi.org/https://doi.org/10.1016/j.hybadv.2024.100339 Peiseler, L., Wood, V., & Schmidt, T. S. (2023). Reducing the carbon footprint of lithium-ion batteries, what’s next? Next Energy, 1(2), 100017. https://doi.org/https://doi.org/10.1016/j.nxener.2023.100017 Rietdorf, C., De la Rúa, C., Kiemel, S., & Miehe, R. (2024). Cradle-to-Gate life cycle assessment of cylindrical sulfide-based solid-state batteries. The International Journal of Life Cycle Assessment, 29(11), 1992-2003. https://doi.org/10.1007/s11367-024-02355-1 Sadhukhan, J., & Christensen, M. (2021). An In-Depth Life Cycle Assessment (LCA) of Lithium-Ion Battery for Climate Impact Mitigation Strategies. Energies, 14(17), 5555. https://www.mdpi.com/1996-1073/14/17/5555 Scrucca, F., Presciutti, A., Baldinelli, G., Barberio, G., Postrioti, L., & Karaca, C. (2025). Life cycle assessment of Li-ion batteries for electric vehicles: A review focused on the production phase impact. Journal of Power Sources, 639, 236703. https://doi.org/https://doi.org/10.1016/j.jpowsour.2025.236703 Zhang, G., Shi, M., Hu, X., Yang, H., & Yan, X. (2024). Comparison of life cycle assessment of different recycling methods for decommissioned lithium iron phosphate batteries. Sustainable Energy Technologies and Assessments, 68, 103871. https://doi.org/https://doi.org/10.1016/j.seta.2024.103871 Zhang, H., Xue, B., Li, S., Yu, Y., Li, X., Chang, Z., Wu, H., Hu, Y., Huang, K., Liu, L., Chen, L., & Su, Y. (2023). Life cycle environmental impact assessment for battery-powered electric vehicles at the global and regional levels. Scientific Reports, 13(1), 7952. https://doi.org/10.1038/s41598-023-35150-3 Dai, Q., et al. (2019). "Life Cycle Analysis of Lithium-Ion Batteries for Automotive Applications." Batteries 5(2): 48. Dolganova, I., et al. (2020). "A Review of Life Cycle Assessment Studies of Electric Vehicles with a Focus on Resource Use." Resources 9(3): 32. Festo (2023). Automation solutions for battery production: 10-11. Froboese, L., et al. (2020). "Enhancing the Lithium Ion Conductivity of an All Solid-State Electrolyte via Dry and Solvent-Free Scalable Series Production Processes." Journal of The Electrochemical Society 167: 020558. Granata, G., et al. (2020). Production of Lithium Ion Battery Cathode Material (NMC 811) from Primary and Secondary Raw Materials - Techno-Economic Assessment with SuperPro Designer. Zackrisson, M. and S. Schellenberger (2023). Life cycle assessment of lithium-ion battery recycling - The Scope-lib process. RISE Rapport: 35. 行政院環境保護署 (2022). 引用我國第三類環境宣告產品類別規則申請產品碳足跡標籤之要求文件 (鋰離子二次電池組). 李孟珊、蔡文碩、楊昌中、黃建中 (2019). 生命週期評估應用於電化學電池之關鍵議題. 工業污染防治. 147: 15-30. 塩田, 彰., et al. (2024). "硫化物系全固体電池における耐久性向上を目的とした正極活物質への被覆技術の開発." 粉体および粉末冶金 71(8): 289-295. | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/97531 | - |
| dc.description.abstract | 隨著電氣化趨勢的來臨,以及鋰離子電池技術的不斷進步,其作為儲能裝置的需求也持續上升。先進國家中,歐盟已入法關於電池的法規 (EU Batteries Regulation) ,2023年8月新法施行。新的歐盟電池法規將確保未來電池具有低碳足跡,使用最少的有害物質、更少的來自非歐盟國家的原材料,而根據「歐洲綠色政綱」(European Green Deal)的循環目標,「電池法規」是歐洲第一部採用全生命週期方法的立法。
本研究主要探討,傳統液態鋰離子電池與硫化物固態鋰離子電池之電解質碳足跡。研究透過篩選出最有前景發展價值之硫化物固態電解質,令其與傳統液態電解質進行生命週期評估(Life-cycle assessment, LCA),以量化分析,解構兩種不同型態之電解質,所可能產生之碳排,並將傳統液態鋰離子電池之液態電解質,與固態鋰離子電池之固態硫化物電解質,之各項目碳排進行交叉比較。 根據研究模擬結果顯示,製造1 kWh固態鋰電池之總碳足跡為 47.95 kg CO₂-eq,其中來自化石能源之排放為 47.72 kg CO₂-eq,佔比達 99.5%;生物來源貢獻為 0.074 kg CO₂-eq,土地使用變化則為 0.15 kg CO₂-eq。而生產1 kWh液態鋰電池之總碳足跡為 17.95 kg CO₂-eq,其中化石來源碳排佔 17.89 kg CO₂-eq(99.7%),生物來源為 0.029 kg CO₂-eq,土地使用變化造成之碳排為 0.033 kg CO₂-eq。整體結果顯示,兩種電解質之碳排熱點皆為化石燃料燃燒。 硫化物固態電解質,有望成為次世代鋰離子電池儲用能解方,單論原料與製程階段,需注意原料選用及製程電力來源。相較於技術穩定、成本低的液態鋰離子電池,欲成為有競爭力的新一代產品,還需克服以上問題,才能打開量產市場進行商業化佈局。 | zh_TW |
| dc.description.abstract | With the global trend toward electrification and ongoing advancements in lithium-ion battery (LIB) technologies, the demand for efficient energy storage continues to grow. In response, the European Union enacted the 2023 EU Batteries Regulation to ensure future batteries maintain low carbon footprints, minimize hazardous substances, and reduce reliance on non-EU raw materials. As the first EU law to adopt a full life cycle approach, it aligns with the circular goals of the European Green Deal.
