請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/97527完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 李百祺 | zh_TW |
| dc.contributor.advisor | Pai-Chi Li | en |
| dc.contributor.author | 劉宣妤 | zh_TW |
| dc.contributor.author | Hsuan-Yu Liu | en |
| dc.date.accessioned | 2025-07-02T16:18:22Z | - |
| dc.date.available | 2025-07-03 | - |
| dc.date.copyright | 2025-07-02 | - |
| dc.date.issued | 2025 | - |
| dc.date.submitted | 2025-06-18 | - |
| dc.identifier.citation | 衛生福利部, 111年死因統計結果分析, 2022.
J. A. Berliner, M. Navab, A. M. Fogelman, J. S. Frank, L. L. Demer, P. A. Edwards, A. D. Watson, and A. J. Lusis, "Atherosclerosis: Basic Mechanisms," Circulation, vol. 91, no. 9, pp. 2488-2496, 1995. S. Zhang, Y. Liu, Y. Cao, S. T. Zhang, J. Sun, Y. H. Wang, S. Y. Song, and H. J. Zhang, "Targeting the Microenvironment of Vulnerable Atherosclerotic Plaques: An Emerging Diagnosis and Therapy Strategy for Atherosclerosis," Advanced Materials, vol. 34, no. 29, article no. e2110660, 2022. R. M. Carey and P. K. Whelton, "Prevention, Detection, Evaluation, and Management of High Blood Pressure in Adults: Synopsis of the 2017 American College of Cardiology/American Heart Association Hypertension Guideline," Annals of Internal Medicine, vol. 168, no. 5, pp. 351-358, 2018. N. H. J. Pijls, B. Van Gelder, P. Van der Voort, K. Peels, F. A. L. E. Bracke, H. J. R. M. Bonnier, and M. I. H. El Gamal, "Fractional Flow Reserve," Circulation, vol. 92, no. 11, p. 3183–3193, 1995. G. J. Crystal and L. W. Klein, "Fractional Flow Reserve: Physiological Basis, Advantages and Limitations, and Potential Gender Differences," Current Cardiology Reviews, vol. 11, no. 3, p. 209–219, 2015. "Fractional Flow Reserve," Thoracic Key, [Online]. Available: https://thoracickey.com/fractional-flow-reserve/. [Accessed 21 March 2019]. D. Katritsis, L. Kaiktsis, A. Chaniotis, J. Pantos, E. P. Efstathopoulos, and V. Marmarelis, "Wall Shear Stress: Theoretical Considerations and Methods of Measurement," Progress in Cardiovascular Diseases, vol. 49, no. 5, pp. 307-329, 2007. A. M. Shaaban and A. J. Duerinckx, "Wall Shear Stress and Early Atherosclerosis: A Review," American Journal of Roentgenology, vol. 174, no. 6, pp. 1487-1542, 2000. D. N. Ku, D. P. Giddens, C. K. Zarins, and S. Glagov, "Pulsatile flow and atherosclerosis in the human carotid bifurcation. Positive correlation between plaque location and low oscillating shear stress," Arteriosclerosis, vol. 5, no. 3, pp. 293-302, 1985. 衛生福利部臺北醫院, 冠狀動脈心臟病及其治療, 2021. "Coronary Angiography," Sozo Cardiology, [Online]. Available: https://www.sozocardiology.com/heart-investigations/coronary-angiography-and-left-ventriculography/. [Accessed 2025]. 中國醫藥大學附設醫院, 中國醫訊159期, 2016. Philips, "Rotational IVUS image interpretation," [Online]. Available: www.philips.com/IGTdevices. [Accessed 01 April 2019]. H. S. Lim and S. M. Kim, "Design of pullback device in intravascular ultrasound system using longitudinal length variation mechanism for rotating axis," International Journal of Precision Engineering and Manufacturing, vol. 17, p. 1569–1573, 2016. J.-H. Sung and J.