This study compares the carbon footprints of conventional liquid LIBs and sulfide-based solid-state LIBs through life cycle assessment (LCA). The most promising sulfide solid electrolytes were selected and benchmarked against traditional liquid electrolytes. The analysis focuses on emissions during the Cradle-to-Gate phase, quantifying and comparing environmental impacts. Results show that producing 1 kWh of a solid-state LIB emits 47.95 kg CO₂-eq, with fossil sources accounting for 99.5%. In contrast, the liquid LIB emits 17.95 kg CO₂-eq per kWh, with 99.7% from fossil sources. Both systems reveal fossil fuel use as the major emission hotspot. While sulfide solid electrolytes offer strong potential for next-generation LIBs, their raw material choices and electricity sources during production significantly impact emissions. Compared to the cost-effective and mature liquid LIBs, solid-state alternatives require further technical improvements to achieve commercial viability. | en |
| dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2025-07-02T16:19:40Z No. of bitstreams: 0 | en |
| dc.description.provenance | Made available in DSpace on 2025-07-02T16:19:40Z (GMT). No. of bitstreams: 0 | en |
| dc.description.tableofcontents | 致謝 I
中文摘要 II ABSTRACT III 目次 IV 圖次 VII 表次 IX 第一章 緒論 1 1.1 研究緣起 1 1.2 研究目的 3 1.3 研究內容 3 第二章 文獻回顧 5 2.1 液態鋰離子電池 5 2.2 固態鋰離子電池 9 2.3 液態與固態鋰離子電池之綜合比較 19 2.4 生命週期評估方法 25 2.5 熱點分析 27 2.6 歐盟新電池法規 28 2.7 碳足跡產品類別規則 31 第三章 研究方法 33 3.1 研究設計 33 3.2 研究標的遴選、系統邊界界定與功能單位設定 33 3.3 LCA方法與評估準則說明 39 3.4 影響評估方法與GWP指標 41 3.5 軟體工具遴選與應用說明 42 3.6 資料來源與問題探討 44 3.7 熱點分析方法 45 3.8 研究流程圖 47 第四章 結果與討論 48 4.1 不同型態電解質鋰離子電池之比較 48 4.2 系統範疇邊界設定 52 4.3 鋰離子電池材料分析與盤查資料 57 4.4 數據結果分析比較與熱點分析 67 4.5 貢獻度分析 74 4.6 敏感度分析 76 4.7 環境影響討論 79 第五章 結論與建議 81 5.1 研究結果 81 5.2 研究限制與不確定性 83 5.3 未來研究方向 84 參考文獻 87 附錄 93 | - |
| dc.language.iso | zh_TW | - |
| dc.subject | 硫化物固態電解質 | zh_TW |
| dc.subject | LCA生命週期評估 | zh_TW |
| dc.subject | 搖籃到大門 | zh_TW |
| dc.subject | 能源產業政策 | zh_TW |
| dc.subject | 全球暖化潛勢 | zh_TW |
| dc.subject | 碳足跡 | zh_TW |
| dc.subject | 鋰離子電池 | zh_TW |
| dc.subject | Carbon Footprint | en |
| dc.subject | Lithium-ion Battery | en |
| dc.subject | Sulfide-based Solid-state Electrolyte | en |
| dc.subject | Life Cycle Assessment | en |
| dc.subject | Cradle-to-Gate | en |
| dc.subject | Energy Industry Policy | en |
| dc.subject | Global Warming Potential | en |
| dc.title | 比較不同型態電解質之鋰離子電池碳足跡 | zh_TW |
| dc.title | Comparative Carbon Footprint Analysis of Lithium-Ion Batteries with Different Electrolyte Types | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 113-2 | - |
| dc.description.degree | 碩士 | - |
| dc.contributor.oralexamcommittee | 蔣本基;闕蓓德 | zh_TW |
| dc.contributor.oralexamcommittee | Pen-Chi Chiang;Pei-Te Chiueh | en |
| dc.subject.keyword | 鋰離子電池,硫化物固態電解質,LCA生命週期評估,搖籃到大門,能源產業政策,全球暖化潛勢,碳足跡, | zh_TW |
| dc.subject.keyword | Lithium-ion Battery,Sulfide-based Solid-state Electrolyte,Life Cycle Assessment,Cradle-to-Gate,Energy Industry Policy,Global Warming Potential,Carbon Footprint, | en |
| dc.relation.page | 93 | - |
| dc.identifier.doi | 10.6342/NTU202501141 | - |
| dc.rights.note | 未授權 | - |
| dc.date.accepted | 2025-06-16 | - |
| dc.contributor.author-college | 工學院 | - |
| dc.contributor.author-dept | 環境工程學研究所 | - |
| dc.date.embargo-lift | N/A | - |
| 顯示於系所單位: | 環境工程學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-113-2.pdf 未授權公開取用 | 2.96 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