-H. Chang, "Mechanically Rotating Intravascular Ultrasound (IVUS) Transducer: A Review," Sensors, vol. 21, no. 11, article no. 3907, 2021. T. Ma, M. Y. Yu, Z. Chen, C. L. Fei, K. K. Shung, and Q. Zhou, "Multi-frequency intravascular ultrasound (IVUS) imaging," IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency control, vol. 62, no. 1, pp. 97-107, 2015. W. Shao, X. Han, P. Li, Z. Li, J. Lv, X. Zhu, X. Li, J. Shen, and Y. Cui, "Analysis and experimental verification of dual frequency ultrasonic transducer with contour and thickness vibration modes," Applied Acoustics, vol. 190, article no. 108633, 2022. A. Krushynska, V. Meleshko, C.-C. Ma, and Y.-H. Huang, "Mode Excitation Efficiency for Contour Vibrations of Piezoelectric Resonators," IEEE transactions on ultrasonics, ferroelectrics, and frequency control, vol. 58, no. 10, pp. 2222-2238, 2011. A. M. Franz, T. Haidegger, W. Birkfellner, K. Cleary, T. M. Peters and L. Maier-Hein, "Electromagnetic Tracking in Medicine—A Review of Technology, Validation, and Applications," IEEE Transactions on Medical Imaging, vol. 33, no. 8, pp. 1702-1725, 2014. A.D. Milne, D.G. Chess, J.A. Johnson and G.J.W. King, "Accuracy of an electromagnetic tracking device: A study of the optimal operating range and metal interference," Journal of Biomechanics, vol. 29, no. 6, pp. 791-793, 1996. K. Schicho, M. Figl, M. Donat, W. Birkfellner, R. Seemann, A. Wagner, H. Bergmann, and R. Ewers, "Stability of miniature electromagnetic tracking systems," Physics in Medicine & Biology, vol. 50, no. 9, pp. 2089-98, 2005. H. G. Larsen and S. C. Leavitt, "An Image Display Algorithm for use in Real-Time Sector Scanners with Digital Scan Conversion," in 1980 Ultrasonics Symposium, 1980. M. M. S. Matsumoto, F. M. Cardoso, P. A. Lemos, and S. S. Furuie, "Coronary 3D reconstruction using IVUS images only: a numeric phantom investigation," in Proc. SPIE 7629, Medical Imaging 2010: Ultrasonic Imaging, Tomography, and Therapy, 2010. J. R. Crowe, B. M. Shapo, D. N. Stephens, D. Bleam, M. J. Eberle, E. I. Céspedes, C.-C. Wu, D. W. M. Muller, J. A. Kovach, R. J. Lederman, and M. O’Donnell, "Blood Speed Imaging with an Intraluminal Array," IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency control, vol. 47, no. 3, 2000. J. R. Crowe and M. O’Donnell, "Quantitative Blood Speed Imaging with Intravascular Ultrasound," IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency control, vol. 48, no. 2, 2001. "Field II Ultrasound Simulation Program," [Online]. Available: https://field-ii.dk/. "Ansys," [Online]. Available: https://www.ansys.com/. J. T. Dodge Jr., B. G. Brown, E. L. Bolson, and H. T. Dodge, "Lumen diameter of normal human coronary arteries. Influence of age, sex, anatomic variation, and left ventricular hypertrophy or dilation," Circulation, vol. 86, no. 1, pp. 232-246, 1992. R. T. F. Newcombe, R. C. Gosling, V. Rammohan, P. V. Lawford, D. R. Hose, J. P. Gunn, and P. D. Morris, "The relationship between coronary stenosis morphology and fractional flow reserve: a computational fluid dynamics modelling study," European Heart Journal - Digital Health, vol. 2, no. 4, p. 616–625, 2021. H. -C. Han, "Twisted Blood Vessels: Symptoms, Etiology and Biomechanical Mechanisms," Journal of Vascular Research, vol. 49, no. 3, pp. 185-197, 2012. S. Ciurică, M. Lopez-Sublet, B. L. Loeys, I. Radhouani, N. Natarajan, M. Vikkula, A. H. E. M. Maas, D. Adlam, and A. Persu, "Arterial Tortuosity: Novel Implications for an Old Phenotype," Hypertension, vol. 73, no. 5, pp. 951-960, 2019. "Blender," [Online]. Available: https://www.blender.org/. T. Kao, C. Kut, Y. Kim, E. Boctor, and A. Viswanathan, "Ultrasound-Compatible Gynecologic Training Phantom for Hydrogel Injection," in Computer Integrated Surgery II, 2018. A. Bautista, C. M. Webb, and G. C. Chang Chien, "Ultrasound: In-Plane and Out-of-Plane," in Regenerative Medicine, Springer, Cham, 2023, pp. 115-118. "3D Guidance," Northern Digital Inc, [Online]. Available: https://www.ndigital.com/electromagnetic-tracking-technology/3d-guidance/. [Accessed 2025]. J. A. Jensen and N. B. Svendsen, "Calculation of pressure fields from arbitrarily shaped, apodized, and excited ultrasound transducers," IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, vol. 39, no. 2, pp. 262-267, 1992. J. A. Jensen, Linear description of ultrasound imaging systems, 1999. "ANSYS FLUENT 12.0 User's Guide - 7.3 Boundary Conditions," [Online]. Available: https://www.afs.enea.it/project/neptunius/docs/fluent/html/ug/node236.htm. Z. Yaniv, E. Wilson, D. Lindisch, and K. Cleary, "Electromagnetic tracking in the clinical environment," Medical Physics, vol. 36, no. 3, pp. 876-892, 2009. W. Cárdenas-Bedoya, S. Gil-González, D. Cárdenas-Peña, J. Gil-González, A. A. Orozco-Gutiérrez and O. D. Aguirre-Ospina, "3D probe localization from 2D ultrasound images using an RFF-enhanced deep neural network," in 2024 46th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), 2024. M. F. Rasmussen and J. A. Jensen, "3-D ultrasound imaging performance of a row-column addressed 2-D array transducer: A measurement study," in 2013 IEEE International Ultrasonics Symposium (IUS), 2013. R. W. Martin and C. C. Johnson, "Design characteristics for intravascular ultrasonic catheters," The International Journal of Cardiac Imaging, vol. 4, p. 201–216, 1989. J. Peng, L. Ma, X. Li, H. Tang, Y. Li and S. Chen, "A Novel Synchronous Micro Motor for Intravascular Ultrasound Imaging," IEEE Transactions on Biomedical Engineering, vol. 66, no. 3, pp. 802-809, 2019. D. C. Park and D. W. Park, "Ultrasound Speckle Decorrelation-Based Blood Flow Measurements," Ultrasound in Medicine & Biology, vol. 49, no. 7, pp. 1491-1498, 2023. C. Poelma, "Ultrasound Imaging Velocimetry: a review," Experiments in Fluids, vol. 58, no. 3, 2017. K. L. Hansen, M. B. Nielsen, and J. A. Jensen, "Vector velocity estimation of blood flow - A new application in medical ultrasound," Ultrasound, vol. 25, no. 4, pp. 189-199, 2017. S. Holbek, T. L. Christiansen, M. B. Stuart, C. Beers, E. V. Thomsen and J. A. Jensen, "3-D Vector Flow Estimation With Row–Column-Addressed Arrays," IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, vol. 63, no. 11, pp. 1799-1814, 2016. 林銘哲, 基於前視型血管內超音波系統的血流儲備分數量測:兩種方式比較, [碩士論文,國立臺灣大學], 2023, doi: 10.6342/NTU202300718. 藍立宇, 利用漏溢聲波及電磁追蹤技術實現導絲定位, [碩士論文,國立臺灣大學], 2019, doi: 10.6342/NTU202000233. | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/97527 | - |
| dc.description.abstract | 冠狀動脈疾病是現代社會中致死率極高的心血管疾病,其主因為血管內斑塊堆積,導致狹窄進而阻礙心肌血流供應。臨床上常以血流儲備分數(Fractional Flow Reserve, FFR)作為評估狹窄的黃金指標,透過狹窄前後的壓力反映血流動力學之功能性影響,並由管壁剪應力(Wall Shear Stress, WSS)評估斑塊穩定性與進展。然而,傳統FFR量測需仰賴壓力導絲,在檢查時間、成本及風險上,皆有一定之限制。本研究提出一套以雙頻血管內超音波(Dual-frequency Intravascular Ultrasound, IVUS)為核心的整合系統,旨在透過體外定位及血管內影像,重建血管幾何、估算血流速度,並經計算流體力學(Computational Fluid Dynamics, CFD)模擬推估FFR與WSS。本系統採用之雙頻探頭為單一壓電元件,經由厚度振動模式產生約45 MHz的高頻訊號以進行血管成像,並同時由輪廓振動模式產生約10 MHz的低頻訊號,搭配一維線性陣列體外接收,結合電磁追蹤系統(Electromagnetic Tracking System, EMTS),將切面相對座標轉換為三維空間資訊,以建立血管模型。此外,為了突破側視型IVUS無法量測血液流速對應之都卜勒頻移的限制,本研究基於去相關性處理,以訊號的二階矩(second-order moment)作為流速估算子。定位驗證方面,EMTS於三軸方向定位的均方根誤差為(0.037, 0.037, 0.063) mm,具備高精度潛力。血管重建結果方面,在不同彎曲度(Tortuosity Index)與狹窄程度(Diameter Stenosis)下,隨狹窄程度上升:(1)彎曲度變化不顯著,但彎曲效應改變截面形狀趨於橢圓,(2)平均半徑下降,反映幾何收縮。流速估算方面,在血管入口處的平均流速估算值與參考值差距6至59 mm/s,初步支持估算模型之可行性。CFD模擬方面,FFR隨狹窄加劇而下降,WSS於狹窄入口處的峰值則上升;並且彎曲導致WSS出現方向性調變與局部渦旋現象。分析幾何誤差對FFR的影響,發現當狹窄程度低於70%時,小幅度的管徑或彎曲誤差對其影響有限;惟於高度狹窄模型中,流速估算誤差可能造成FFR值明顯變化。總結而言,本論文整合雙頻IVUS於血管重建、流速估算與CFD模擬之整體流程,並成功推估FFR與WSS兩項重要指標,能有效降低傳統FFR量測風險與成本,省去術中X光血管攝影及壓力導絲的使用,為血管狹窄評估提供創新的可行方案。 | zh_TW |
| dc.description.abstract | Coronary artery disease (CAD) is a leading cause of death in modern society, primarily caused by plaque accumulation that leads to arterial stenosis and impairs myocardial perfusion. Clinically, Fractional Flow Reserve (FFR) is regarded as the gold standard for assessing the functional severity of stenosis. Additionally, Wall Shear Stress (WSS) is used to evaluate plaque stability and progression. However, traditional FFR measurement relies on pressure guidewires, which increases the procedure duration, cost, and risk. This study proposes an integrated system based on dual-frequency intravascular ultrasound (IVUS), using extracorporeal localizing and intravascular imaging to reconstruct vascular geometry, estimate blood flow velocity, and simulate FFR and WSS via computational fluid dynamics (CFD). The dual-frequency transducer employed in this system utilizes a single piezoelectric element: high-frequency signals (~45 MHz) generated by thickness mode for imaging vascular walls and low-frequency signals (~10 MHz) simultaneously generated by contour mode for external localization of the IVUS transducer. Integrated with an electromagnetic tracking system (EMTS), 3D spatial information is obtained for vascular model reconstruction. In localization validation, the EMTS achieved root-mean-square errors of (0.037, 0.037, 0.063) mm across three axes, indicating high spatial accuracy. In vascular reconstruction, increasing stenosis led to two effects observed under varying tortuosity index and diameter stenosis: (1) tortuosity is not significantly affected, but the curvature effects led to cross-sectional deformation, and (2) the average radius decreased, reflecting geometric contraction. In CFD simulations, FFR decreased with increasing stenosis, while WSS peaks rose at the stenosis inlet and exhibited directional modulation and local vortices. Sensitivity analysis revealed that minor geometric errors in diameter or tortuosity had a limited impact on FFR when stenosis was below 70%, but in high-stenosis models, flow velocity estimation errors could significantly affect FFR values. In summary, this research presents a comprehensive workflow integrating dual-frequency IVUS for FFR and WSS calculation. The proposed system successfully estimated the key functional indicators without the need for intraoperative X-ray angiography or pressure guidewires, offering an innovative tool and feasible solution for stenosis assessment with reduced risk and cost. | en |
| dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2025-07-02T16:18:22Z No. of bitstreams: 0 | en |
| dc.description.provenance | Made available in DSpace on 2025-07-02T16:18:22Z (GMT). No. of bitstreams: 0 | en |
| dc.description.tableofcontents | 誌謝 i
摘要 ii ABSTRACT iii 目次 iv 圖次 vii 表次 x 第1章 緒論 1 1.1 冠狀動脈疾病 1 1.2 血管狹窄的評估指標 2 1.3 血管狹窄的治療方式 5 1.4 研究動機與目標 6 1.5 論文架構 7 第2章 研究方法 9 2.1 雙頻血管內超音波 9 2.1.1. 血管內超音波 9 2.1.2. 雙頻血管內超音波技術簡介 10 2.1.3. 雙頻血管內超音波探頭設計 11 2.2 電磁追蹤 13 2.3 血管幾何 14 2.3.1. 血管壁偵測 14 2.3.2. 血管三維幾何重建 16 2.4 血管體外定位 17 2.4.1. 超音波定位與單向波束成形技術 18 2.4.2. 電磁定位與座標轉換 19 2.5 血液流速估算 21 2.5.1. 文獻探討 22 2.5.2. Field II模擬 23 2.6 計算流體力學 24 2.7 研究流程 25 第3章 實驗設計 27 3.1 血流仿體設計 27 3.1.1. 血管仿體 27 3.1.2. 流場環境 31 3.2 三維影像定位系統 31 3.2.1. 單探頭超音波影像系統 32 3.2.2. 一維陣列式探頭超音波影像系統 33 3.2.3. 電磁追蹤系統 35 3.2.4. 系統同步 36 3.3 流速估算實驗 37 3.4 壓力量測系統 37 3.5 實驗架構 39 3.5.1. 影像定位實驗設計 39 3.5.2. 流速估算實驗設計 41 3.6 計算流體力學模擬參數設計 41 第4章 研究結果 43 4.1 座標校正實驗 43 4.2 血管模型 46 4.3 流速估算 51 4.3.1. 流速估算模型 51 4.3.2. 流速估算實驗結果 56 4.4 CFD模擬結果 58 4.4.1. FFR結果 59 4.4.2. WSS結果 68 第5章 分析與討論 75 5.1 Field II超音波模擬 75 5.2 定位誤差來源 77 5.2.1. 超音波定位 77 5.2.2. 電磁定位 79 5.3 血管壁偵測與幾何重建誤差來源 80 5.4 流速估算誤差來源 81 5.5 CFD模擬 82 5.5.1. 不同模型與參數設定對模擬結果的影響 83 5.5.2. 幾何與流速誤差對狹窄評估指標的影響 83 5.6 臨床可行性評估 87 第6章 結論與未來展望 90 6.1 結論 90 6.2 未來工作 91 第7章 參考資料 95 | - |
| dc.language.iso | zh_TW | - |
| dc.subject | 管壁剪應力 | zh_TW |
| dc.subject | 計算流體力學 | zh_TW |
| dc.subject | 雙頻血管內超音波 | zh_TW |
| dc.subject | 流速估算 | zh_TW |
| dc.subject | 三維血管重建 | zh_TW |
| dc.subject | 血流儲備分數 | zh_TW |
| dc.subject | Wall shear stress | en |
| dc.subject | Dual-frequency intravascular ultrasound | en |
| dc.subject | 3D vascular reconstruction | en |
| dc.subject | Flow velocity estimation | en |
| dc.subject | Computational fluid dynamics | en |
| dc.subject | Fractional flow reserve | en |
| dc.title | 雙頻血管內超音波探頭於血管狹窄評估之應用 | zh_TW |
| dc.title | Applications of Dual-Frequency Intravascular Ultrasound Transducers in Vascular Stenosis Assessment | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 113-2 | - |
| dc.description.degree | 碩士 | - |
| dc.contributor.coadvisor | 郭柏齡 | zh_TW |
| dc.contributor.coadvisor | Po-Ling Kuo | en |
| dc.contributor.oralexamcommittee | 沈哲州;鄭耿璽;謝寶育 | zh_TW |
| dc.contributor.oralexamcommittee | Che-Chou Shen;Geng-Shi Jeng;Bao-Yu Hsieh | en |
| dc.subject.keyword | 雙頻血管內超音波,三維血管重建,流速估算,計算流體力學,血流儲備分數,管壁剪應力, | zh_TW |
| dc.subject.keyword | Dual-frequency intravascular ultrasound,3D vascular reconstruction,Flow velocity estimation,Computational fluid dynamics,Fractional flow reserve,Wall shear stress, | en |
| dc.relation.page | 99 | - |
| dc.identifier.doi | 10.6342/NTU202501196 | - |
| dc.rights.note | 未授權 | - |
| dc.date.accepted | 2025-06-18 | - |
| dc.contributor.author-college | 電機資訊學院 | - |
| dc.contributor.author-dept | 生醫電子與資訊學研究所 | - |
| dc.date.embargo-lift | N/A | - |
| 顯示於系所單位: | 生醫電子與資訊學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-113-2.pdf 未授權公開取用 | 6.44 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
